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Foreword by Dean of the School of 
Computer Sciences 

First of all, welcome to the Second International 
Workshop on Spoken Language Technologies for 
Under-resourced Languages (SLTU’10). This event is 
co-organized by Laboratoire d’Informatique de 
Grenoble (LIG) from France and International 
Research Center for Multimedia, Information, 
Communication and Applications (MICA) from 
Vietnam. We would like to thank both of the 
organizations for helping us to realize this workshop. 
This year USM has the honour to host this important 
event especially in the domain of spoken language 
technologies. 

 
The SLTU meeting is a technical workshop focusing on spoken language 
processing for under-resourced languages. This event is especially meaningful to 
us, as Malaysia is home to many languages, and a lot of them are rather rare. 
Even though Malay is the national language, communities in Malaysia are free to 
practise other languages. Even Malay exists in different flavour or dialects at 
different regions of Malaysia. The Chinese community in Malaysia on the other 
hand speak different Chinese languages such as Hokkien, Cantonese, Hakka, 
Teochew etc. Many of the languages have evolved and deviated from their origin. 
For example the Hokkien spoken in Penang has many vocabularies borrowed 
from Malay. At the east of Malaysia- Sabah is home to over 50 indigenous 
languages. These languages have very little language resource and not well 
studied. Most of them do not have a writing system. Some are at the brink of 
extinction. An example is the language spoken by Orang Kanaq, which is one of 
19 indigenous groups in peninsular Malaysia. The Orang Kanaq language has 
only less than a hundred speakers. Therefore, the work in this workshop is very 
much relevant to us in Malaysia, and also aligns with the goal of the university 
which is to create a sustainable future. 
 
In School of Computer Sciences, Universiti Sains Malaysia, there are 3 research 
clusters: namely the service, architecture and knowledge clusters. We have a 
language engineering group which is working in the area language technology 
such as automatic speech recognition, machine translation, speech synthesis 
and others. In particular, we are interested in the area of Malay automatic speech 
recognition and Malay speech synthesis as there is a big demand for these 
applications. At the national level, the development in this area will encourage 
the usage and development of Malay. Other areas of interest are in speech 
search technology, which is dubbed as the next frontier for search engine, where 

 

Associate Professor 
Dr. Rosni Abdullah 
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we make use of the power of automatic speech recognition and grid to allow user 
to query about multimedia files. We also hope to explore those local speech 
phenomena such as code switching and have a deeper study on dialects. We 
hope this workshop will open up more opportunities of collaboration in the area of 
speech technologies and other related areas. Last but not least, we wish 
everyone has a fruitful workshop and enjoyable stay in Malaysia. 
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Foreword by Local Workshop Chair of 
SLTU'10 

After the first SLTU workshop was held in Hanoi, 
Vietnam in 2008, we have the honor to organize the 
second Spoken Languages Technologies for Under-
resourced Languages workshop with the help and 
support from  Laboratoire d’Informatique de Grenoble 
(LIG), France and  Multimedia, Information, 
Communication and Applications (MICA) Research 
Center, Vietnam. 
 
It took us around a year to prepare for this event, 
starting from the proposal to the realizing of it. 
However it seems like only yesterday, as I recalled 
the time when Tan Tien Ping asked me to be the local  

chair of this event. I accepted the offer because I felt that SLTU has a very good 
reason d’être. Today a lot of minorities and aborigines are losing their native 
mother tongue. They do not have the financial and political resources to promote 
their languages in schools or via the TV stations. It is a shame to lose out this 
human heritage. One of the ways to support the existence of these languages is 
through the advancement of today’s ICT. This kind of effort is very much needed 
as it enables the preservation of human heritage.  
 
We have successfully gathered experts from different countries to share their 
knowledge and expertise on Natural Language Processing and Computational 
Linguistics especially in spoken languages. I would like to welcome you to our 
beautiful university, USM and certainly to Penang which boasts of its beautiful 
sandy beaches and rich cultural heritage embedded within the island. Penang 
was recently declared a UNESCO World Heritage Site. It is also known to be the 
‘food paradise” of Malaysia. Do discover Penang that has a rich multicultural 
history, and our country, Malaysia that is truly Asia. 

 

I would like to express my sincere thanks and appreciation to the dedicated work 
and cooperation given by the local committee, as well as the technical and 
professional support from LIG, MICA, the scientific committee and the financial 
support from our sponsors. Without this joint effort, SLTU 2010 workshop would 
not have materialized today. 
 
 
Thank you. “Terima kasih”. 

Associate Professor 
Dr. Chan Huah Yong 
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Foreword by SLTU’10 Chair 
After the 1st workshop held in Vietnam in 2008, we 
are very pleased to welcome participants to this 2nd 
international workshop on Spoken Languages 
Technologies for Under-resourced Languages (SLTU), 
in Penang, Malaysia. 
 
For 2010, we managed to gather researchers working 
on ASR, synthesis and translation for more than 20 
under-resourced languages (portability issues, 
multilingual spoken language processing, fast 
resources acquisition, etc.). We are delighted to find 
so much interest in this SLTU 2010 workshop.  

 
Overall, 22 papers have been selected for oral communications. The authors and 
co-authors originated from 17 countries (Bangladesh, Burma, Cambodia, 
Ethiopia, France, Germany, Hungary, India, Korea, Malaysia, Pakistan, Russia, 
Singapore, Spain, South-Africa, Vietnam, USA). We observed an increase in the 
quality of the papers compared to 2008 and the scientific committee has 
compiled a two-day scientific programme that covers areas of automatic 
translation, speech recognition and synthesis, as well as collection of language 
resources.  
  
In addition, three prestigious speakers have been invited to give keynotes: 
Haizou Li, Ruhi Sarikaya and Alex Waibel. We wish to give special thanks to 
them. We would also like to thank all the members of the scientific committee for 
their help in making this event a scientifically recognized workshop. Special 
thanks also to the Universiti Sains Malaysia which accepted the responsibility to 
host the workshop and to all the local organizers.  
 
Finally, we would like to extend our thanks to ISCA, AFCP, CNRS and Grenoble-
INP for their strong support (notably, the support of ISCA and AFCP which 
allowed us to give grants to fund the venue of five PhD students). 
 
Thanks and have an excellent workshop! 
 
 
 
 

 

Dr. Laurent Besacier 
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Invited Talk 

 

Invited Talk 1: 

BISTRA: Malay-English Bidirectional Speech Translation 
Dr. Haizhou Li 
Institute for Infocomm Research, Singapore 
 
Abstract 
In this talk, I will describe the development of a Malay-English bidirectional 
speech translation system in the Institute for Infocomm Research, Singapore, as 
part of the Asian Speech Translation Advanced Research Consortium. I will 
introduce the basic components and the linguistic resources, in particular, large 
vocabulary continuous speech recognition, speech synthesis, and machine 
translation concerning Malay language. I will also discuss the network-based 
system architecture that supports the real-time speech translation service. 
 
Biography 
Dr Haizhou Li is the Principal Scientist of Human Language Technology at the 
Institute for Infocomm Research in Singapore. His research interests include 
automatic speech recognition and machine translation. Dr Li taught in the 
University of Hong Kong and South China University of Technology (1988-1994). 
He was a Visiting Professor at CRIN/INRIA in France (1994-1995). He was a 
Research Manager in Apple-ISS Research Centre (1996-1998), a Research 
Director in Lernout & Hauspie Asia Pacific (1999-2001), and a Vice President in 
InfoTalk Corp. Ltd (2001-2003), responsible for Asian language products. In 
2009, he was named one of the two Nokia Professors by Nokia Fundation.  
Dr Li now serves as an Associate Editor of IEEE Transactions on Audio, Speech 
and Language Processing. He is an elected Board Member of the International 
Speech Communication Association (ISCA, 2009-2013), an Executive Board 
Member of the Asian Federation of Natural Language Processing (AFNLP, 2006-
2010). 
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Invited Talk 

 

Invited Talk 2: 

Towards Building Effective Language Translation Systems 
Dr. Ruhi Sarikaya 
IBM Watson USA 
 
Abstract 
Automatic Language Translation - widely known as Machine Translation (MT) - 
has been one of the long-standing elusive goals in natural language processing 
and artificial intelligence. With the effect of increasing globalization at the 
individual and enterprise level, and wide-spread use of social networking sites 
the necessity to exchange knowledge between people who do not share a 
common language put MT into the spotlight. Now, having access to vast amounts 
of translation data and powerful computers, we are closer than ever to achieving 
that goal. In this talk we focus on building usable machine translation systems. 
We will highlight the practical and fundamental challenges for building MT 
systems and present our solutions and approaches on both fronts. In particular, 
we first give an overview of MT research, then focus on parallel data construction 
for MT, language and MT modeling in continuous space. We also demonstrate 
working MT systems for various applications between English and several major 
languages. 
 
Biography 
Dr. Ruhi Sarikaya is a research staff member and team lead in the Human 
Language Technologies Group at IBM T.J. Watson Research Center. He 
received the B.S. degree from Bilkent University, Turkey in 1995, M.S. degree 
from Clemson University, SC in 1997 and the Ph.D. degree from Duke 
University, NC in 2001 all in electrical and computer engineering.  He has 
published over 50 technical papers in refereed journal and conference 
proceedings and, is the lead inventor of eight patents in the area of speech and 
natural language processing. At IBM he has received several prestigious awards 
for his work including two Outstanding Technical Achievement Awards (2005 and 
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2008) and two Research Division Awards (2005 and 2007). Prior to joining IBM in 
2001 he was a researcher at the Center for Spoken Language Research (CSLR) 
at the University of Colorado at Boulder for two years.  He also spent the summer 
of 1999 at the Panasonic Speech Technology Laboratory, Santa Barbara, CA. 
He has served as the publicity chair of IEEE ASRU’05 and gave a tutorial on 
“Processing Morphologically Rich Languages” at Interspeech’07. Dr. Sarikaya is 
currently serving as associate editors of IEEE Transactions on Audio Speech and 
Language Processing and IEEE Signal Processing Letters. He also served as 
the lead guest editor of the special issue on “Processing Morphologically-Rich 
Languages” for IEEE Trans. on Audio Speech & Language Processing. 
His past and present research interests span all aspects of speech and language 
processing including speech recognition, natural language processing, machine 
translation, machine learning, speech-to-speech translation, speaker 
identification/verification, digital signal processing and statistical modeling. 
Dr. Sarikaya is a member of IEEE (senior member), ACL and ISCA.  
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Invited Talk 3: 

Speech Translators for Humanitarian Projects 
Dr. Alexander Waibel 
Universitat Karlsruhe, Germany 
 
Abstract 
This talk will describe Jibbigo and our speech translators designed and 
experimented in the context of humanitarian exercises in Thailand, Honduras and 
Indonesia. 
 
Biography 
Dr. Alexander Waibel is a Professor of Computer Science at Carnegie Mellon 
University, Pittsburgh and at the Karlsruhe Institute of Technology, Germany. He 
is the director of the International Center for Advanced Communication 
Technologies (interACT), a center between seven international research 
institutions worldwide. At Carnegie Mellon, he also serves as Associate Director 
of the Language Technologies Institute. Dr. Waibel was one of the founders of C-
STAR, the international consortium for speech translation research and served 
as its chairman from 1998-2000. His team has developed the JANUS speech 
translation system, the first American and European Speech Translation system, 
and more recently the first real-time simultaneous speech translation system for 
lectures. His lab has also developed a number of multimodal systems including 
perceptual Meeting Rooms, Meeting recognizers, Meeting Browser and 
multimodal dialog systems for humanoid robots. He directed the CHIL program 
(FP-6 Integrated Project on multimodality) in Europe and the NSF-ITR project 
STR-DUST (the first domain independent speech translation project) in the US. 
He is part of the French-German project Quaero. In the areas of speech, speech 
translation, and multimodal interfaces Dr. Waibel holds several patents and has 
founded and co-founded several successful commercial ventures.  
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Dr. Waibel received the B.S. in Electrical Engineering from the Massachusetts 
Institute of Technology in 1979, and his M.S. and Ph.D. degrees in Computer 
Science from Carnegie Mellon University in 1980 and 1986. His work on the 
Time Delay Neural Networks was awarded the IEEE best paper award in 1990. 
His contributions to multilingual and speech translation systems was awarded the 
"Alcatel SEL Research Prize for Technical Communication" in 1994, the "Allen 
Newell Award for Research Excellence" from CMU in 2002, and the Speech 
Communication Best Paper Award in 2002. 
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EXPLOITING MORPHOLOGY IN SPEECH TRANSLATION
WITH PHRASE-BASED FINITE-STATE TRANSDUCERS

Alicia Pérez, M. Inés Torres∗

Department of Electricity and Electronics
University of the Basque Country
manes.torres@ehu.es

Francisco Casacuberta

Instituto Tecnológico de Informática
Technical University of Valencia

fcn@iti.upv.es

ABSTRACT

This work implements a novel formulation for phrase-based
translation models making use of morpheme-based transla-
tion units under a stochastic finite-state framework. This ap-
proach has an additional interest for speech translation tasks
since it leads to the integration of the acoustic and translation
models.

As a further contribution, this is the first paper addressing
a Basque-to-Spanish speech translation task. For this purpose
a morpheme based finite-state recognition system is com-
bined with a finite-state transducer that translates phrases of
morphemes in the source language into usual sequences of
words in the target language.

The proposed models were assessed under a limited-
domain application task. Good performances were obtained
for the proposed phrase-based finite-state translation model
using morphemes as translation units, and also notable im-
provements are obtained in decoding time.

Index Terms— Speech Translation, Stochastic Finite-
State Transducers, Morphology

1. INTRODUCTION

The use of morphological knowledge in machine translation
(MT) is relatively recent and has been mainly sustained in
tasks where morphologically rich languages were involved.
In both transfer-based and example-based MT approaches
morphological analysis has been used in the source language
to extract lemmas and split words into their compounds so as
to predict word-forms in the target language [1, 2]. In [3] it
was Moses [4], the state-of-the art statistical MT system, that
was used to train phrase-based models at morpheme level.

With respect to MT under finite-state framework, in [5] a
text-to-text translation paradigm was proposed by combining
a phrase-based model dealing with running words and finite-
state models including morphological knowledge. Specifi-

∗This work has been partially supported by the University of the Basque
Country under grants 9/UPV 00224.310-15900/2004 and GIU07/57, by the
Spanish CICYT under grant TIN2005-08660-C04-03, and by the Spanish
program Consolider-Ingenio 2010 under grant CSD2007-00018.

cally, the finite-state machine consisted of a composition of
a word-to-stem statistical analyser in source word, a stem-to-
stem translation model from source to target language and a
stem-to-word statistical generation module in target language
all the constituents being implemented with ATT-tools. No
other morphemes except stems were used.

The contribution of this work is twofold: first, the formu-
lation of speech translation based on morphemes under the
finite-state framework, and second, its application on Basque
to Spanish speech translation. We take advantage of all the
compounds of a word, and not only of lemmas. We promote
the use of finite-state models due to their decoding speed.

Spanish and Basque languages entail many challenges for
current machine translation systems. Due to the fact that both
languages are official in the Basque Country, there is a real
demand of several documents to be bilingual. In spite of
the fact that both languages coexist in the same area, they
differ enormously. To begin with, it is precise to note that
they have different origin: while Spanish belongs to the set of
Romance languages, Basque is a pre-Indoeuropean language.
There are notable differences in both morphology and syn-
tax. In contrast to Spanish, Basque is an extremely inflected
language, with more than 17 declension cases that can be re-
cursively combined. Inflection makes the size of the vocab-
ulary (in terms of word-forms) grow. Hence, the number of
occurrences of word n-grams within the data is much smaller
than in the case of Spanish, and this leads to poor or even un-
reliable statistic estimates. By applying to morpheme based
models we aim at tackling sparsity of data and consequently
getting improved statistical distributions.

2. MORPHEME-BASED SPEECH TRANSLATION

The goal of statistical speech translation is to find the most
likely translation, ˆ̄t, given the acoustic representation, X , of a
speech signal from the source language:

ˆ̄t = arg max
t̄

P (t̄|X) (1)

The transcription of speech in the source language into a se-
quence of morphemes, m̄, can be introduced as a hidden vari-
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able.
ˆ̄t = arg max

t̄

∑
m̄

P (t̄, m̄|X) (2)

Applying the Bayes’ decision rule:

ˆ̄t = arg max
t̄

∑
m̄

P (t̄, m̄)P (X|t̄, m̄)
P (X)

(3)

Let us assume that the probability of an utterance does not
depend on the transcription in other language. Hence, the
denominator would be independent of the variable over which
the optimisation is being done, and thus, the decoding would
be carried out as follows:

ˆ̄t = arg max
t̄

∑
m̄

P (t̄, m̄)P (X|m̄) (4)

It is the contribution of two terms that drives the search prob-
lem: 1) the acoustic model, P (X|m̄), connecting a text string
in terms of morphemes to its acoustic utterance; 2) the joint
translation model, P (t̄, m̄), connecting source and target lan-
guages. Joint probability translation models are good candi-
dates to be approached by stochastic finite-state transducers
(SFSTs).

Some effort has been recently made in order to efficiently
take advantage of both acoustic and translation knowledge
sources [6] by exploring different architectures. We have
implemented the morpheme-based speech translation models
under two different architectures described in [7]: a) inte-
grated architecture implementing eq. (4) analogously as in
an automatic speech recognition (ASR) system where the
LM was replaced by a joint probability model. Thanks to the
nature of the finite state models a tight integration is allowed,
making a difference with respect to other kind of integration;
b) decoupled architecture where two stages are involved, that
is, first, an ASR system copes with transcription of the speech
utterance, and later, a text-to-text translation system translates
the given transcription.

Finally, there is an important issue to be noted, and it is the
fact that this formulation for speech translation makes use of
morphemes only in the source language, while using word-
forms in the target language. The underlying motivation is
simply that a speech translation from a morphologically rich
language into another that does not present inflection in nouns
is being taken into consideration. This is, in fact, our case
when translating from Basque to Spanish.

2.1. Phrase-based stochastic finite-state transducers

An SFST is a finite-state machine that analyses strings in a
source language and accordingly produces strings in a tar-
get language along with the joint probability of both strings
to be translation each other (for a formal definition turn
to [6]). The characteristics defining the SFST are the topol-
ogy and the probability distributions over the transitions and

the states. These distinctive features can be automatically
learnt from bilingual samples by efficient algorithms such as
GIATI (Grammar Inference and Alignments for Transducers
Inference) [7], which is applied in this work. As it is well
known, an outstanding aspect of the finite-state models is the
fact that they count on efficient standard decoding algorithms
[8]. Indeed, it is the speed of the decoding stage that makes
these models so attractive for speech translation.

In this work we deal with SFSTs based on phrases of mor-
phemes. Previously, in [9], in phrase-based SFSTs were pre-
sented based on word-forms (we will refer to this approach as
PW-SFST). In such a models the transitions occur consuming
a sequence of words. Here we propose the use of sequences of
morphemes PM-SFST instead. As for what the standard base-
line SFST is concerned (referred to as W-SFST), the difference
lies on the fact that the transitions consume isolated word-
forms instead of sequences of either words or morphemes. In
all the cases, the transitions of SFSTs produce a sequence of
zero or more words in the target language and have a proba-
bility associated.

2.2. Morphological analysis

In this work we deal with a morphologically rich language:
Basque. In Basque there is no freely available linguistic tool
that splits the words into proper morphemes. For this rea-
son, morpheme-like units were obtained by means of Morfes-
sor [10], a data-driven approach based on unsupervised learn-
ing of morphological word segmentation. For both ASR and
SMT it is convenient to keep a low morpheme to word ratio,
in order to get better language modelling, acoustic separabil-
ity and word generation amongst others. Consequently, in a
previous work [11], an approach based of decomposing the
words into two morpheme-like units, a root and an ending
was presented. By default, Morfessor decomposed the words
using 3 types of morphemes: prefixes, stems and suffixes. To
convert the decompositions into the desired root-ending form,
all the suffixes at the end of the word were joined to form the
ending, and the root was built joining all the remaining pre-
fixes, stems and possible suffixes between stems. This proce-
dures led to a vocabulary of 946 morphemes set of [11].

3. EXPERIMENTAL RESULTS

Basque is a minority but official language in the Basque
Country (Spain). It counts on scarce linguistic resources and
database, in addition, it is a highly inflected language. As
a result, exploiting the morphology seems a good choice to
improve the reliance on statistics.

The models were assessed under METEUS corpus, con-
sisting of a text and speech of weather forecast reports picked
from those published in the Internet. As shown in Table 1, the
corpus is divided into a training set and a training-independent
test set consisting of 500 sentences. Each sentence of the test

7



was uttered by at least 3 speakers, resulting in a speech evalu-
ation data of 1,800 utterances from 36 speakers. Note that the
size of the Basque vocabulary is 38% bigger than the Spanish
one due to its inflected nature.

Basque Spanish

Training
(Text)

Pair of sentences 14,615
Different pairs 8,220
Running words 154,778 168,722
Vocabulary 1,097 675
Average length 10.6 11.5

Test
(Speech)

Utterances 1,800
Length (hours) 3.5 3.0

Table 1. Main features of METEUS corpus.

The phrase-based SFST using morphemes proposed here,
PM-SFST, was compared with the other two models, previ-
ously mentioned, namely PW-SFST and W-SFST. The three
models were trained from the corpus described in Table 1
making use of the so-called GIATI algorithm [7]. Speech
translation was carried out using both the integrated and de-
coupled architectures. Besides, in order to explore the in-
fluence on the translation model of errors derived from the
recognition process, a verbatim translation was also carried
out. In this case, the input of the text-to-text translation sys-
tem is the transcription of the speech free from errors (as if
the recognition process had been flawless).

3.1. Computational cost and performance

The memory required for a model to be allocated in memory
along with the invested decoding time are two key parame-
ters to bear in mind when it comes to evaluating a speech
translation system. Table 2 shows the spatial cost (in terms
of number of transitions and branching factor) of each of the
three SFST models studied along with the relative decoding
time consumed. Regarding the time units, they are relative
to the baseline W-SFST model, that is, given that the test was
translated in 1 time unit by W-SFST, the time units required
by the PW-SFST and PM-SFST was picked up.

Transitions BF <Time>
W-SFST 114,531 3.27 1.00
PW-SFST 121,265 3.25 0.76
PM-SFST 127,312 3.21 0.71

Table 2. Spatial cost, in terms of number of transitions and
branching factor (BF), and the relative amount of time re-
quired by each model for text-input translation (dimension-
less magnitude).

Doubtless, it is the performance, measured in terms of
translation accuracy or error rate what counts for the evalu-

ation of both speech and text translation. Translation results
were assessed under the commonly used automatic evalua-
tion metrics: bilingual evaluation under study (BLEU [12])
and word error rate (WER). Table 3 shows speech translation
results with the three approaches mentioned above and the
different architectures. The recognition WER for decoupled
architecture was obtained trough previous ASR experiments
reported in [11] with the same set of moprhemes. We would
like to emphasize that speech translation with integrated ar-
chitecture gives both the transcription and the translation of
speech in the same decoding step, as a result, and thus, each
model gives its own recognition-word-error-rate.

Recognition Translation
WER WER BLEU

Integrated
W-SFST 6.26 47.5 47.6

PW-SFST 6.12 48.4 48.0
PM-SFST 6.06 47.8 48.6

Decoupled
W-SFST 4.93 46.9 47.3

PW-SFST 4.93 48.5 49.0
PM-SFST 4.93 47.8 49.3

Verbatim
W-SFST 0 45.6 48.6

PW-SFST 0 46.5 50.4
PM-SFST 0 46.7 50.7

Table 3. Speech translation results provided by different
translation models (W-SFST, PW-SFST, PM-SFST) under either
integrated or decoupled architectures. The verbatim transla-
tion is also shown as a baseline.

3.2. Discussion

Both PM-SFST and PW-SFST models outperform the base-
line W-SFST with 95% confidence under 1,000 bootstrap sam-
ples following the statistical significance test described in [13]
with the BLEU evaluation measure. Nevertheless, the differ-
ences between PM-SFST and PW-SFST are marginal.

Comparing the two architectures considered, the transla-
tion results are similar. Furthermore, taking into account that
the LM used for speech transcription in ASR with decoupled
architecture and the SFST used to both recognize and trans-
late speech counted on the same amount of data, one could ex-
pect that the parameters of the latter would not be as well con-
sidered, and accordingly, the performance of the integrated
architecture would be worse for recognition purposes.

The differences in translation performance between speech
translation with the decoupled architecture and the verbatim
translation are small. There are two factors that have influ-
ence on this fact: on the one hand, the input of the speech
translation was not very degraded; on the other hand, the
transducer shows certain capacity to deal with input errors by
mechanisms such as smoothing.

With respect to the size and time-efficiency of the models
(summarized in Table 2), as it is obvious, the phrase-based
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models (both PM-SFST and PW-SFST) are bigger than W-
SFST. Nevertheless, the branching factor is smaller, which in-
dicates that the phrase-based models are more restrictive than
the word-based in that, on average, they allow for a smaller
number of transitions per state. Note that in the smoothed
W-SFST all the strings have non-zero probability while in
the phrase-based approaches only those strings built up in
terms of the existing phrases have a non-zero probability.
Regarding decoding time (in Table 2) there is a correlation
with the branching factor. The higher the branching factor,
the higher the required time, and thus, the PM-SFST model
shows significant time reductions.

4. CONCLUDING REMARKS AND FUTURE WORK

For natural language processing applications when the lan-
guage under study is morphologically rich, it might be useful
to make use of morphology. By using morpheme-like units,
statistics collected over a given database could be improved,
and accordingly, the parameters describing statistical models.
As far as speech translation is concerned, there is a further
interest on the use of morphemes as lexical unit, and it is pre-
cisely that the way in which the morphemes were extracted
kept a low morpheme to word ratio avoiding so acoustic con-
fusion.

In this work we have dealt with Basque to Spanish speech
translation. Morpheme-based speech translation has been
proposed in terms of morphemes and within the finite-state
framework. The models have been assessed under a limited-
domain task giving as a result improvements in both transla-
tion accuracy and decoding time.

As far as future work is concerned, the generation of tar-
get words from morphemes given a source out of vocabu-
lary word is still an open problem that might, as well, be ex-
plored from the statistical approach. That is, instead of doing
analysing, as in our case, generation might be tackled.
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ABSTRACT 
 
Efficient large vocabulary continuous speech recognition of 
morphologically rich languages is a big challenge due to the 
rapid vocabulary growth. To improve the results various 
subword units - called as morphs - are applied as basic 
language elements. The improvements over the word 
baseline, however, are changing from negative to error rate 
halving across languages and tasks. In this paper we make an 
attempt to explore the source of this variability. Different 
LVCSR tasks of an agglutinative language are investigated 
in numerous experiments using full vocabularies. The 
improvement results are compared to pre-existing other 
language results, as well. Important correlations are found 
between the morph-based improvements and between the 
vocabulary growths and the corpus sizes.  
 

Index Terms — speech recognition, rich morphology, 
morph, language modeling, LVCSR 

 
1. INTRODUCTION 

 
The most commonly used LVCSR (Large-Vocabulary 
Continuous Speech Recognition) systems apply words as 
basic lexical units. Word-based recognition of 
morphologically rich languages, however, can result in well-
known problems [1]: very large vocabularies, high OOV 
(Out Of Vocabulary) rate, and inaccurate language model 
parameter estimation due to large number of distinct word 
forms. These phenomena are handled typically by changing 
the base units from words to sub-word lexical units called as 
morphs. In this way vocabulary size can be radically 
decreased and even OOV words can be recognized. Thus, 
recognition accuracies can be significantly improved over 
the word baseline [2-4]. The LVCSR improvement can be 
outstandingly high in the case of read speech in certain 
agglutinative languages such as Finnish and Estonian [2]. On 
the other hand, the reported improvements are much smaller 
in the case of other agglutinative languages like Turkish, 
Arabic and Hungarian [4-7]. Besides, improvement for 

spontaneous speech recognition is very seldom [4] or the 
results are even worse [8], as compared to the classical 
word-based approach. Thus, morph-based improvement 
seems to be not only language but speech genre dependent, 
as well. 

So far, few efforts have been made in order to explain 
the high variability of improvement due to morph-based 
speech recognition. A major study compares statistical 
morphs based LVCSR results across four languages [8]. The 
difficulty in evaluating these results is that the speech 
recognition technique was not the same across languages. In 
[6] the conclusion for Arabic broadcast news recognition is 
that the improvement of morph-based approach can be 
eliminated if appropriately large word vocabulary is chosen. 
[9] also compares morph-based LVCSR to very large 
vocabulary word-based one but the significant improvements 
are preserved for Finnish and Estonian. [9] suggests that the 
relatively worse improvements of others are possibly due to 
the low order (n<4) of the applied morph n-gram models. 
All of these work apply empirical cutoffs on the word and 
morph vocabularies, which make the cross language and 
across task comparisons difficult. Our previous work was 
our first attempt to make clear evaluation of morph-based 
LVCSR across speech genres [10]. It concluded that the 
vocabulary size at a given training corpus size can be a good 
indicator for the morph-based improvement. However, some 
of the Hungarian improvement results were too optimistic 
due to an unattended cutoff in the word vocabulary and so 
they became outliers in the across-language comparison.  

All in all, in the earlier publications there were always 
ad-hoc vocabulary cutoffs applied (in the word- or in the 
morph-based approach or in both cases); therefore the 
morph and word system comparisons were not entirely fair. 
In this study, all the results of various LVCSR tasks are 
measured strictly with full vocabularies. Not only the results 
of [10] are corrected but important conclusions are 
sharpened and new ones are found that can be useful for 
speech recognition of morphologically rich and/or under-
resourced languages. 
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In this paper, the same speech recognition system and 
the same algorithms are used and optimized separately for 
three LVCSR tasks: for spontaneous (conversational) 
speech, for press conference speech, and for classical 
broadcast news speech. Improvements are measured with 
well- and less-resourced training text corpora. All 
experiments are performed in Hungarian – as one of the 
languages with high morphological complexity – so that 
cross-lingual effects do not bias the comparison. The 
conclusions are extended for other languages, as well. 
 

2. TASKS 
 
Since morph-based speech recognition results scatter heavily 
on a speech genre scale – from read to spontaneous 
conversational speech – our concept was to measure the 
improvements due to morph-based speech recognition on a 
spontaneity scale. Three points on this scale corresponding 
to three Hungarian language LVCSR tasks are examined. 
 
2.1. Spontaneous speech – MALACH task (SP) 
 
The Hungarian MALACH task was chosen as the 
spontaneous end of the scale since no other spontaneous 
Hungarian database was available for us. The MALACH 
corpus contains interviews with elderly people and is 
detailed in [4,11]. The recordings are made typically in 
normal home environment and their content is carefully 
transcribed. Only transcriptions are used to train the 
language models, 160K words in sum. The amount of test 
data is 4 hours, 19K words (matched data set in [11]). 
 
2.2. Mostly planned speech – Press Conference task (PC) 
 
The press conference audiovisual material of the Hungarian 
government is publicly available. What makes this LVCSR 
task attractive is that all the transcriptions of press 
conferences are open for the public for years – altogether 1.2 
million words. However, the transcriptions are not always 
exact, disfluencies and noises are not marked and 
ungrammatical sentences are corrected. Questions from 
press people and answers are included in the data, only 
unintelligible recordings are removed. The amount of test 
data is 80 minutes, 9.4K words. 
 
2.3. Planned speech – Broadcast News task (BN) 
 
We used publicly available broadcast news audiovisual data 
of a Hungarian TV channel specialized for news. 
Unfortunately no transcriptions are available, but a relatively 
large amount of broadcast news text data is placed on the 
website of the channel (5.6 million words). The recordings 
consist of basically clean speech. 1 hour of speech 
corresponding to 7.7K words is used as test data in the 
experiments. 

The morphological complexities of these tasks can be 
compared to each other and to other language tasks in Fig. 1.  

In the followings word- and morph-based speech 
recognition approaches and the results of the three LVCSR 
tasks are presented and analyzed. The aim is to explore the 
dependencies of the improvement due to morph-based 
speech recognition. 

 
3. METHODOLOGY 

 
For building morph-based recognizers various vocabulary 
decomposition algorithms are applied. The differences 
between morph- and word-based speech recognition results 
are measured in several experimental setups. In each setup 
both word- and the morph-based systems are built and 
optimized on the given, task specific “in domain” training 
text database as follows. 
 
3.1. Text corpus preparation 
 
Whereas no extraordinary corpus preparation is required for 
word-based speech recognition, morph-based systems need 
special treatment of the given training text data. In our 
approach, first word boundary symbols <w> are placed into 
the text, after each word, and are considered as separate 
morphs. (<w> symbols are required for the reconstruction of 
word boundaries in the decoder output [12]). Then a core 
word list is collected leaving out all special tokens like 
acronyms, abbreviations, etc. Morph segmentation is 
performed on this core word list resulting in a “word-to-
morph” dictionary. The corpus for a morph-based speech 
recognition system is obtained by replacing each word of the 
corpus by the corresponding morph sequence. The words not 
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Figure 1: Number of unique words as a function of 
corpus size. Hungarian curves are calculated on 
the given databases. Non-Hungarian curves are 
reproduced from [8] with permission. 
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presented in the word-to-morph dictionary remain intact in 
the corpus and treated as simple morph tokens in the 
subsequent operations. The average numbers of morphs 
composing a word are given in Fig. 2. 
 
3.2. Speech recognition models 
 
3.2.1. Language model 
In each setup, both word- and morph-based n-gram language 
models are built on the correspondingly processed task 
specific corpora with full vocabularies applying the 
modified, interpolated Kneser-Ney smoothing technique 
[13] implemented by the SRILM toolkit [14]. Depending on 
the task, on the type of morphs and on the training corpus 
size word and morph vocabulary sizes are in the range of 
20k – 285k and 5k – 80k, respectively (see Fig. 2). By 
default, full 3-gram language models are built for the words 
and full 4-gram models for the morphs (ignoring 3 and 4 
grams found only once). The only exception is at the 5.6M 
BN corpus, where entropy-based pruning [15] is applied 
both on the word and morph 3-grams resulting in roughly 
equal language models in terms of occupied operative 
memory size. 
 
3.2.2. Pronunciation model 
Simple grapheme-to-phoneme rules [16] and exceptions are 
applied on each lexicon separately in order to obtain word- 
and morph-to-phoneme mappings. Automatic phonetic 
transcription of both morphs and words can result in 
pronunciation errors especially at morph boundaries. 
However, according to our former experiences this kind of 
errors occur rarely [4]. Weighted alternative pronunciations 
are used only for the SP (MALACH) task, though as [4,17] 
showed, their effect is minimal on the recognition accuracy. 
While there is a virtual “os = optional silence” model at the 
end of each word’s pronunciation (with similar aim to the 
so-called “sp” model [18]), no such model is attached to the 
pronunciation of morph models. Instead, the <w> symbol 
itself is mapped to the “os” model. 
 
3.2.3. Context dependency model 
As equation (1) shows, triphone context expansion is 
performed after the integration of higher level knowledge 
sources, so that context dependency is modeled across word- 
and morph-boundaries, with respect to inter-word optional 
silences, as well. 
 
3.2.4. Acoustic models 
Speaker independent decision-tree state clustered cross-word 
triphone models were trained using ML (Maximum 
Likelihood) estimation [18]. Three state left-to-right HMM’s 
were applied with GMM’s (Gaussian Mixture Models) 
associated to the states. For the SP task, 26 hours of “in 

domain” training speech was used for training 3000 HMM 
states with 10 Gaussian per state, based on PLP (Perceptual 
Linear Prediction) features [17]. For both the PC and BN 
tasks the acoustic models were trained on the MRBA 
database [19] augmented with about 10 hours of transcribed 
PC speech. In that case the number of states was about 2500 
and 8 Gaussians were used per state. The feature type was 
MFCC (Mel-frequency Cepstral Coefficients) with delta and 
delta-delta, calculated on 8 kHz bandwidth speech and blind 
channel equalization [20] was also applied. 
 
3.3. Off-line recognition network construction 
 
The WFST (Weighted Finite State Transducer) [21] 
recognition network is computed on the triphone-level: 

    wred(fact(compact(C o S o compact(det(L o G)’))))     (1) 

where capital letters stands for transducers, others for 
operators detailed below. First the language model (G) and 
pronunciation model (L) is composed and determinized. 
Then some auxiliary symbols are removed and a suboptimal 
minimization procedure – called as compaction – is applied 
that does not need the argument to be determinizable. Then 
each “os” model is replaced to a null-transition and to a 
normal silence model switched parallel by using a simple (S) 
transducer. The next step is the triphone context expansion 
(C), then the WFST network is compacted, factorized and 
the weights are redistributed resulting in a stochastic 
transducer suitable for the WFST decoder.  
 
3.4. Evaluation 
 
One-pass decoding was performed by the frame synchronous 
WFST decoder called as VOXerver – developed in our 
laboratories. RTF (Real Time Factor) of a morph- and the 
corresponding word-based system were adjusted to be close 
to equal using standard pruning techniques. RTF values were 
about 1 for small and midsized training text corpora for the 
PC and BN tasks, and about 4 for the largest corpora and for 
the SP task – measured on the same 3GHz, 1 core CPU.  

The SP and the BN test sets contain only the speech of 
previously unseen speakers. All the PC and BN test speeches 
arose later in time than the related training text data. 

Though in case of morphologically rich languages WER 
(Word Error Rate) – to some extent – shows a pessimistic 
picture of the speech recognition performance [8], we used it 
as the basis of evaluation since it is the most widely accepted 
and interpretable measure. Under the term of ‘improvement’ 
WER reduction is understood.  

Signed-rank Wilcoxon tests with a significance level of 
0.05 were applied to judge if a morph-based improvement is 
significant over the corresponding word-baseline. 
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4. RESULTS 
 
First full-scale results are presented on the three Hungarian 
LVCSR tasks with various morph types. Then, the effect of 
lower resources – in terms of training text – is investigated. 
Finally, the influence of acoustic model quality is measured 
by applying adapted acoustic models. 
 
4.1. Full-scale results of various morph types 
 
The following morph types – in term of the applied 
vocabulary decomposition algorithm – are evaluated on all 
speech genres exploiting full training text corpora. 

• Statistical morphs: selected words are segmented to 
morphs by using the unsupervised MB (Morfessor 
Baseline, [22]) and MC (Morfessor Categories-MAP, 
[23]) algorithms. 

• Grammatical morphs: morphs were obtained by 
applying an affix-stripping method implemented in the 
Hunmorph system [24,25]. Two methods are used, a 
grammatically strict HSF (Hunmorph Strict Fallback) 
and a less strict, more heuristic HCG (Hunmorph 
Compound Guessing). 

• Combined morphs: CHM (Combined Hunmorph 
Morfessor) the MB algorithm is used to disambiguate 
the multiple morph analyses of Hunmorph system [4,11] 
 
More detailed description of these morph types can be 

found in [4], [11] and in [17]. 
As the results in Fig. 2 show, there are significant 

improvements due to the morph-based LVCSR approach in 
each task, although the improvements are definitely smaller 
than the Finnish or Estonian ones [8]. In general, the more 
planned is the speech the higher is the error rate reduction. 
Nevertheless, the morph modeling technique does matter, 
especially in the BN task, where grammatical methods fail to 
outperform the word baseline. In average, the best results are 
obtained with the CHM method, but only the MB technique 
achieves consistently significant word error rate reduction. 
Moreover, the Morfessor Baseline word-to-morph 
segmentation method provides the smallest vocabulary sizes, 
therefore only the MB morph modeling technique is 
investigated further. 
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Figure 2: Full-scale WER results with various morph types 
( * signs indicate significant improvement as compared to word baseline results ) 

Table 2. Speech recognition results with 
acoustic model adaptation and with various 

training text corpora sizes 

Task 
# of 

training 
words  

Word 
WER 
[%] 

MB 
WER 
[%] 

SP – adapt. 160k 47.6 43.8 
PC – adapt. 160k 40.3 36.0 
PC – adapt. 1.2M 30.7 29.1 
BN – adapt. 160k 39.8 31.5 
BN – adapt. 1.2M 24.3 21.4 
BN – adapt. 5.6M 20.6 18.9 

 

Table 1. Speaker independent speech recognition results 
with various training text corpora sizes 

Task 
# of 

training 
words 

# of 
word 
forms 

OOV 
rate 
[%] 

Word 
WER 
[%] 

MB 
WER 
[%] 

SP 160k 20k 15.6 52.9 51.3 
PC 160k 26k 14.1 43.0 38.4 
PC 1.2M 92k 6.3 32.2 30.6 
BN 160k 30k 16.4 41.8 35.3 
BN 1.2M 105k 7.2 26.4 23.5 
BN 5.6M 285k 3.6 23.1 21.0 
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4.2. Effects of down-scaled training text corpora 
 
In order to eliminate the effect of differently sized training 
texts, we made additional experiments based on equal-size 
training text corpora. The most recent texts are left in the 
reduced training databases of the PC and BN tasks. 

As Table 1 shows – and as it is expected – the larger is 
the amount of training text data the lower is the recognition 
error rate. Looking at the improvement results (Fig. 3), a 
much less expected phenomenon can be observed. Namely, 
the reduction of training data dramatically increased the 
improvement rates. This may mean that morph-based speech 
recognition can be useful tool if the language resources are 
strongly limited. 

 By comparing the improvement results of the three 
tasks measured with equally sized training text it can be seen 
that there is no direct correspondence between the OOV 
rates and the improvements (see Table 1 and Fig. 3). The 
dependence of morph-based error reduction from the speech 
genre, however, is even more characteristic. 
 
4.3. Effects of acoustic model adaptation 
 
In this experimental setup we aim at modifying the acoustic 
model quality beside the language model. The previous 
experiment is repeated using unsupervised MLLR 
(Maximum Likelihood Linear Regression) acoustic model 
adaptation instead of applying speaker independent models. 
Speaker dependent acoustic model transformations were 
trained only for the SP task, i.e. only one transformation is 
used per task both in the PC and BN adaptation setups.  

By comparing the results of Table 1 and 2, it can be 
seen that i) acoustic model adaptation was always effective 
in the reduction or recognition errors; ii) the relative 
improvements due to morph-based modeling can be 
significantly larger with more accurate acoustic models  
(Fig. 3 and 4). 

5. DISCUSSION 
 

The results suggest that the improvements due to morphs-
based modeling correlate greatly with the speech genre. The 
language dependency assumption is augmented, too: the best 
improvement for Hungarian is only the half of the best 
Finnish one [8] achieved with similar techniques. 

We suppose that the differences between the examined 
three speech genres and languages are manifested partially 
in the different vocabulary growths. Obviously, the number 
of word forms at a given corpus size is definitely different 
for the three Hungarian LVCSR tasks as well as for other 
agglutinative language tasks, see Fig. 1.  

In Fig. 5, besides Hungarian, other language relative 
improvement results from [8] are shown in the function of 
number of different word forms at 160k words (sub)corpus 
sizes. All plotted approaches apply the MB algorithm – 
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though in different ways – and use context dependent phone 
models. Although test data is not considered in this 
comparison we assume that test and training data are 
matched for good recognition accuracies.  

The correlation between the number of different word 
forms and the relative improvements is 0.89 for the whole 
set, and 0.93 for the whole set but the results obtained with 
acoustic model adaptation. 

 
6. CONCLUSIONS 

 
Based on the morph-based improvement results of different 
Hungarian LVCSR tasks and on their comparison to each 
other and to other agglutinative language results it is 
possible to draw several conclusions. First, – independently 
from language and speech genre – the more rapid is the 
vocabulary growth of the given task the higher improvement 
can be expected from the application of morph-based speech 
recognition approach. Second, for vocabulary 
decomposition, a well-known and publicly available 
unsupervised statistical method (MB) seems to be a feasible 
first choice. Furthermore, the results suggest that neither the 
OOV rate nor the n-gram orders are crucial factor of the 
improvement, but acoustic model quality may do matter. 
Finally, an unforeseen conclusion is that morph-based 
speech recognition can be more beneficial in the case of less 
resourced tasks. Or, vice versa, using ample data and 
gigantic word vocabularies may eliminate the error rate 
reduction due to vocabulary decomposition. To verify and 
extend this assumption to other languages further researches 
and resources are needed even though similar phenomenon 
is observed in [6] evaluating Arabic broadcast news 
recognition results. 
 

7. ACKNOWLEDGEMENTS  
 
The work was founded partially by national grants: NKFP-
2/034/2004, OM-00102-2007, KMOP-1.1.1-07/1-2008-
0034, and by TAMOP-4.2.2/08/1/KMR. 
 

8. REFERENCES 
 
[1] K. Kirchoff and R. Sarikaya, “Processing Morphologically-
Rich Languages” Tutorial at INTERSPEECH 2007, Antwerp, 
Belgium 
[2] M. Kurimo, A. Puurula, E. Arisoy, V. Siivola, T. Hirsimaki, J. 
Pylkkonen, T. Alumae and M. Saraclar, “Unlimited vocabulary 
speech recognition for agglutinative languages,” in HLT-NAACL, 
New York, USA, June 5-7, 2006. 
[3] O.-W. Kwon and J. Park, “Korean large vocabulary 
continuous speech recognition with morpheme-based recognition 
units,” Speech Communication, vol. 39, Issue 3-4, pp. 287-300, 
Feb. 2003. 

[4] P. Mihajlik, Z. Tüske, B. Tarján, B. Németh and T. Fegyó, 
“Improved recognition of spontaneous Hungarian Speech – 
Morphological and Acoustic Modeling Techniques for a Less 
Resourced Task,” IEEE Transactions on Audio, Speech, and 
Language Processing – in press 
[5] E. Arisoy, D. Can, S. Parlak, H. Sak and M. Saraclar, 
“Turkish Broadcast News Transcription and Retrieval,” IEEE 
Transactions on Audio, Speech, and Language Processing, 
17(5):874-883, July 2009. 
[6] G. Choueiter, D. Povey, S.F. Chen, and G. Zweig, 
”Morpheme-based language modeling for Arabic LVCSR,” in 
Proc. ICASSP’06, Tolouse, France, 2006. 
[7] M. Afify, R. Sarikaya, H.-K. J. Kuo, L. Besacier and Y. Gao, 
“On the Use of Morphological Analysis for Dialectal Arabic 
Speech Recognition,” in INTERSPEECH-2006, paper 1444. 
[8] M. Creutz et. al., “Morph-Based Speech Recognition and 
Modeling Out-of-Vocabulary Words Across Languages,” ACM 
Transactions on Speech and Language Processing, vol. 5, Issue 1, 
Article no. 3, December 2007. 
[9] T. Hirsimäki, J. Pylkkönen and M. Kurimo, „Importance of 
High-Order N-gram Models in Morph-Based Speech 
Recognition,” IEEE Transactions on Audio, Speech and Language 
Processing, 17(4): 724-732, May 2009. 
[10] P. Mihajlik, B. Tarján, Z. Tüske and T. Fegyó, “Investigation 
of Morph-based Speech Recognition Improvements across Speech 
Genres,” in Proc. Interspeech, Brighton, United Kingdom,  
2009, pp. 2687-2690. 
[11] P. Mihajlik, T. Fegyó, B. Németh, Z. Tüske and V. Trón, 
“Towards Automatic Transcription of Large Spoken Archives in 
Agglutinating Languages,” in TSD 2007, Pilsen, Czech Republic, 
September 2007. 
[12] T. Hirsimaki and M. Kurimo, “Decoder issues in unlimited 
Finnish speech recognition” In Proceedings of the Nordic Signal 
Processing Symposium NORSIG 2004, Espoo, Finland, 2004. 
[13] S.F. Chen and J.T. Goodman, ”An Empirical Study of 
Smoothing Techniques for Language Modeling” Technical Report 
TR-10-98, Computer Science Group, Harvard University, 1998. 
[14] A. Stolcke, “SRILM – an extensible language modeling 
toolkit,” in Proc. Intl. Conf. on Spoken Language Processing, pp. 
901–904, Denver, 2002. 
[15] A. Stolcke, “Entropy-based pruning of backoff language 
models,” in Proc. of the DARPA Broadcast News Transcription 
and Understanding Workshop, Lansdowne, VA, USA, 270–274 
[16] M. Szarvas, T. Fegyó, P. Mihajlik and P. Tatai, “Automatic 
Recognition of Hungarian: Theory and Practice,” International 
Journal of Speech Technology, 3:277-287, December 2000. 
[17] P. Mihajlik, T. Fegyó, Z. Tüske and P. Ircing, “A Morpho-
graphemic Approach for the Recognition of Spontaneous Speech 
in Agglutinative Languages – Like Hungarian,” in 
INTERSPEECH-2007, pp. 1497-1500. 
[18] S. Young, D. Ollason, V. Valtchev and P. Woodland,  
The HTK book. (for HTK version 3.2.), March 2002. 
[19] MRBA – Hungarian Language Speech Database, 
http://alpha.tmit.bme.hu/speech/hdbMRBA.php 
[20] L. Mauuary. “Blind Equalization in the Cepstral Domain for 
robust Telephone based Speech Recognition,” in Proc. of 
EUSPICO’98, Vol.1, pp. 359-363, 1998. 
[21] M. Mohri, F. Pereira and M. Riley, “Weighted Finite-State 
Transducers in Speech Recognition,” Computer Speech and 
Language, 16(1):69-88, 2002. 

15



[22] M. Creutz and K. Lagus, “Unsupervised Morpheme 
Segmentation and Morphology Induction from Text Corpora Using 
Morfessor 1.0.,” in Comp. and Inf. Sci., report A81, March 2005. 
[23] M. Creutz and K. Lagus, “Inducing the Morphological 
Lexicon of a Natural Language from Unannotated Text,” in Proc. 
of AKRR'05, Espoo, Finland, 15-17 June, 2005. 

[24] V. Trón, L. Németh, P. Halácsy, A. Kornai, Gy. Gyepesi and 
D. Varga, “Hunmorph: open source word analysis,” in Proc. ACL 
2005 Software Workshop, pp. 77-85. 
[25] V. Trón, P. Halácsy, P. Rebrus, A. Rung, E. Simon and P. 
Vajda, “morphdb.hu: magyar morfológiai nyelvtan és szótári 
adatbázis,” (in Hungarian) in MSZNY Conf., Szeged, 2005. 

16



POOLING ASR DATA FOR CLOSELY RELATED LANGUAGES

Charl van Heerden, Neil Kleynhans, Etienne Barnard and Marelie Davel

cvheerden@csir.co.za, ntkleynhans@csir.co.za, ebarnard@csir.co.za, mdavel@csir.co.za

ABSTRACT

We describe several experiments that were conducted to as-
sess the viability of data pooling as a means to improve
speech-recognition performance for under-resourced lan-
guages. Two groups of closely related languages from the
Southern Bantu language family were studied, and our tests
involved phoneme recognition on telephone speech using
standard tied-triphone Hidden Markov Models. Approxi-
mately 6 to 11 hours of speech from around 170 speakers
was available for training in each language. We find that
useful improvements in recognition accuracy can be achieved
when pooling data from languages that are highly similar,
with two hours of data from a closely related language being
approximately equivalent to one hour of data from the target
language in the best case. However, the benefit decreases
rapidly as languages become slightly more distant, and is also
expected to decrease when larger corpora are available. Our
results suggest that similarities in triphone frequenciesare
the most accurate predictor of the performance of language
pooling in the conditions studied here.

Index Terms— speech recognition, under-resourced lan-
guages, data pooling

1. INTRODUCTION

When developing automatic speech recognition (ASR) sys-
tems for under-resourced languages, the amount of training
data available is an important limiting factor. Although a wide
variety of approaches to this issue have been studied (see Sec-
tion 2 below), it is safe to say that data scarcity remains the
most significant obstacle to the development of high-quality
ASR systems.

Many of the existing approaches to dealing with data
scarcity utilize similarities between some or all of the phonemes
in different languages in order to improve the accuracy of
ASR. Typically, it is assumed that sufficient data from a well-
resourced language is available, and that data is employed in
various configurations to improve the performance of ASR
in an under-resourced language. In the current contribution,
we investigate a somewhat different approach, namely data
sharing among groups of related languages that are all lack-
ing in resources. In particular, we wish to investigate how
similar languages need to be for straightforward pooling of

ASR training data to be beneficial.

If this approach proves to be useful, it can be used widely,
since the vast majority of the actively spoken languages oc-
cur in clusters of more or less closely related families. How-
ever, there is good reason to suspect that only very closely
related languages will benefit from pooling in this way – and
even then, only if the amount of training data in the target lan-
guage is severely limited. The main evidence for these con-
cerns comes from experience with dialects of well-resourced
languages: it is well known, for example, that ASR systems
trained on American English perform poorly when presented
with British English, and that combining training data from
these two dialects generally leads to a deterioration in perfor-
mance.

We therefore experiment with two groups of languages
that are strongly related, as discussed in Section 3. In order
to assess the effect of data pooling without any confounding
influences, we only pool phones with identical IPA symbols in
different languages – details are provided in Section 4, which
also describes the recognizers employed . In Section 5 we
analyse the pooled data according to a number of distance
measures and report results for a phoneme-recognition task,
showing that the relatedness of languages is indeed crucialto
the success of this approach. Our conclusions are summarized
in Section 6, which also suggests further work.

2. RELATED WORK

Once ASR systems were being developed for resource-scarce
languages, research related to the possibility of supplement-
ing target language data with that of additional languages
soon followed. The rationale is simple: since the statistical
methods being employed during acoustic modelling require
more data than is available for the target language in question,
borrow additional matching data from “donor languages”
where possible.

In this section we review the main approaches to data
combination that have been investigated in the literature.We
describe strategies for data combination, different approaches
to model mapping, and prior studies dealing specifically with
the languages relevant to this paper.
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2.1. Data combination strategies

Several different data combination strategies have been inves-
tigated, with results strongly influenced by the amount of tar-
get language data available, the acoustic diversity of the avail-
able databases, as well as the acoustic and phonotactic simi-
larity between the target and donor language(s). Approaches
include:

• Cross-language transfer: using an existing recognizer
without any adaptation to the target language. Pre-
dictably, this strategy typically provides poor results,
and is only considered if the languages in question
are closely related [1], or if no target language data
is available. In the latter case, multilingual acoustic
models (built from a number of different languages and
simultaneously able to recognize any of these) have
been shown to yield better results than monolingual
donor models [2, 3].

• Cross-language adaptation: adapting an existing mono-
or multilingual recognizer using limited training data
and techniques such as Maximum Likelihood Linear
Regression (MLLR) or Maximum A Posteriori (MAP)
adaptation [4, 5, 6]. These techniques can produce
better results than cross-language transfer, and if tar-
get language data is very limited, can also outperform
bootstrapping (see below).

• Data pooling: combining data from different sources
by pooling the data directly. Such multilingual models
were first developed in the context of language identi-
fication [7] but are also used in speech recognition, es-
pecially as initial models from which to adapt or boot-
strap [3] or, to a lesser extent, when bilingual speakers
are being recognized [8].

• Bootstrapping: initially demonstrated in [9], acous-
tic models are initialized using models from a donor
language (or languages) and then rebuilt using tar-
get language data only. In [10], bootstrapping from
multilingual models was shown to outperform adapta-
tion when both approaches were evaluated using ap-
proximately 15 minutes of (Portuguese) target speech.
While useful gains were obtained using bootstrapping,
accuracy only approached that of a monolingual target
language system (developed using 16.5h of target lan-
guage data) once improved alignments of 90 minutes of
target speech were used. (These improved alignments
were assumed to be available, but typically are not.)

The methods described above can also be combined. For ex-
ample, data pooling can be used to create multilingual models
as seed models for bootstrapping [10], or a donor language
can be adapted to a target language prior to data pooling [11].

Whichever method is used, cross-language data sharing
has only been shown to compensate for limited target lan-
guage data, and improvements soon dwindle as more target
language data becomes available.

2.2. Approaches to model mapping

Before applying any of the data combination approaches de-
scribed above, some mapping is usually required between the
acoustic models of the donor languages and those of the target
language. These mappings can be based on linguistic knowl-
edge, data analysis or a combination of the two approaches.

Linguistic knowledge is typically encoded in the phoneme
inventory of each of the languages, and the phoneme sets
mapped directly based on IPA or SAMPA equivalences [8, 3],
or other prior phonetic knowledge. Data-driven mappings
are based on some distance (or similarity) measure, vari-
ous of which have been utilized [12, 13, 14]. Good results
are obtained using “hierarchical clustering”, employing lin-
guistically motivated categories within which data-driven
(within-category) clustering is performed [13, 15]. Note that
while most of these experiments were applied to context-
independent models, similar techniques are applicable to
context-dependent models, as well as to sub-phonemic mod-
els.

Hierarchical clustering at the sub-phoneme level can be
integrated with the standard decision tree building process
typically used to cluster and combine context-dependent tri-
phones during Hidden Markov Model-based (HMM-based)
model building: data samples are tagged with their source
language and this additional information made available dur-
ing data-driven clustering, resulting in improved results[10].

2.3. Data sharing of Southern Bantu languages

None of the above studies dealt specifically with data from
any of the Southern Bantu languages. In the only cross-
lingual adaptation study that includes these languages (that
we are aware of), monolingual systems in isiXhosa and
isiZulu were compared with a multilingual system developed
using IPA-based data pooling of the two languages, with
language-specific questions added during tying of triphones
[16]. The multilingual system outperformed the monolingual
systems, but gains were small. (Optimal phoneme accuracies
for both approaches ranged between for 60.5% and 61.3%.)

3. CORPUS AND LANGUAGES

Our experiments are based on the Lwazi ASR corpus which
was developed as part of a project that aims to demonstrate the
use of speech technology in information service delivery in
South Africa [17]. The corpus contains data from each of the
eleven official languages of South Africa – approximately 200
speakers per language (2,200 speakers in total), contributed
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read and elicited speech, recorded over a telephone channel.
Each speaker produced approximately 30 utterances; 16 of
these were randomly selected from a phonetically balanced
corpus and the remainder consist of short words and phrases.

For the purposes of the current research, we concen-
trate on two subsets of this corpus each containing a group
of closely related languages. The three Sotho-Tswana lan-
guages (Sepedi, Setswana and Sesotho) form the first group,
and three of the four Nguni languages (isiZulu, isiXhosa and
isiNdebele) the second. (The fourth Nguni language in the
Lwazi corpus, Siswati, was not included in the current study
for reasons explained below.) These languages all belong
to the Southern Bantu family of languages. Although they
are used as first language by relatively large populations of
speakers (all are considered as first language by several mil-
lion speakers, with the exception of isiNdebele, which has
only 700 000 first-language speakers), very few linguistic
resources are available for these languages.

Fig. 1. Dendrogram calculated from confusion matrices for a
multi-lingual text-based SVM classifier.

These languages all belong to the Southern Bantu fam-
ily of languages [18]. We have previously studied their rela-
tionships using both orthographic and acoustic measures [19].
A typical dendrogram of the measured distances between the
languages is shown in Fig. 1 (based on orthographic or text-
based data); it can be seen that the two groups of languages se-
lected here are indeed very closely related by these measures,
and are therefore worthy candidates for the type of pooling
considered here. Note also that Siswati is not as closely re-
lated to the other Nguni languages by these measures – it
was therefore not included as a target language in the current
study.

Language # total min # training min # testing min
isiNdebele (Nbl) 609 517 92
isiZulu (Zul) 529 447 82
isiXhosa (Xho) 536 454 82
Sepedi (Nso) 548 465 83
Sesotho (Sot) 425 359 66
Setswana (Tsn) 443 379 64
Siswati (Ssw) 663 - -

Table 1. Size of training and testing sets (in minutes) per
language.

4. METHOD

4.1. ASR system overview

The ASR system developed to evaluate the effect of data pool-
ing follows a standard Hidden Markov Model (HMM) design.
Acoustic models consist of cross-word tied-state triphones
modelled using a 3-state continuous density HMM. Each
HMM state distribution is modelled by a 7-mixture multivari-
ate Gaussian with diagonal covariance. The 39-dimensional
feature vector consists of 12 static Mel-Frequency Cepstral
Coefficients (MFCCs) with the 0’th cepstra, 13 delta and
13 delta-delta coefficients appended [20]. The final prepro-
cessing step applies Cepstral Mean Normalization (CMN)
which calculates a per utterance bias and removes it [21].
The different HMM state distributions were estimated by
running multiple iterations of the Baum-Welch re-estimation
algorithm. Once the triphone acoustic models were trained,
a 40-class semi-tied transform [22] was estimated to further
improve acoustic model robustness.

Our data pooling experiments are performed using the
Lwazi ASR Corpus [17] and the Lwazi pronunciation dic-
tionaries [23], as briefly described in Section 3. Table 1 in-
dicates the amount of speech data in minutes for the differ-
ent language-specific training and testing sets. Each language
testing set was created by choosing 30 speakers at random,
which were then excluded from the training data. In each
case, we employed both the phonetically balanced sentences
and the short phrases in our training and testing data.

4.2. Data combination approach

Our initial step in data pooling is to partition the languages
into two groups: TheNguni group consists of isiZulu, isiN-
debele and isiXhosa, while theSotho-Tswana group includes
Sepedi, Sesotho and Setswana. To increase our training data
we systematically add speech data from languages in the same
group to the target language.

Cross-language mapping is performed at the phoneme
level based on the IPA-mapping described in the Lwazi
phoneme set version 1.2., a phoneme set that is still un-
dergoing further refinement [23].
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Language combinations # distinct
phonemes

Sepedi 43
Sepedi + Setswana 46
Sepedi + Setswana + Sesotho 49
Sepedi + Setswana + Sesotho + isiZulu 65

Sesotho 41
Sesotho + Setswana 42
Sesotho + Setswana + Sepedi 49
Sesotho + Setswana + Sepedi + isiZulu 65

Setswana 34
Setswana + Sesotho 42
Setswana + Sesotho + Sepedi 49
Setswana + Sesotho + Sepedi + isiZulu 65

Table 2. The number of distinct phonemes for each Sotho-
Tswana language cluster.

Table 2 shows the increase in the number of distinct
phones when languages from the Sotho-Tswana group are
added together (and also the count if isiZulu is added to these
languages). Similarly, Table 3 shows the increasing count
of distinct phones for the Nguni group. Column 1 in Tables
2 and 3, indicate the data pooling combinations which were
used in the various ASR experiments.

5. COMBINATION RESULTS

In order to assess the performance of our combined ASR sys-
tems, phone recognition on the “base” languages is performed
for all combined systems. We also measure several distances
in order to quantify how far the languages are apart from one
another.

5.1. Inter-phone comparisons

We investigate the “closeness” of languages by measuring
several distances: the Bhattacharyya distances between over-
lapping multivariate normal distributions of monophone and
triphone models, the Euclidean distance between overlapping
phone durations and the cosine of the angle between phone-
count vectors.

5.1.1. Comparison of acoustic similarities

The Bhattacharyya distance for multivariate Gaussian distri-
butions,

DB =
1

8
(µ1 − µ2)

T
Σ−1 (µ1 − µ2)

+
1

2
ln

(

|Σ|
√

|Σ1Σ2|

)

(1)

Language combinations # distinct
phonemes

isiNdebele 48
isiNdebele + isiZulu 54
isiNdebele + isiZulu + isiXhosa 61
isiNdebele + isiZulu + isiXhosa + Siswati 64

isiZulu 47
isiZulu + isiNdebele 54
isiZulu + isiNdebele + isiXhosa 61
isiZulu + isiNdebele + isiXhosa + Siswati 64

isiXhosa 53
isiXhosa + isiZulu 57
isiXhosa + isiZulu + isiNdebele 61
isiXhosa + isiZulu + isiNdebele + Siswati 64

Table 3. The number of distinct phonemes for each Nguni
language cluster.

is used to calculate distances between corresponding states
of corresponding phones in pairs of languages. In (1),µi de-
notes the mean vector of a particular multivariate distribution,
Σi the corresponding covariance matrix and

Σ =
Σ1 + Σ2

2
(2)

The Bhattacharyya distance is calculated for all mono-
phones and triphones shared among languages. In order
to obtain a single distance for both monophones and tri-
phones, weighted sums are calculated, with each phone being
weighted by the sum of its prior probabilities in the intersec-
tion of the languages being compared. The weighted sums,
referred to as the acoustic distances, are displayed in tables 4
and 5.

5.1.2. Comparison of (tri)phone frequencies

Another way to assess the closeness of languages is to mea-
sure the similarities in the frequencies at which common
monophones and triphones occur in those languages. We
quantify these similarities in terms of the angle between
the vectors containing the frequencies of all monophones /
triphones in each of the languages:

cos (6 (x,y)) =
x · y

|x| · |y|
, (3)

wherex andy are vectors containing the phone / triphone
frequencies in two different languages.

The higher this value is, the more overlap exists between
both phones and phone counts in these languages. Tables 4
and 5 summarize these measurements for the two language
groups studied here.
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5.1.3. Comparison of phone durations

A third way to measure how close two languages are, is to
consider the similarity between the durations of phones com-
mon to both languages. Phone durations are obtained by
forced alignment, using tied-state triphone models together
with the semi-tied transforms. The mean durations of com-
mon phones within each language are then compared, cal-
culated as the sum of the squared differences between these
mean durations, normalized by the sum of the mean durations
of the phonemes in the pair of languages under consideration.
(Normalization is performed to prevent differences between
longer phone classes such as vowels to dominate the analy-
sis.) These normalized distances are also presented in tables
4 and 5.

Distance Nso-Sot Nso-Tsn Sot-Tsn

Acoustic distance 1.024 1.157 1.167
Similarity of frequencies 1.162e-02 1.148e-02 1.581e-02
Distance between durations 0.110 0.097 0.090

Table 4. Distance measures between the South African
Sotho-Tswana languages, as described in Section 5.1

Distance Nbl-Xho Nbl-Zul Xho-Zul

Acoustic distance 1.316 1.232 1.144
Similarity of frequencies 1.396e-02 1.649e-02 1.301e-02
Distance between durations 0.100 0.097 0.095

Table 5. Distance measures between the Nguni languages
employed in this study, as described in Section 5.1

5.2. Recognition results

Figure 2 summarizes the phone-recognition accuracies that
were obtained by pooling different sets of data. (In all cases,
a flat language model was employed - that is, each phone
was allowed to transition to any other phone. As a point
of reference, our baseline recognizers were found to have
word error rates ranging between 2% and 12% on a ten-word
speaker-independent recognition task.) It can be seen thatall
languages seemed to benefit from the addition of data from
closely related languages, except Sepedi. isiZulu in particu-
lar performed much better with the addition of isiNdebele and
isiXhosa, with an improvement of approximately2.6% abso-
lute. To assess the magnitude of this improvement, one needs
to keep in mind that asymptotic phone-recognition accuracy
(with unlimited training data) using only bigram constraints
is substantially less than 100%. In earlier work [17] we used
parametric fits of accuracy against the amount of training data
to estimate asymptotic phone-recognition accuracies for these
languages. Based on those calculations, we estimate that the
additional accuracy achieved by adding isiNdebele data to the

isiZulu training data (our most beneficial pooling) is similar to
the benefit that would be achieved by adding approximately
another 250 minutes of isiZulu training data. Similarly, the
the addition of the Sesotho data to the Setswana recognizer is
found to be equivalent to the addition of approximately 110
minutes of Setswana data.

We also see that adding languages from other sub-families
(such as isiZulu to the Sotho-Tswana languages) degrades
performance significantly, and that the addition of Siswati
data to the other Nguni languages is also detrimental in all
cases.

Comparing these results with the distance measures
shown in tables 4 and 5 suggests that similarity in triphone
frequencies is the best predictor of how well data pooling will
work. Sepedi, for example, is further away from Sesotho and
Setswana than any of the other languages by this measure,
and this correlates with the phone recognition results in figure
2, where Sepedi does not add any value to either Sesotho or
Setswana. Sesotho and Setswana both improve when adding
data from one to the other, as do the Nguni languages, with
the angle between the isiZulu and isiNdeblele phone-count
vectors being particularly small. The comparison of phone
durations is somewhat aligned with the observed recognition
accuracies (compare, for example, the relationship between
Sepedi and Sesotho), but the measure of acoustic differences
that we have employed does not seem to predict the behaviour
of data pooling at all. This measure does not correlate with
either the assessments of the other two measures (which are
fairly comparable in ordering the six languages studied here)
or the recognition results observed.

6. CONCLUSION

In this paper we investigated the effectiveness of pooling
speech data to improve ASR system performance of resource-
scarce languages. We have shown that for both the Nguni and
Sotho-Tswana language groups, a non-negligible improve-
ment in ASR correctness can be achieved by combining ap-
propriate speech data sourced from closely related languages.
In the best case, approximately 520 minutes of isiNdebele
training data is found to improve accuracy to a similar ex-
tent as would be expected from approximately 250 minutes
of isiZulu data. The next best improvement, to Setswana
from approximately 420 minutes of Sesotho data, was seen
to be equivalent to approximately 110 additional minutes of
Setswana data. These provide rough guidelines for the benefit
that can be achieved from pooling speech data from closely
related languages families – namely, that two to four hours
of cross-language data can give similar benefit to one hour of
target-language data.

The factors that influence data combination, as described
in Section 2, should of course be kept in mind. It would there-
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Fig. 2. ASR phone-recognition accuracies for Sepedi, Setswana, Sesotho, isiNdebele, isiXhosa and isiZulu. In each “cluster”,
the first bar indicates the baseline phone correctness for the particular language being recognized. Each subsequent bar is
labelled with the language from which additional training data was added, in addition to all training data used for the previous
bar. In this way, the3rd bar from the2nd (yellow) cluster, indicates the phone correctness obtained when recognizing Setswana,
having used training data from Setswana, Sesotho and Sepedi.

fore be very interesting to repeat the comparisons performed
here with different amounts of target and donor data, and also
to investigate other language families with greater or lesser
language similarities. It will also be interesting to see whether
more elaborate data combination strategies can produce larger
benefits from the combination of data from closely related
languages.

Our results suggest that similarity in the frequencies of the
various triphones is the best predictor of data-pooling perfor-
mance amongst those measures studied here. This suggestion
should be evaluated on data from other language families, and
it may be fruitful to search for other measures that are even
better predictors.
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ABSTRACT 

Social affective expression is a main part of face-to-face 

interaction and it is highly linked to the language through 

the culture. This paper presents a study on Audio-Visual 

prosodic attitudes in Vietnamese, an under-resourced tonal 

language. Based on an audio-visual corpus of 16 attitudes, 

perception experiments were carried out with Vietnamese 

and French participants. The result analysis shows the 

relative contribution of audio, visual, and audio-visual 

information in attitude perception. It also shows how native 

and non-native listeners recognize and confuse the attitudes, 

thus allows us to investigate the cultural specificities and 

cross-cultural common attitudes in Vietnamese. 

Index Terms— Audio-visual corpus, Prosodic social 

affects, Cross-cultural perception, Vietnamese 

1. INTRODUCTION 

In speech communication between humans, the expression 

of mental, intentional, attitudinal, emotional states is a main 

information channel that is often used by both speaker and 

listener. Some theoretical models of affect claim that 

affective expression in speech communication may be 

controlled at different levels of cognitive processing [1], 

from the involuntarily controlled expressions of emotion to 

the intentionally, voluntarily controlled expressions of 

attitudes. According to [2], attitudinal expressions can be 

distinguished from emotional expressions by the nature of 

speaker’s control on its expressivity (voluntary vs. 

involuntary). Some types of expressivity may be expressed 

as either an attitude or an emotion. For example, “surprise” 

can be considered an attitude when expressed during a 

voluntary process; otherwise it can be considered an 

emotion.  

Attitude expression carries the intention and points of 

view of the speaker (ex: surprise, confirmation, politeness 

etc.). An utterance without any attitude means that the 

speaker does not give his opinion in this utterance. Attitudes 

are constructed for a language and a culture and they need to 

be learned by children or by second language students. As 

social affects, attitudinal expressions can vary amongst 

languages. Some specific attitudes in a language may not be 

recognized or may be ambiguous in other language. The 

understanding of this phenomenon may benefit from some 

cross-cultural studies [3][4]. 

Vietnamese is a tonal language; therefore the acoustic 

parameters which are implied in the linguistic and affective 

functions of prosody play an important role at the phonemic 

level for lexical access. The Vietnamese tone system has 6 

tones: level (1), falling (2), broken (3), curve (4), rising (5) 

and drop (6). Tone 5b and 6b correspond to tone 5 and 6 on 

a syllable ended by a stop consonant. A special feature of 

the Vietnamese tone system is the co-occurrence of 

glottalization during the production of tone 3 and tone 6. For 

example, tone 3 is accompanied with harsh voice quality due 

to a glottal stop (or a rapid series of glottal stops) around the 

middle of the vowel. Tone 6 has the same kind of harsh 

voice quality as tone 3; however, it is distinguished by 

dropping very sharply and it is almost immediately cut off 

by a strong glottal stop [5]. These phenomena of voice 

quality cues also happen in the morphology of some 

attitudes (and emotions) in other languages [3][6]. 

This paper presents our study of Vietnamese multimodal 

social affect in a Vietnamese and French cross-cultural 

context. Because of the contrast of language characteristics 

(non-tonal vs. tonal language) and the long geographic and 

cultural distance (West European vs. East-Asian), French 

was chosen for this cross-cultural study of Vietnamese social 

affect. This study was done not only in audio modality but 

also in visual modality in order to investigate the relative 

contribution of audio, visual, and audio-visual information 

in the perception of attitudes for both Vietnamese and 

French participants. 

After presenting the Vietnamese corpus construction and 

the attitude selection, the perception experiment is 

described. The experimental results are then presented and 

analyzed. The results show how the native and non-native 

listeners can recognize and confuse the Vietnamese 
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attitudes. After the discussion, this paper ends with some 

conclusions and perspectives. 

2. PERCEPTION EXPERIMENT 

2.1. Attitude selection 

Prosodic social affects have been studied in different 

languages such as English, French, and Japanese [3,4,7]. 

For these languages, attitudes have been selected thanks to 

the foreign language didactics’ literature. Unfortunately, as 

Vietnamese is an under-resourced language, there is very 

little research on Vietnamese expressive speech. We have 

found only one study [8] dealing with this topic. From this 

study, we selected 16 attitudes to be examined in 

Vietnamese speech (Table 1).  

Table 1: 16 selected Vietnamese attitudes, with their 

abbreviations 

Declaration DEC Irritation IRR 

Interrogation INT Sarcastic irony SAR 

Exclamation of neutral surprise  EXo Scorn SCO 

Exclamation of positive surprise  EXp Politeness POL 

Exclamation of negative surprise  EXn Admiration ADM 

Obviousness OBV Infant-directed speech IDS 

Doubt-Incredulity DOU Seduction SED 

Authority AUT Colloquial COL 

 

These 16 attitudes were selected in order to investigate 

their existence and their realization in Vietnamese. The 

“exclamation of surprise” was divided into three sub-types: 

“neutral”, “negative” and “positive” to verify whether or not 

they can be distinguished in Vietnamese. 

2.2. Corpus construction 

The corpus was constituted of 125 skeleton sentences 

without specific affective meaning in order to be produced 

naturally in all 16 attitudes. To observe the effects of tone 

and tonal co-articulation on attitudinal expression, the 

corpus contains 8 sentences of one-syllable length, which 

correspond to 8 representations of Vietnamese tones, and 72 

sentences of two-syllable length, which correspond to all 

combinations of two tones among the 8 Vietnamese tones. 

The remainder of the corpus is based on 45 sentences from 

3- to 8-syllable length and systematically varied in their 

syntactic structure: single word, nominal group, verbal 

group and a simple structure “subject-verb-object”. 

One male speaker, native of Hanoi (standard 

pronunciation), was chosen to record the corpus. A training 

phase was carried out in order to ensure that the speaker 

expressed each attitude as naturally as possible. The corpus 

was recorded in a sound-proof room. A high quality 

microphone (AKG C1000S) was placed approximately 40 

cm from the speaker’s mouth. The microphone was 

connected to a computer outside the room through an USB 

sound device. The speech was recorded at 44.1 kHz, 16bits. 

During the recording, a digital DV camera (Sony DXC990) 

recorded the speaker’s performance. The video clips were 

encoded with IndeoVideo codec at 784x576 pixels 

resolution. Vocal fold’s vibrations were also measured using 

an electroglottograph. To control the speaker performance, a 

specialist in expressive speech and a native Vietnamese 

speaker observed the recording process from outside the 

room, through a video system. They could require the 

speaker to re-produce a stimulus if they thought that it was 

not performed satisfactorily. The speaker pronounced all 

125 sentences in 16 attitudes. The complete corpus contains 

2000 stimuli. It corresponds to more than 90 minutes of 

audio-visual signal after post-processing. 

2.3. Experimental protocol  

Three skeleton sentences of one-, two- and five-syllable 

length were chosen from the corpus for the perception 

experiment. We note that most of Vietnamese words are 

mono-syllabic or bi-syllabic [8].  As mentioned above, the 

Vietnamese tone system has certain characteristics that have 

been shown to be used in the morphology of some attitudes. 

Therefore the perception of attitude can be affected by 

tones. In order to limit the complexity of the test, the 

influence of tone was not investigated in this experiment (it 

will be studied in another experiment). The three selected 

sentences include no tone variation: all syllables are based 

on tone 1 (the level tone). These sentences were then 

presented in 16 attitudes and in three modalities (audio-

only, visual-only and audio-visual). Thus, there were 

3*16*3=144 stimuli in the perception test. 

Forty listeners participated in this experiment: 20 

Vietnamese (10 males and 10 females with a mean age of 

25) who speak the same dialect as the speaker; and 20 

French (10 males and 10 females with a mean age of 35) 

who have no experience on Vietnamese language. Both of 

these Vietnamese and French participants were separated 

into two groups. The first group listened to the audio-only 

stimuli first, then watched the video-only stimuli, and finally 

watched the audio-video stimuli. The second group started 

with the video-only stimuli, continued with the audio-only 

stimuli and ended with the audio-video stimuli. For each 

listener, the stimuli in each modality were chosen randomly 

in order to counterbalance a possible effect of stimuli 

presentation order. 

The perception tests were carried out in a quiet room, 

using a high-quality headset (Sennheiser HD 25-13) at a 

comfortable hearing level. The testing program interface 

gave the label and the explanation of the 16 attitudes (in the 

native language of the listener). No listener expressed any 

difficulty in understanding the concepts of these 16 attitudes. 

All subjects listened to (and/or watched) each stimulus only 

once. After each stimulus, they were asked to indicate the 

perceived attitude among the 16 presented attitudes. 
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3. EXPERIMENT RESULT 

3.1. Attitude recognition 

Figure 1 presents listeners’ recognition rates of 16 attitudes 

in three modalities. Globally, most of attitudes were 

recognized above chance level, and native listeners have 

higher recognition scores than foreign ones. Some attitudes 

were well recognized by both Vietnamese and French 

listeners, such as DEC, EXp, DOU, AUT, IRR, SCO, SED 

attitudes. The INT, IDS and COL attitudes were well 

recognized by Vietnamese listeners but were almost not 

recognized by the French listeners. In case of ADM attitude, 

the French listeners’ recognition rate is higher than that of 

Vietnamese listeners. 

 The modality (Audio only, Visual only and Audio-

visual) has a strong effect on attitude perception. As 

expected, for most attitudes, the average score in audio-

visual modality is better than that in audio-only or visual-

only modality. For the Vietnamese listeners, the audio 

information is very important to recognize the DEC, EXo, 

OBV, AUT and COL attitudes and the visual information 

play an important role to recognize the EXp, DOU, SCO, 

POL attitudes. With the French listeners, the audio 

information is more important to recognize the AUT and 

IRR attitudes, and the visual information is much more 

necessary to recognize the DEC, EXp, SCO and ADM 

attitudes. 

 

 

Figure 1: Recognition rate of each attitude in each 

modality for Vietnamese listeners (top) and French 

listeners (bottom). The dash lines: chance level (6.25%) 

3.2. Attitude confusion  

From the confusion matrices, confusion graphs were built 

based on all the confusions higher than twice the chance 

level (≥ 12.5%).  Figure 2 shows the graphic presentation of 

the confusion among 16 attitudes, in three modalities for 

Vietnamese and French listeners. 

With the audio-only information, the ADM was not 

recognized by both Vietnamese and French listeners. This 

attitude was confused with EXo (in case of Vietnamese 

listeners) and confused with COL and IDS (in case of 

French listeners). The Vietnamese listeners also did not 

recognize the EXn and the French listeners did not recognize 

the IDS. The Vietnamese listeners made a mutual confusion 

between some pairs/groups of attitudes, such as SAR and 

SCO; POL and DEC; EXo EXn and DOU. The French 

listeners have the mutual confusion between AUT and IRR; 

DOU and EXn; DOU and EXo. 

With only the visual information, all attitudes were 

recognized above the chance level, with both Vietnamese 

and French listeners. The Vietnamese listeners have the 

mutual confusion of EXn and DOU; SED and COL; DEC 

and OBV. The French listeners have the mutual confusion 

between: EXn and DOU; COL and SED; ADM and EXp. 

They also strongly confused the SAR with SCO (60%). 

As expected, the confusion graph in the case of audio-

visual shows less confusion than in case of Audio and Video 

only. However, several attitudes have the recognition rate 

below the chance level (ADM for Vietnamese listeners and 

IDS for French listeners). The Vietnamese listeners confuse 

between EXn and DOU; SAR and SCO; POL and OBV. The 

French listeners have also the mutual confusion between 

SED and COL; EXn and DOU; SAR and SCO. 

5. DISCUSSION 

According to experimental results, although the mean 

intensity scores obtained by French listeners are lower than 

those of Vietnamese, they are fairy coherent with the result 

of Vietnamese listeners. For both groups of listeners, some 

attitudes were well recognized: DEC, Exp, DOU, AUT, 

IRR and SED. It supposes that the concepts and the 

expressions of these attitudes are similar in the two 

languages and the two cultures. So they can be seen as 

cross-cultural social affects (for Vietnamese and French). 

Some pairs of attitudes (such as SAR and SCO; EXn 

and DOU) show a mutual confusion. In the audio channel, 

this confusion can be explained by the similarity of prosodic 

characteristic in the expression of these attitudes (the F0 

contour, the intensity or the voice quality characteristics). 

Figure 3 gives an example of the F0 contour of two 

attitudinal expressions (DEL and POL) with the same 

sentence. The prosodic forms of these attitudes look nearly 

similar. Therefore, it is very difficult to distinguish these 

attitudes with only audio information. 

Some attitudes (INT, IDS and COL) are recognized 

quite well by native listeners, however they are nearly not 

recognized by non-natives. Perhaps, the prosodic 

performances for these concepts of Vietnamese are not 

shared with French and they need to be learned by foreign 

students. 
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Figure 2: Confusion graph  for the 16 attitudes of Vietnamese and French listeners 

 in Audio only (top), Video only (middle) and Audio visual (bottom) 
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Similar conclusions were already discussed for some 

Japanese attitudes, which are not recognized by French or 

English [3,7]. An interesting case is the expression of 

Admiration, which is badly recognized by native listeners 

but is better recognized by the non-native ones (in visual and 

audio-visual modalities). Perhaps, for Vietnamese, this 

attitude cannot occur without lexical coherency [8]. 

Otherwise, in French, this concept exists and it can be 

expressed and can be perceived easily by speech prosody 

or/and gesture of speaker’s face. 

 

 

Figure 3: F0 contour of 5-syllable length sentence in 2 

attitudinal expressions: DEC (top) and POL (bottom) 

6. CONCLUSIONS AND PERSPECTIVES 

Using the cross-cultural perception of audio and visual 

social affect in Vietnamese, the speaker’s performance for 

16 Vietnamese attitudes was quite well evaluated by native 

and non-native listeners. Experimental results reveal the 

influential factors on the attitudinal perception: the modality 

of presentation and the attitudinal expression itself. These 

results allow us to investigate the cultural specificities and 

the cross-cultural perception of Vietnamese attitudes, and 

also raise interesting questions for future researches as well 

as for educational purposes – mostly in the field of foreign 

language teaching.  

However, the results need to be further validated by a 

deeper prosodic analysis to find out the acoustical and visual 

parameters that lead to the perception of these social affects. 

Other perception experiments including variations of 

Vietnamese tones are scheduled in order to explore the 

importance of such a tonal system on the perception of 

attitudes not only for native, but also for foreign speaker 

without any linguistic knowledge of a tonal language: will 

they be able to separate tonal from attitudinal information? 
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ABSTRACT 

 

We investigate the acoustic realization of tone in continuous 

utterances in Sepedi (a language in the Southern Bantu 

family). Human labelers marked each of the 271 syllables in 

a 15-sentence corpus produced by a single speaker as "high" 

or "low". Automatic pitch extraction was then used to 

estimate the fundamental frequencies of the voiced segments 

of each of these syllables. Statistical analysis of the resulting 

pitch contours confirms that the mean pitch frequencies of 

the syllabic nuclei serve as the primary indicator of tone, 

with the relative frequencies of successive syllables being 

the most relevant measure. Our analysis also suggests that 

additional factors may play a role in the production and 

perception of tone. 

 

Index Terms— Tone languages, pitch contours, Sepedi, 

Southern Bantu 

 

1. INTRODUCTION 

 

Southern Bantu languages are tone languages in which 

word-level pitch variations generally convey both lexical 

and grammatical meaning. In contrast to tone languages like 

Chinese, they are agglutinative languages, i.e. several 

morphemes are joined together in a word. Although most 

Southern Bantu languages only have two level tones, namely 

high tone (H) and low tone (L), modeling of their prosody is 

complicated by the agglutinative morphology, the significant 

influence of grammar and the occurrence of tone sandhi 

within and across words. Given the role of word-level 

prosody in processes such as semantic interpretation and the 

production of natural speech, it is important that a detailed 

and systematic account of the prosody be given.  Such an 

account is complicated by the fact that tonal information is 

not indicated in the orthography of many Bantu languages 

(including Sepedi, which is the focus of the current study). 

We have recently presented an overview of intonation 

in the Southern Bantu languages [6], from which we 

concluded that a detailed understanding of the tone system 

of these languages is especially important for the creation of 

natural-sounding text-to-speech (TTS) systems. Such an 

understanding will require progress in two areas, namely (a) 

deriving tone assignments from text and (b) understanding 

the relationship between physical parameters (such as pitch 

frequency) and the tone levels. It is the second of these tasks 

that is the focus of the current investigation (initial work on 

the first task was presented in [8]). 

Below, we briefly review a number of pertinent facts on 

tone in the Sotho-Tswana languages (of which Sepedi is a 

representative). We also summarize the goals of the current 

study in more detail, and present the experimental 

methodology that was followed in pursuit of these goals 

(Section 3). Our results are contained in Section 4, and 

Section 5 contains a discussion of our main conclusions and 

future work that is required to complete the current 

investigation. 

 

2. TONE IN THE SOTHO-TSWANA LANGUAGES 

 

Most Southern Bantu languages are tone languages 

whose surface tones can be captured by two level tones, 

namely high (H) and low (L) [3]. The high tone is the active 

tone in Sotho-Tswana languages such as Sepedi, as it 

participates in tone spread and is subject to positional 

restrictions. As is the case for most Bantu languages, the 

Sotho-Tswana languages show an asymmetry in the tonal 

characteristics of its noun and verb system with nouns being 

more tonal than verbs: whereas nouns can contrast tone on 

every syllable, verbs only contrast tone on their stem-initial 

syllable. 

By definition, the primary distinctive feature of a level 

tone is the value of the pitch frequency within the nucleus of 

a given syllable, with H generally having a higher pitch 

frequency than L. This general observation was confirmed in 

our earlier investigations [7], which focused on the temporal 

alignment of a single high tone within the verbal domain. 

(As is common practice, we measure the fundamental 

frequency (F0) as a physical indicator of the pitch 

frequency.)  

However, the more general question of how these pitch 

values are related to one another in a complete utterance, as 

well as the details of the temporal trajectories of F0 within 

and between syllables, have not been investigated 

systematically. The main aim of the current paper is to 

present initial findings on how these physical quantities are 
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related to surface tone values in Sepedi. That is, we seek to 

understand how a speaker of Sepedi chooses to express the 

difference between H and L tone levels, given the 

considerable latitude inherent in the specification that H 

should carry "higher pitch" than L. 

 

3. METHODS AND CORPUS 

 

Our analysis is based on the speech of a 30-year old male 

speaker, who was selected for the development of a Sepedi 

corpus for a concatenative text-to-speech system [5]. As part 

of that development, it was ensured that the speaker employs 

the standard Sepedi dialect, and he then recorded 299 

sentences that give a balanced coverage of the most common 

diphones in Sepedi. In accordance with the requirements for 

TTS development with a limited corpus, the speaker was 

requested to speak naturally, but with relatively flat 

intonation. 

Of these sentences, 15 were selected for analysis (based 

on factors such as the absence of loan words and proper 

nouns, and limitations on the mood of the verb to limit the 

influence of dialectal variations). These sentences were 

automatically aligned using a Hidden Markov Model 

recognizer. All syllables were subsequently labeled for tone 

by three labelers independently of each other. The labelers 

are sensitive to issues of tone but differ in their background 

and experience regarding Bantu tone. The individual labels 

were based on perception of the recorded sentences, acoustic 

analysis using the Praat software package [1] or both. The 

labeled sentences were compared across all three labelers, 

which revealed unanimous agreement on the tone labels in 

72.3% of the cases (196 out of 271 syllables). A final 

transcription was generated based on the majority vote, i.e. 

the tone label selected by at least two labelers. (The flat 

intonation of the corpus might have been one of the reasons 

for cases of disagreement between labelers’ decisions.) 

The autocorrelation-based pitch tracker in Praat was 

employed to estimate the pitch contours (that is, the value of 

F0 as a function of time) for all utterances. As can be seen in 

Fig. 1, the computed contours are generally quite smooth 

(and the F0 values are found to be quite accurate). The 

exceptions generally occur at the edges of the voiced 

segments, where the voicing is generally less robust and the 

F0 estimates less accurate. Because of the smoothness of the 

pitch contours, we describe the F0 values of each syllable in 

terms of the smoothed initial and final F0 values of the 

vowel segment. These are calculated using the boundaries 

found by automatic alignment, as follows: 

• The F0 values corresponding to the initial two 

pitch periods as well as the final two pitch 

periods are discarded. 

• A least-squares linear fit of F0 as a function of 

time is computed from the remaining values. 

• The initial and final values of F0 are estimated 

as the value of the linear fit at the respective 

boundaries of the vowel. 

Mean pitch values in each segment, as well as the change in 

pitch across each segment, are estimated based on these 

linear parameters. Although this processing does markedly 

improve the robustness of the estimated values, it does not 

compensate completely for the pitch tracking errors that 

occur unavoidably. In addition, the automatic segmentation 

is not completely accurate, and the ambiguity in tone 

labeling also introduces some uncertainty. For all these 

reasons, there will be a fair amount of measurement noise in 

the results reported below; we return to this matter in the 

Conclusion. 
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Figure 1: Spectrogram and segmentation of typical Sepedi utterance used in the current study. The pitch contour is shown in 

blue, superimposed on the spectrogram. 

4. RESULTS 

 

Figure 2 shows the overall distribution of mean F0 values 

for all segments in the corpus. As expected, the H 

segments generally have higher mean F0 values than the L 

segments, but there is considerable overlap between the 

two classes. This overlap is a predictable consequence of 

the fact that pitch generally declines throughout an 

utterance, so that both H and L pitch values are 

systematically reduced towards the end of each utterance. 

(The same tendency was, for example, observed for pitch 

levels in Mandarin [2].) 

 

Figure 2: Distribution of mean F0 values for H and L 

syllables, respectively 

If the declination in pitch were a complete 

explanation for the overlap in H and L pitch values, one 

would expect the relative values between consecutive 

segments to be a better indicator of the intended tone – 

such relative F0 values were indeed found to be indicators 

of F0 perception in Vietnamese [4]. In Figures 3 and 4 we 

therefore show histograms of the difference between the 

mean F0 values of successive pairs of vowels, where the 

first vowel is labeled as H and L, respectively. It can be 

seen that L-to-H transitions tend to produce an increase or 

slight decrease in the mean pitch, whereas H-to-L 

transitions tend to result in a large decrease in mean pitch; 

L-to-L and H-to-H transitions fall somewhere between 

these extremes. Statistics confirming these tendencies are 

presented in Table 1. Note, however, that significant 

overlaps occur between all four cases, suggesting that the 

relative mean pitch values do not offer a complete 

expression of the speaker's intended tone level. 

 

Condition Mean change 

in F0 (Hz) 

Standard deviation 

of change in F0 

L-H transitions  4.881 5.650 

H-H transitions -0.183 4.959 

L-L transitions -3.452 5.888 

H-L transitions -6.409 4.576 

Table 1: Statistics of changes in mean F0 values between 

successive syllables. 
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Figure 3: Distribution of change in mean F0 values 

between successive syllables, when the first syllable was 

H. 

 

 

Figure 4: Distribution of change in mean F0 values 

between successive syllables, when the first syllable was 

L. 

Inspection of pitch tracks such as that shown in Fig. 1 

suggests another possible source of distinction between H 

and L, namely the overall slope of the pitch contour within 

a syllable (or syllable nucleus). As can be seen in Fig. 5, 

which represents a histogram of the overall changes in 

(smoothed) F0 values within each syllable nucleus, this 

feature does indeed take on somewhat different values for 

the two tones (though it is not strongly distinctive). The 

histograms of this feature for the various transitions 

(Figures 6 and 7) demonstrate that this feature is virtually 

irrelevant for syllables following an H syllable, but that it 

is somewhat distinctive for syllables preceded by an L 

syllable.  

 

 

 

Figure 5: Distribution of change in F0 within the syllable 

nucleus for H and L syllables, respectively 

 

Figure 6: Distribution of change in mean F0 values 

within the syllable nucleus, when the first syllable was H. 
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Figure 7: Distribution of change in mean F0 values 

within the syllable nucleus, when the first syllable was L. 

 

 

5. CONCLUSION AND OUTLOOK 

 

We have found that the mean pitch within the syllable 

nucleus is a strong indicator of the tone perceived in 

Sepedi speech. Not surprisingly, we find that the absolute 

pitch level is less important than relative pitch, which 

implies that the change in the mean pitch is the strongest 

indicator of tone amongst the signatures investigated here. 

The change in mean pitch is nevertheless not a perfect 

indicator of tone in our data, as indicated by the overlap of 

the histograms shown in Figures 3 and 4. It is possible that 

these overlaps are simply the result of ambiguities in the 

tone labels and errors in alignment and pitch extraction (as 

discussed in Section 3). Some of the outliers in our results 

can certainly be attributed to such factors; however, the 

large number of syllables with overlapping values for the 

change in F0 leads us to suspect that other factors may be 

at stake. Figure 7 suggests that, in some cases, the intra-

syllabic trend of F0 may be used to indicate tone, for 

syllables following an L syllable. Other factors that we 

have investigated were less promising – for example, 

consideration of the tone and mean pitch values of 

surrounding syllables does not produce better separation 

of the low and high tones. We have seen some evidence 

that the segmental make-up of a syllable may have an 

effect on the way that tone is expressed [6], but in the 

current corpus that influence is not evident. 

To resolve these issues, we plan to analyze larger sets 

of sentences. It will be useful to consider speech from 

other speakers, to learn whether different speakers employ 

different strategies to communicate tone. It will also be 

interesting to perform comparative analyses of other 

Southern Bantu languages: whereas closely related 

languages such as Sesotho and Setswana are expected to 

be quite similar to Sepedi with respect to the phonetics of 

tone, somewhat more distant languages (e.g. isiXhosa and 

isiZulu) are likely to display some additional phenomena 

(e.g. depressor consonants [3]). 

The successful application of these insights in speech-

technology systems will be strong confirmation of their 

validity. We are in the process of developing all the 

components necessary to build a tone-aware TTS system 

for the Sotho-Tswana languages – the algorithm for tone 

assignment from text [8] is partially worked out, and the 

compilation of a sufficiently complete tone-marked 

pronunciation dictionary remains as the biggest challenge 

in that regard. The completion of this TTS system will 

allow us to carry out comprehensive perceptual tests to 

evaluate our ability to model tonal processes in Sepedi. 
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ABSTRACT 
 
This paper describes the development procedure of three 
different Bangla read speech corpora which can be used for 
phonetic research and developing speech applications. 
Several criteria were maintained in the corpora development 
process that includes considering the phonetic and prosodic 
features during text selection. On the other hand, a 
specification was maintained in the recording phase as the 
speaking style is a vital part in speech applications. We also 
concentrated on proper text normalization, pronunciation, 
aligning, and labeling. The labeling was done manually – in 
the present endeavor sentence level labeling (annotation) 
was completed by maintaining a specification so that it 
could be expanded in future. 
 

Index Terms —Speech corpora, Phonetic research, 
Speech processing 
 

1. INTRODUCTION 
 
The goal of this paper is to present the development of 
Bangla annotated read speech corpora which is essential for 
all kinds of speech processing work starting from acoustic 
analysis to the development of speech synthesis and speech 
recognition. These corpora were composed from three 
different corpora and those were developed for three 
different purposes.  

1.  “Corpus for acoustic analysis” was developed for 
acoustic analysis of Bangla phoneme inventory.  

2.  “Diphone corpus” was developed for diphone 
concatenation based speech synthesis.  

3. “Continuous speech corpus” was developed for 
intonation model and unit selection based speech 
synthesis.  

Though, these corpora were developed for different purpose 
however the use of this resource is innumerable i.e. speech 
recognition, speaker identification, and spoken information 
extraction. This resource is also an essential component in 
linguistic analysis of a language. Compared to other 
languages, very little work has been done in Bangla. CDAC 
[1] has developed speech corpora, but there is no published 
account about the details of their corpora. Since the current 
Bangla speech synthesis system [2] lacks the naturalness 

due to the intonation model, hence developing an intonation 
model from these corpora was one of the primary goals. It is 
also hoped that, a good unit selection based speech 
synthesis can be developed from these corpora which may 
have a naturalistic sound.  
A brief literature review is given in section 2, followed by a 
description of the development in section 3, and section 4 
presents the corpus annotation and analysis. Conclusion and 
future remarks of the study are given in section 5. 
 

2. LITERATURE REVIEW 
 
Several studies show significant improvement on designing, 
developing and annotating of the corpus. The bases of these 
are [3][4][5][6][7]. Though depending on the purpose of the 
corpus, different text pattern have chosen, but the 
developing process remains the same. Other than the 
designing and development procedure, significant work [8] 
[9] has proven the high performance of corpus based 
synthesizers. This signifies that, developing a phonetically 
and prosodically rich corpora can lead us to develop better 
speech applications.  

 
3. DEVELOPMENT PROCEDURE 

 
The development of corpora was done in three steps [3]; 
such as text selection, speaker selection and voice 
recording. According to [4] and [5], the following 
characteristics have to be considered during the 
development of the corpora:  

• Area of speech corpora: Speech synthesis, phonetic 
research and speech recognition. 

• Spoken content: Two approaches considered such 
as domain and phonological distribution.  

• Professional recording studio: This is necessary for 
a clear acoustic signal from which it is possible to 
get clear acoustic information. 

• Speaking style: Continuous read speech. 
• Manual segmentation: Though this leads to 

significant amount of effort but it also affirm the 
accuracy of the labeling.  

• Recording setup: Supervised onsite recording.  
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3.1. Text selection 
Corpus for acoustic analysis: There are two categories of 
text in this corpus, one is for vowel and another is for 
consonants. For consonants phoneme investigation, the list 
of words selected consists of all possible phonemes with the 
following two patterns: vCv [iCi] and vCv [aCa], embedded 
in carrier words to form utterances. To maintain the same 
context we have embedded the consonants in a carrier 
utterance. So a total of 35x2 = 70 (35 [12] possible 
phonemes x 2 patterns) utterances were selected to record 
the data of the following form. 

1. aCa pattern  
আমরা কাজ পাi  -> ক 
amra    kaɟ     pai  -> /k/ 
1stP.Pl   work   get.pres 
[We get work.] 
2. iCi pattern 
আিম িকছ ুপাi  -> ক 
ami    kicʰu   pai  -> /k/ 
1st.Sg  some     get.pres 

[I get something.] 
 
For vowel phoneme investigation, three different patterns 
were selected with the nearest number of phoneme segment 
in each pattern. Each pattern carried two to three syllables. 
The main intuition of selecting these patterns was duration 
calculation and formant measurement of vowels. These 
patterns are:   

1. cV.Cv.cvc where V is the target vowel and C is 
either voiced or voiceless plosive. 

2. cV.v.cvc where V is the target vowel 
3. cV?V.Cvc where V?V indicates diphthong and C 

is either voiced or voiceless plosive. 
The tricky part was the data collection comprising these 
patterns. For each pattern we have selected four words from 
the dictionary [10] to make a balance of the recording data. 
For the first pattern, the C of second syllable is voiced 
plosive in two words and voiceless in two words. The 
reason behind this is that the vowel before voiced is longer 
than the voiceless plosive [11]. So we will get average 
duration in both cases. For the second pattern, we were 
unable to find any word from the dictionary [10]. Then we 
changed the pattern to v.v.cv.cvc, as the main intention of 
this pattern was to calculate the duration of the two 
consecutive vowels appearing in two syllables. However, 
with this new pattern we found only two words. For the 
third pattern, four words were selected for each target 
diphthong. But due to word limitation of this pattern, the 
first consonant of the second syllable was chosen arbitrarily. 
In some cases we got only two words then we repeated 
these two to make it four which was a criterion to make a 
balance of all phonemes in this analysis. After that, another 
two carrier words were embedded to form sentences. For 
example,  
 

eখন গেবষক বেলা 
ekʰon gɔbeʃok bɔlo 
Now researcher say.pres   
[Now say researcher] 
 
The middle word is our target word. The vowel of the first 
syllable of the target word is the target phoneme. The list of 
words selected for this investigation consists of all possible 
vowel phonemes with the above patterns, embedded in 
carrier words to form the utterances. A total of 192 
utterances were designed for recording with the following 
form: 

1. 14x4 (14 possible phonemes x 4 words) = 56 
(pattern cV.Cv.cvc) 

2. 1x4 (1 phoneme x 4 words) = 4 (pattern cV.v.cvc) 
3. 33x4 (33 possible phonemes x 4 words) = 132 

(pattern cV?V.Cvc) 
Total = 192 words 

The utterances were selected in such a way so that the 
prosodic variation (such as stress, tone, emphasis and vocal 
effort) and feature dependent segment duration do not have 
any effect on the target phoneme. Also, the manner of 
articulation was considered when these utterances were 
collected, as the manner of articulation is the usual first 
basis for segmentation or duration calculation. All listed 
words were phonetically defined if required, an assertion 
that was confirmed by linguists. It is proclaim that this 
corpus has 100% phoneme coverage. 
 
Diphone corpus: According to [12] and [13] Bangla 
language has 30 consonants and 35 vowels (monophthong, 
diphthong) phonemes. In general, the number of diphone in 
a language is the square of the number of phones. Since 
Bangla language consists of 65 phones, so the number of 
diphones are (65X65) 4225. In addition, silence to phones 
are (1X65) 65 and phones to silence are (65X1) 65. So the 
total number of diphones is 4335. These diphones were 
embedded with carrier sentences. Though there have been 
various techniques to embed diphone with carrier sentences, 
here nonsense words were used to form carrier sentences 
[14]. It has 100% coverage of phone and diphone  

 
Continuous speech corpus: Language is evolving; 
everyday new words appear in newspapers, magazines and 
blogs, which have different spoken variety. So we decided 
to use the spoken variety of texts. Then, texts were collected 
from various domains as shown in table 1. The text corpus 
contains 1,06,860 tokens, ~10K sentences. Some text was 
encoded in ASCII which was later converted into Unicode 
using the CRBLP Converter [15]. Then, the spelling and 
conversion errors were manually corrected. Table 2 shows 
the token and sentence count of the three corpora.  
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Category Tokens Sourc
e 

Megazine (weekly) 31296 1 
Novel (Beji-Weasel) 30504 2 
Legal document (Child) 1909 3 
History (Dhaka, 
Bangladesh, Language 
movement, 7th March) 

10795 4 

Blog (interview) 2347 5 
Novel (Rupaly Dip) 12160 6 
Editorial (prothom-alo) 3963 7 
Constitute of 
Bangladesh 

3278 8 

News -Prothom alo 10608 9 
Total 106860  

Table 1:  Different domains of the corpus 

 
Name Tokens Token 

type 
Sentences 

Corpus for acoustic 
analysis 

602 203 262 

Diphone corpus 12,938 2318 4,335 
Continuous speech 
corpus 

1,06,860 17,797 10,895 

Table 2: Token and sentence count of the three corpora. 

 
3.2. Speaker selection 
Corpus for acoustic analysis: Professional and non-
professional male and female speakers were selected by 
considering different ages, heights and the speakers’ locality 
in Bangladesh. Unfortunately, we were unable to include 
any speaker from the Indian State of West Bengal in this 
analysis. Four male and four female speakers, with equal 
numbers of professional vs. non-professional male speakers 
were selected. The professional speakers’ ages ranged from 
52 to 54 and non-professional speakers’ ages ranged from 
25 to 29. Each speaker was given flash cards containing the 
utterances, and was asked to record each utterance in 
straight tone/pitch level and without assigning any stress in 
a word. The education of all speakers is above bachelor 
degree.  
Diphone and Continuous speech corpus: A professional 
voice talent of a 29 years old male native Bengali speaker 
was hired for recording.  
 
3.3. Recording 
The recording of the utterances was done using the Nundo 
speech processing software. A professional voice recording 
studio was chosen to record the utterances. The equipment 
consisted of an integrated Tascam TM-D4000 Digital-

Mixer, a high fidelity noise free Audiotechnica microphone 
and two high quality multimedia speaker systems. The voice 
talents were asked to keep a distance of 10-12 inches from 
the microphone. Optionally a pop filter was used between 
the speaker and the microphone to reduce the force of air 
puffs from bilabial plosive and other strongly released stops. 
The speech data was digitized at a sample rate 44.1 kHz, 
sample width 24-bit resolution and stored as wave format. 
After each recording, the moderator checked for any 
misleading pronunciation during the recording, and if so, 
the affected utterances were re-recorded. 
There were a few challenges in the recording. First, 
speakers were asked to keep the speaking style consistent. 
Second, speakers were supervised to keep the same tone in 
the recording. Since speaking styles varies in different 
sessions a monitoring were required to maintain the 
consistency. To keep the consistency of the speaking style, 
in addition to [3] the following specifications were 
maintained: 

1. Recording were done in the same time slot in every 
session i.e 9.00 am to 1.00 pm.  

2. A 5 minutes break was maintained after each 10 
minutes recording.  

3. Consistent volume of sound. 
4. Normal intonation was maintained without any 

emotion. 
5. Accurate pronunciation. 
6. Pre-recorded voice with appropriate speaking style 

was used as a reference. In each session, speaker 
was asked to adjust his speaking style according to 
the reference voice.  
 

4. CORPUS ANNOTATION AND ANALYSIS 
 
4.1. Annotation 
There were a few challenges in annotation. The “Corpus for 
acoustic analysis” and “diphone corpus” was pre-modified. 
There was no non-standard word (NSW) [16]. That is why 
no text-normalization was required in those corpora. 
However, the challenges came in “Continuous speech 
corpus”. A text-normalization tool [17] was required to 
normalize the text. In case of ambiguous token, the accuracy 
of the tool is 87% which motivated us to perform a manual 
check. After the manual checking, phonetic transcription 
was done using CRBLP pronunciation lexicon [18]. The 
CRBLP pronunciation lexicon contains all the lexicon 
entries that are available in a continuous speech corpus. In 
phonetic form IPA was used. It [18] also proclaims the 
100% accuracy of pronunciation form. Later, a script was 
used to split the corpus into sentences based on punctuation 
marks such as ?, । and !. Each sentence was assigned a 
sentence id with orthographic and phonetic form and the 
same id was used in wave file. 
The un-cleaned recorded data was around 24 hours and it 
has a lot of repetition of the utterances. So in annotation, the 
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recorded wave was cleaned manually using wavlab which 
tends to reduce the recorded data to 13 hours 32 minutes. 
Then, it is labeled (annotated) based on id using praat [19]. 
Praat provides a textgrid file which contains labels (in our 
case it is wave id) along with start and end time for each 
label. A separate praat script was written to split the whole 
wave into individual wave based on id with start and end 
time. As praat does not support unicode, so id is used 
instead of text in labeling. Fig 1, 2 and 3 shows the 
examples of orthographic and phonetic form of the corpora. 
Fig 4 shows the labeling using praat.  
 

 
Figure 1: Orthographic and phonetic of "Corpus for acoustic 

analysis" 

 
Figure 2: Orthographic and phonetic of "Diphone corpus" 

 
Figure 3: Orthographic and phonetic of "Continuous speech 

corpus" 

 

 
Figure 4: Labeling using praat 

 
4.2. Corpus structure 
The structure of the corpus was constructed in a hierarchical 
organization using the XML standard. The file contains 
meta data followed by data. The metadata contains  
recording protocol, speaker profile, text, annotation and 
spoken content. The data contains sentences with id, 
orthographic form, phonetic form and wave id. The 
structure is elicited in figure 5.  

 

 
Figure 5: XML Structure of corpus 

 
4.3. Analysis on “Continuous speech corpus” 
A small analysis was done on "Continuous speech corpus" 
to evaluate the corpus. For this reason a statistical analysis 
has been conducted. Table 3 shows the phoneme, bi-phone 
and triphone coverage in the corpus. Fig 5 shows the 
frequency coverage of syllable, phone and biphone1 in 
speech corpus. According to the table 3, this corpus lacks 4 
phonemes. Besides that it has only 18.11% coverage of 
diphones and 5.93% coverage of the triphones. The 
phonemes are four diphthongs (aja, ua, ue, uo). To the best 
of our knowledge there is no published account about the 
frequency analysis of Bangla phoneme inventory & 
phonotactic constrain. This basically limits us to evaluate 
the phonetic coverage of this corpus. However, we can 
assert that this corpus has a domain variety. Moreover, this 
analysis raises a few research questions such as the 
following:  

                                                 
1 The word biphone and diphone are used interchangeably. 
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1. Whether this 18.11% diphone coverage will cover 
all phonetic space in Bangla or not.  

2. Does it make any problem if we omit the 
diphthongs that are not available in this corpus 
when designing phonetically balanced corpus? 

3. Analysis of biphone set that should not belong to 
the language e.g. phonotactic constrain.  

    
Pattern 
type 

Possible 
(unique) 

Total in 
the corpus 

Coverage 

phone 65 61 93.84% 
biphone 4,225 765 18.11% 
triphone 2,74,625 16,301 5.93% 

Table 3: Phone and biphone coverage in “continuous speech 
corpus”. 

 
Fig 5: Frequency analysis 

 
S/N Syllable 

pattern 
Frequency Percentage 

1.  cv 144668 59.0219 
2.  cvc 67156 27.39842 
3.  v 15460 6.307398 
4.  vc 7592 3.097397 
5.  ccv 4882 1.991767 
6.  cvcc 2395 0.977116 
7.  ccvc 2202 0.898376 
8.  cvv 344 0.140346 
9.  vcc 234 0.095468 
10.  ccvcc 62 0.025295 
11.  cccv 47 0.019175 
12.  cccvc 25 0.0102 
13.  cvccc 18 0.007344 
14.  vv 18 0.007344 
15.  ccvccc 4 0.001632 
16.  cvvc 1 0.000408 
17.  vccc 1 0.000408 

Table 4: Syllable pattern and their frequency in the corpus 

Table 4 shows different syllable patterns with their 
frequency available in the corpus. It is observed that, among 
these patterns some of the patterns formed from loan words. 
For example the patterns ccvcc, cvccc , cccvc and ccvccc 
are appeared in English loan words. Table 5, 6 and 7 shows 
a fragment of frequency analysis of phone, biphone and 
triphone. 
 

Phone 

Frequency 

Percentage 

Phone 

Frequency 

Percentage 

a 59907 10.755431 ei 1897 0.340579 
e 49200 8.833145 pʰ 1671 0.300004 
o 48754 8.753072 d 1333 0.239321 
r 44180 7.931877 ai 1276 0.229087 
i 36337 6.523780 tʰ 1255 0.225317 
n 32209 5.782658 oi 1094 0.196412 
k 26974 4.842790 ã 1035 0.185819 
ɔ 25885 4.647276 gʰ 888 0.159427 
t ̪ 22855 4.103283 ɟʰ 501 0.089947 
ʃ 22126 3.972402 ui 484 0.086895 
b 20154 3.618358 dʰ 371 0.066608 
l 16126 2.895189 ou 328 0.058888 
m 14514 2.605778 iu 232 0.041652 
u 12559 2.254786 eo 223 0.040036 
d ̪ 12490 2.242398 õ 210 0.037702 
p 12119 2.175790 ũ 194 0.034830 
ɟ 11416 2.049577 ẽ 163 0.029264 
j 9860 1.770220 eu 152 0.027289 
t 8068 1.448492 ɔo 146 0.026212 
h 7985 1.433591 ĩ 86 0.015440 
g 6647 1.193372 ɔ ̃ 77 0.013824 
cʰ 6466 1.160876 au 55 0.009874 
kʰ 5467 0.981520 oa 39 0.007002 
c 5254 0.943279 æ̃ 38 0.006822 
æ 5043 0.905397 io 31 0.005566 
s 4246 0.762308 ie 11 0.001975 
t ̪h  4054 0.727837 oe 6 0.001077 
bʰ 3508 0.629810 ia 2 0.000359 
d ̪h  3389 0.608446 ea 1 0.000180 
ŋ 3315 0.595160 æa 1 0.000180 
ɾ 2086 0.374511 

Table 5: Frequency analysis of phoneme in the corpus 
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Biphone Frequency Percentage 
a_r 11327 2.07416984 
o_n 8205 1.50247758 
e_r 7936 1.45321902 
o_r 6518 1.19355867 
a_n 5979 1.09485843 
r_a 5625 1.0300349 
r_o 5511 1.00915953 
r_e 5264 0.96392955 
ʃ_ɔ 5122 0.93792689 
t_̪o 5025 0.92016451 
n_i 4964 0.90899436 
ɔ_r 4805 0.8798787 
k_o 4781 0.87548389 
n_a 4631 0.84801629 
r_i 4591 0.8406916 
k_a 4286 0.78484082 
t_̪a 4241 0.77660054 
a_k 4173 0.76414856 
e_n 4170 0.76359921 
n_e 3988 0.73027186 

Table 6: Frequency analysis of biphone in the corpus 

 
Triphone Frequency Percentage 
k_o_r 3142 0.58706477 
o_r_e 2049 0.382843957 
p_r_o 1694 0.316514233 
k_a_r 1687 0.315206323 
b_o_l 1635 0.30549042 
i_j_e 1564 0.292224475 
d_̪e_r 1524 0.284750703 
k_ɔ_r 1426 0.266439962 
a_d_̪e 1386 0.258966191 
t_̪a_r 1359 0.253921395 
e_cʰ_e 1346 0.251492419 
o_r_i 1339 0.250184509 
n_e_r 1313 0.245326557 
a_r_e 1243 0.232247457 
o_n_e 1236 0.230939547 

Table 7: Frequency analysis of triphone in the corpus 

5. CONCLUSION AND FUTURE REMARKS 
 

Here we described the development procedure of Bangla 
annotated read speech corpora and some statistics of 
analysis. Corpus building is a continuous process which 
includes annotation for prosody prediction and annotation in 
different levels such as word, syllable, biphone and phone 
level for phonetic research. This is not only required for 
phonetic research but also in speech applications. Future 
work includes the following:  
 
5.1. Intonation model and unit selection voice  
 
As mentioned earlier there is an existing Bangla speech 
synthesis system, which lacks the intonation model. There 
were two reasons to develop “Continuous speech corpus”. 
One concern was to develop an intonation model. The other 
reason was to develop a unit selection based speech 
synthesis system. Though there is no unique approach to 
design intonation, but the following two approaches 
consider a set standard to produce intonation for synthetic 
speech from corpus. One is to produce synthetic speech by 
concatenating waveform directly which is called unit 
selection based synthesis. In this process no signal 
processing is required so it preserves the quality of the 
original signal. The other approach is to generate intonation 
from ToBI label which could be generated from the corpus. 
Our research team is working on both unit selection based 
synthesis and concentrating on generating ToBI label from 
corpus.  
 
5.2. Acoustic analysis 
An extensive acoustic analysis [12], [13] has done on 
Bangla phonemes using “corpus for acoustic analysis”. 
However, a significant amount of work need to be done on 
prosody such as syllable, stress, F0 and accent. So this type 
of clean and high quality speech corpus will help in acoustic 
analysis and speech applications.  
 
5.3. Speech technology applications 
The multiple uses of these corpora are innumerable. 
Generating a phonetically balanced corpus is another step 
which could be done from these corpora. A phonetically 
balanced corpus is especially important for speech synthesis 
and speech recognition. Besides these applications, one can 
use this resource to do research on speaker identification, 
emotion extraction and spoken information extraction. 
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ABSTRACT 
 
This paper is a first contribution about the Mo Piu 
language and culture. This ethnic minority is settled in the 
mountains of the North Vietnam. This culture being not 
documented at all at the international level, its language is 
said ‘under-resourced’ in the point of view of the 
automatic processing.  
After a cultural, social and economical presentation of this 
minority, the paper focusses on the results of the first field 
ground undertaken in june 2009, and especially on the 
data basis, and the first experiments on the Mo Piu speech 
(method and preliminary results). The study in progression 
is concerning the domain of human recognition of melodic 
segments in order to try to find out 1° if this language is 
tonal or not 2° and if so, what are the tonal units. 
 
Index Terms— Mo Piu, ethnic groups, under-resourced 
language, endangered language, data basis, prosody, 
tonal units. 
 

1. INTRODUCTION 
 
Both in Vietnam and France, this project is based on the 
collaboration of linguists Vietnamese specialists of ethnic 
languages, French specialists of speech in the domains of 
phonetics, phonology, prosody, French and Vietnamese 
anthropologists, specialists of ethnic groups in Northern 
Vietnam, Province of Lao Cai, and computer scientists, 
working all together, which enhances knowledge, 
skillfulness, and outcomes quality.  
Especially in conjunction with Christian Culas, we have 
laid in 2008 the foundation for a collaboration concerning 
an endangered ethnic group, the Mo Piu people in 
Vietnam, living in the mountains in the north, in an area 

protected from car passing and tourists. This ethnic group 
is of oral tradition only. 
With this strong collaboration of researchers, the 
willingness of Vietnamese Government to develop the 
study of minorities languages, the ground of MICA 
technology in speech and pictures supplying a platform of 
computing tools and expertise, this project could be the 
first step to settle in Vietnam and South-Asia, a team (and 
at the same time a “base camp”) devoted to the study and 
preservation of endangered languages.  
Apart from a humanitarian goal of making all 
documentation available to the ethnic minority, two other 
scientific objectives were defined. The first concerns a 
linguistic and ethno-linguistic study, conducted in 
conjunction between MICA, linguists specialists of asian 
languages both at the University of Social Sciences and 
Humanities, and at Université de Provence, France, and 
LACITO, the French anthropologists from IRASEC, and 
the Vietnamese ethnologists from the Department of 
Culture, Tourism and Sports of Lao Cai. The second 
objective matches the interests of MICA for the under-
resourced languages. These last languages can benefit 
from the well-resourced languages of the computer 
resources and developments by the means of transfer and 
adaptation, particularly in the field of speech recognition 
and synthesis. 
In this paper, we present the Au Co project focussed on 
the Mo Piu people, the method and the first experiments. 
 

2. ABOUT THE MO PIU PEOPLE 
 
2.1. General features 
Though their exonym is Green Hmong, their endonym is 
Mo Piu (or Mo Brieu depending of graphy). Some of them 
told us that they can currently speak 7 or 8 languages and 
concerning the White Hmong they are speaking too, they 
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assert that there is absolutely no familiarity with that one; 
but because they are probably in instable position about 
their own identity, we must take this assertion with 
caution. So some questions have to be settled: for example 
is "Mo" just a transcription from their language for 
"Hmong" (which is Vietnamese)? Are they a part of Miao 
linguistic family – divided in China in Hmong, Hmu, 
Hmau, Hmu and Qoxiong Miao subgroups – and 
according to Christian Culas hypothesis, a part of one 
specific group, the Hmu/Hmou/ or Hmeu ? [1][2][3][4].   
All these questions need to be better investigated by 
linguistic and ethnographic inquiries.  
Only investigations on phonetic, lexical syntactic, cultural 
and ethno-historical data could identify this ethnic group 
with more certainty. This population being not 
documented at all in the international bibliography about 
Vietnam, we hope nevertheless to find a link with some 
Chinese ethnic groups. So their origin is a problem due to 
a lack of knowledge. In fact, this small ethnic group is too 
small to be listed, and in these conditions either they are 
listed as Hmong, or they are beyond the census. 
From 2003 Provincial Census, Mo Piu or “Green Hmong” 
in official designation, was 551 people; from June 2009 
Census, there are 455 in 2 villages. 
By now children speak Mo Piu at 30-50%, and parents 70-
80%. Parents are speaking Vietnamese to their children. A 
primary school works in the village where only the 
Vietnamese language is spoken and taught. 25% of people 
have been educated in the village school. No one has 
graduated college. Moreover nobody can write the Mo Piu 
language. 
The names of the two Mo Piu villages are Nam Tu 
Thuong and Nam Tu Ha. "Nam" means "river" in Tày 
language (demographically, the Tày, linguistic family 
Tay-Kaday, are the most important ethnic group in the 
large area), "Tu" is the name of the « stream », and 
"Thuong" means "spring up". So when some families 
continued their migration lower towards Nam Xe, this new 
village was called "Ha" meaning "low". In Nam Tu Ha 
village, several ethnic groups are living together, and the 
language must certainly bear marks of all these cultures. 
As Mo Piu is not documented at all, it is urgent to study 
several aspects: 1- phonetics and phonology, 2- lexicon, 3- 
morphosyntax, 4- prosody, tonologic and subjective 
expression (not only emotional), 5- ethno-history, 6-
cultural specificities.  
This is needed for compiling Mo Piu text books and 
dictionaries. This also contributes to popularizing 
knowledge on Mo Piu people.  
 
2.2. Location 
In the Nam Xé commune, 161 families are gathering 890 
people, belonging to four ethnic groups Hmông (including 
White Hmong and Mo Piu or Green Hmong), Dao, Tày 
and Kinh. Mo Piu are 51% of the population of this 

commune, but the 2 villages are not in its centre. 
The village of Nam Tu Thuong is situated in a sort of 
circus on the side of a hill, scattered on the left bank of the 
stream. All the houses are wooden, and without piles as 
the architectural model of Hmong and Dao. To get from 
one house to another one, there is no real path, people has 
to climb boulders left in their natural state, and finds their 
way sometimes through steep rocks. An organized 
communication way between the houses is exceptional, 
wandering most of the time across blocks of stone more or 
less big, circumventing or avoiding them, climbing up or 
down the slopes and steep paths. As electricity fails again 
to the village (but the poles were raised, which presages a 
next use), the evening traffic from one house to another is 
even more dangerous for the unfamiliar. 
 In fact the village of Nam Tu Thuong is divided into 
several sites: from an older village, Nam Can, located a 
few miles further up the mountain, went 7 families in 
1963, who then have created the present village, now 
composed of 11 families and 227 persons. The oldest 
village comprises 12 families. It would also be interesting 
to investigate also there, if it still remains people. 
  
2.3. Recent  history 
Formerly, the village of Nam Tu Thuong was that of Red 
Dao ethnic group (endonym "Ké Mien") who lived there 
long ago. Then, the Mo Piu arrived in the village of Dao, 
they used to live and clear the ground. In fact 5 families 
have left China about 350 years ago, to settle in an area 
more fertile. 
The 5 families have crossed the river Nam Thi “Lang Si” 
and then the Red River to enter Vietnam at Y Ty (Bat Xat 
district). Sometimes later, the climate being too hard, 
people moved to "Mang Pang", now named Khau Bang 
(Mu Cang Chai District, Yen Bai province), around 50km 
from the current location. Though we didn’t know exactly 
why, they could not stay there long, so they left and came 
to the Nam Xe commune territory (Nam Tu Thuong 
village, Van Ban District), and there they settled. 
 
2.4. About economy 
The area of the village is about 17 hectares, plus 84 ha for 
agriculture, 13 ha of forest, 126 ha reserved for the annual 
crop, 8 ha of rice fields from the cooperative, 900 ha for 
growing in a long-term. The village of Nam Tu Thuong 
has 27 ha of rice fields farmed privately. 
The economy has grown. In the village, each family has a 
forest where they grow wild cardamom (Elettaria 
cardamomum) under the shelter of a big tree. Some 
families have up to 0,5 ha. This mountain spice can 
provide important income for the local farmers; in 2000, 
dry cardamom was sold in the Sapa wholesale market, 
160.000 Vnd/kg, about 10$US/kg. Unquestionably this is 
the most expensive local product after the end of opium 
production [5] [4]. Apart from this case, government 
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authorities help and encourage people to grow rice and 
maize, which thus supply a good productivity. The 
developing economy leads to increase the quality of life. 
Though the classification of “poor”, “very poor”, 
“medium poor” in Vietnam, especially in mountain ethnic 
area, is still the subject of many debates, according to the 
Mo Piu authorities, there are only 6 poor families or who 
do not eat their fill. 
The Government invests to support Mo Piu ethnic groups, 
providing new roofs and water tanks for instance. In the 
village there are only 3 thatched houses. The machines 
shelling and husking paddy begin to appear. 
 

3. DATA BASIS 
 
On june 2009, we undertook a first field ground in the 
village. The team was composed of 2 Vietnamese 
ethnologists from the Departement of Cuture, Tourism and 
Sport from Lao Caï, and two scientists from MICA, a 
linguist and an engineer specialist of audio/video 
recordings and computer processing. It was a great chance 
for the team to benefit from such a specialist because 
linguist and ethnologists could be better involved in their 
task with the speaker, and thus be better concerned with 
the scientific aspects and contents of the recordings, while 
they also benefit from a data basis well structured. 
 
3.1. Method of recording 
Before recordings, the linguist with the help of the speaker 
and of the team, filled up an inquiry form containing the 
most important information about this speaker. 
The audio and video recordings were made around a low 
table supporting the equipment and the microphones. To 
the linguist’s left side, stood a first ethnologist speaking 
English. Both were sharing the same microphone (track 
1). Another ethnologist sat near her colleague. To the 
linguist right side, stood the Mo Piu speaker, then the 
translator who was translating oral question from the 
Vietnamese to Mo Piu language (then writing the 
responses Mo Piu / Vietnamese). The speaker and the 
translator both spoke in the same microphone (track 2). 
The engineer watching the monitoring settings was faced 
with all of us, with all the equipments, computers, camera, 
sound recorder. He was checking the good position of the 
microphones, of the camera vis-à-vis the faces, performing 
the zoom video, capturing recordings on the computer. 
Each question (or songs, free speech) corresponds to one 
file. This facilitates the data distribution and also avoids 
losing too much time in case of wrong cancellation or 
system error. Furthermore it gives an instant overview of 
the richness of the topic. 
At a signal from the engineer, in order to filling up the 
sound file header, the linguist gave the date, the speaker’s 
name, the theme addressed, the question number (track 1). 
The anthropologist immediately read the question 

translated in advance in Vietnamese (same track), which 
was immediately translated into Mo Piu (2nd track), and 
the speaker answered (same track). While the person was 
speaking, the translator wrote in Vietnamese what the 
person said. All the questions and answers translated into 
Vietnamese were grouped, then photocopied (later after 
our leaving, at our arrival in the nearest little town). 
This whole methodology has been put in place quickly if 
not instantly. Once the explanation done on how we 
wanted to proceed, everyone has fully understood and 
fully played his/her role.  
 
3.2. Data basis contents 
We recorded on the whole 8 hours of films, gathering 
1251 photos, 82 video-clips, 7 hours of speech, 1 hour of 
songs. In detail, the speech corpus length is 423 minutes, 
the songs or musical pieces, 59 minutes. 
 

Topics Speakers 
Number 

Recording 
number 

Duration 
(mn) 

TOTAL 
recordings 

1- History 2 5 26  
1-Tales  1 14 79  
1- Folk songs 8 20 59  
1- Music, 
instruments 

2 20 22  

1- Folklore 1 1 15  
1-Past life 2 19 28 79 
2- Birth 1 17 16  
2- wedding  2 30 31  
2- Funerals  1 4 15  
2- chamanism 1 28 29 79 
3- Agriculture 1 8 7  
3- Animals care 1 2 4  
3- Hunting 1 10 9  
3- Fishing 2 20 17  
3- Tools 1 7 6  
3- Costumes 2 25 31 64 
4- Social  overview 1 12 9  
4- Village chief tasks 1 11 11  
4- Village rules 1 5 6  
4- Health problems 1 5 5  
4- Agriculture 
problems 

1 8 10  

4- Language survival 1 1 2 42 
5- Cooking 1 7 6  
5- Children care 2 34 35 41 

Table 1. Composition of the Data basis. 

The data basis is classified per date / speakers / topics / 
questions (or songs, tales…), and finally we get 321 sound 
files and 321 video files. We recorded for speech 4 male 
and 3 female speakers. The male speakers are between 36 
and 66 years, the female ones, between 37 and 72 years. 
Six are farmers, and among them, one is the village chief, 
another is working in the commune. The seventh is a 
chaman.The age range of the 9 singers (7 females, 2 
males) spreads from 24 to 70 years. All are farmers. 
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The Table 1 above presents the topics addressed, the 
number of speakers per topic, the number of the items 
recorded (responses, free speech, songs, tales), the total 
per topic, and the duration in mn of each topic. Grounded 
on the duration, the most important topics for speech are: 
tales (79 mn), children care (35 mn), wedding (31 mn), 
costumes (31 mn), chamanism (29 mn), past life (28 mn), 
history (26 mn). 
 

4. THE AIMS OF THIS STUDY 
 
As this language is not repertoried at all, this exceptional 
situation allows to undertake innovative studies both in the 
domain of speech technologies, and in linguistics. 
In this paper, we just want to put forward the linguistic 
study, its challenge, and the method used. 
 
4.1. The goals of the first study 
As we got no cues about the structure of this language, we 
don’t know whether it is tonal or not, and neither if the 
lexicon is mono- or plurisyllabic. In those conditions, we 
conduct a double study about tonality. Our goal is 
twofold: 
 

1- to try to discover if the language is tonal or not,  
2- if it is tonal, to try to identify the tonal units, and 

moreover to try to get rules to segment the 
language into lexical units. 

 
In fact one more goal can be added to these ones: the need 
to build up a method and tools to find out the melodic 
units in the same time where we try to identify these units. 
No doubt that these goals are true challenges, but 
eventhough we fail in this tentative, we will get a deeper 
skill into the relation prosody / lexicon / syllable, that 
maybe we could not reach if we have been first studying 
the Mo Piu linguistic system. 
 In other terms, we are studying this language in the same 
conditions as computers may work, and thus, if this 
experience is successful, it could benefit for automatic 
processing in the domain of human language technologies. 
One of the applications concern the domain of the under-
resourced languages called “PI languages” [6] in a 
multilingual processing approach aiming at rapidly 
developing spoken language technologies. 
 

5. FIRST EXPERIMENTS 
The acoustic data are analysed under specific speech 
software such as Praat [7] which is an international 
standard tool, in order to study formants and time events 
in the speech signal, MOMEL [8] which following the 
model of human perception, supplies a continuous 
intonation line even during the unvoiced speech events 
such as consonants, and finally an home tool MELISM [9] 
[10], specialized in the detailed analysis of prosody (F0, 

tones, duration) at the segmental level (word, syllable, 
tone, phonetic units), and which offers valuable 
complements to the previous ones for any kind of 
languages [11]. 
 
5.1. About the method used 
As said before, our goal is to try to identify first the shapes 
of the melodic units (slopes direction, range…).This 
problem rests on the existence of the repetition of the 
melodic units invariants. Our experience of prosody and 
of tonal languages, make us expect the existence at the 
very least of: 

1-kinds of shapes 
- plateaux: /P/ 
- rising slopes: /M/  
- falling slopes: /D/ 

In our perspective, the plateau is considered as such 
when the rising or falling slope doesn’t exceed 25 Hz.  
2- kinds of registers. 2 studies have been conducted, 
one exploring melody with 3 registers: 

- high: /h/, 
- middle: /m/, 
- low: /b/, 
and the second one, with 4 levels: 

- acute: /a/ 
- high: /h/ 

- middle: /m/ 
- grave: /g/. 
In fact, we have to be aware of not confusing the 
phonologic level where probably only a part of these 
levels is significative with the phonetic one which 
describes the structure of the plateau or the slopes on 
several layers (see below paragraph 5.3.2.). 
3- combinations of units (probably 2, please see details 
paragraphe 4.3.), at least 
- plateau + slope  
- slope + plateau 
4- number of tones (if any): probably less than 10. 

 
If this language is tonal, we could expect to detect some of 
these units presented above. The regularity of these tonal 
units, fixed in a few number of shapes, their F0 stability, 
could prevent us to confuse them with word melody 
segments which in a no tonal language are far more 
variable. In fact our task consists in sorting the units in 2 
categories: the phonetical and phonologic segments. As 
this analysis is concerning tones, instead of phonetics we 
could use more appropriately the term of tonetics, in 
opposition with tonology.  
If the melodic segments are corresponding to the 
tonologic units, the tonetical ones embrace not only their 
contextual or speaker variations, but also, if any, the 
tonetic space between 2 following tones. In fact due to the 
MOMEL script conception, as explained above, the 
intonation curve is continuous, even during the unvoiced 
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segment. In these circumstances, we have also to try to 
extract the tonological parts from the curve continuum. 
 
5.2. The two experiments 
In order to improve objectivity in the detection of the 
tones (if any), we conduct the experiments in two different 
ways. The first way is based on the tentative to recognise 
these melodic segments only by the mean of the ear. This 
task is undertaken by a linguist musician, and the notation 
will be made according to the musical mode. 
Besides, in order not to influence the final results, we 
decided not to compare our results before the end of our 
personnal experiment, except if one of us gives up. As for 
any challenge, the risk that both of us could dismiss this 
task was not to exclude. The second method is using ear 
and vision, receiving a help from specialised tools such as 
Praat, augmented with the MOMEL and MELISM scripts. 
Within this method, the intonation curve is segmented and 
labelled into micro melodic segments units, according to 
the significative turning points of the curve. Eventhough 
we cannot access to the word segmentation or meaning, of  
course we take advantages of all the cues events, such as 
pauses, breaks, slope ruptures, rhythm variations, 
occurrence of consonants, creaky voice, melodic 
symmetry…, but above all, of the repetition of the same 
phonetic vs. melodic sequences. 
 

 
Figure 1. Illustration of the visua/soundl metho using the 

MOMEL-MELISM scripts under Praat. 

Another point about the method used concerns the syllable 
considered as the unit of reference. Since the theory of 
Frame [12] giving a definition of the syllable at the 
physical, articulatory and segments organisation, many 
works at the international level pointed out its importance. 
Particularly the idea that the more complex consonants 
clusters occur at the beginning of the syllable instead of 
the coda, will induce our way of segmenting syllables. On 
the other hand, this theory is also tuned to the automatic 
speech recognition method used in MICA which considers 

the syllable as the unit of modelisation and segmentation. 
Nevertheless the melodic segmentation will concern the 
stable part of the vowel, i.e. the vowel nucleus, putting all 
the other parts of the syllable inside brackets. 
In order also to better sustain this experiment, we add 
phonetic labels in a TextGrid tier. However as this first 
experiment does not stem on phonetics, we are just using a 
broad phonetic labellisation aiming simply to be able to 
compare the syllables with the same phonetic contents. 
 
5.3. Illustration of the visual method (MOMEL-
MELISM under Praat) 
5.3.1. Symbols and codings 
The figure 1 above presents a speech extract from the Mo 
Piu language (woman VTM, extract VTM02, spontaneous 
speech), taken after the automatical segmentation and 
labellisation under Praat / MOMEL / MELISM software1. 
3 windows are open simultaneously: from top to bottom, 
the sound one with the speech signal and spectrum, then 
just below, the manipulation one, providing the F0 curve 
with on one hand the points corresponding to the 
boundaries of units (candidates for tones and/or words) 
and sub-units, all manually positionned, and finally the 
MELISM window with several tiers: from bottom to top, 
in the frame of the hypothetised syllables,  
- the F0 values in Hertz,  
- then above their conversion in semi-tones,  
- then their alphabetic coding in 9 levels (g = grave, 

level 1 ; i = infra-grave, 2 ; b = bottom, 3 ; c = centred, 
4 ; m = middle, 5 ; e = elevated, 6 ; H = High, 7 ; S = 
Supra-high, 8 ; A = Acute, 9),  

- then the F0 coding of the space between two 
boundaries (the so-called melodic syllables, for 
instance eH). In the frame of this present study, we 
don’t use this level of melodic precision (neither the 
coding in 9 levels nor melodic syllables). 

- then the broad phonetic labellisation,  
- and finally corresponding to the 2 last tiers, the 

tentative caracterisation of the supposed tones 
(everyone put manually) considering for the F0 
description 3 or 4 registers (see below 5.3.2.).  

In this last tiers, one can read the symbols corresponding 
to the shapes of F0 segments we precised above (see § 
5.1.), such as /P, D, M/ for respectively /plateau, falling 
slope, and rising slope/, and just afterwards the F0 level 
indicated in small letters: /b, m, h/ respectively for /low, 
middle, high/ in the case of 3 registers for the F0 range, 
and /a, h, m, g/ for /acute, high, middle, grave/ in the case 
of 4 registers.  
In order to simplify the reading and the analysis, all the 
rising and falling slopes have been labelled with 3 cues: 

                                                 
1 The overlap of some F0 values, and the absence of some 
codings in the tonal syllables (for instance H instead of Hm) are 
caused by the size of the zoom. 
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after the indication if the slope is rising (M) or falling (D), 
the second cue corresponds to the melodic level at the 
beginning of the slope, and then the third cue, to the level 
at the end of the slope. For example in the figure 1 above 
/Dhm/ means that the falling slope begins at the high level 
and reaches the middle one. 
In the case of twofold codings, the sequence /Mmh-Ph/ 
means that the unit begins with a rising slope (M) in the 
middle register (m) and reaches the high level (h), then 
continues with a plateau (P) still in the high register (h). 
Now /Ph-Dhb/ would mean that the sequence starts with a 
plateau at the high level (Ph), followed by a falling slope 
beginning in the high level (h), ending in the low one (b).  
Last point to clear out: the brackets, for instance /(Dmb)/. 
This notation corresponds in fact to our method of 
segmentation based on the syllable and the privilege given 
to the vowel nucleus. In the brackets, we put what we 
supposed to correspond to tonetics and not to tonology, 
such as F0 segments corresponding to consonants, not 
only the unvoiced ones, but also the voiced ones as they 
give some F0 modulations, and more generally F0 
intervals between 2 melodic units. 
The central part of the speech sample above on figure 1 
(in blue or grey) is worth noticing, as the structure is 
symmetric, arousing the question of a right segmentation: 
for the syllable /dœj/ are they 2 tonologic items (/Mmh-
Ph/~/Ph/), or less (if /Ph/ corresponds in fact to the 
phoneme /j/ and not to the coda of /œ/)? 
 
5.3.2. F0 range: the number of registers in question 
In the first phase of this work, we only used 3 registers of 
the F0 range: /b, m, h/ for respectively /low, middle, high/, 
wondering whether this partition of the F0 range could be 
convenient. Examining the data, we saw a clear 
disproportion of the nomber of plateaux: Pm (72 items), 
Ph (30), and Pb (17). We thought then that a partition 
between 4 registers (/g, m, h, a/ for /grave, middle, high 
and acute/) could be thus more realistic. The new results 
show that eventhough the distribution is better, the level 
/m/ is still gathering the most numerous items: Pg (9), Pm 
(50), Ph (39), Pa (21).  
Anyway we have to remind that an adequate number for 
the tonetic description is not necessary adequate for the 
tonologic one, as the opposition of melodic height (same 
form, different F0 levels) could only concern very few 
tones, if they exist. 
These 2 kinds of codings (3 and 4 registers) can be seen as 
tiers in the figure 1 above, and as columns in the figures 2 
and 3 below. 
 
5.3.3. Data bank 
When this phase of segmenting and labelling is over, the 
MELISM procedure is automatically filling up a data bank 
containing the list of all the items with their melodic 
segments. This DB is a very performing tool, easily 

enabling to compare all the melodic shapes, F0 indices 
and duration, and then to observe at the best the repetition 
of the F0 segments and units. 
The file automatically filled up by the MELISM software 
is divided in 3 parts. The first one contains the general F0 
information about the sound file (F0 minimum, mean and 
maximum). The second one gives an overview of the list 
of the syllables (considered in this hypothesis as melodic 
units), with the indication of their F0 structure such as 
plateaux, rising and falling slopes (see above for more 
details). The third one presents the detail of each melodic 
segment composing the units. Then from each speaker’s 
file of this kind, a big file is hand made gathering all the 
data, and enabling to make statistic computings. 
Thus the data are automatically sorted in 2 ways. The first 
way sorts the syllables according to the vowel melodic 
coding (Figure 2 below). So all the syllables supplying the 
same melodic content are listed. For improving reading, 
the same files under excell use the same colour. The 
number of items supplies indeed relevant information 
about either the validity of the tone as a melodic unit or as 
a tonal one: the less numerous items, and the least 
confidence about the phonologic status. 
In the Figure 2, a suite of columns supplies successively 
from the column 1, the number of the syllable in the list, 
the name of the file, the phonetic coding (here the symbols 
are not the IPA ones as these symbols are not known from 
excell, but the source codings), the syllabe duration in ms, 
the coding of 1- the whole syllable including the 
consonant and wovel (3 registers), 2- only the wowel (3 
registers), 3- the whole syllable (4 registers), and 4- only 
the wowel (4 registers). 
This kind of data asks the question of the identification of 
the melodic segment. 
 

 
Figure 2. Extract of the data bank sorting the items according 

to their identical melodic labellisation by the column F ( 3 
registers), and then by the column H (4 registers).    
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For instance Figure 2 above, the twofold segment /Dhb-
Pb/ (line 20, item n° 179) and /Dhm-Pm/ (line 8, item n° 
3) are they the same one, one of them being a phonetic 
variation of the other one? If not, 3 registers zones are 
they enough? This problem can be easily solved by 
considering the 4 registers labelling. This one actually 
makes a clear opposition of the melodic levels /Dhg-Pg/ 
and /Dah-Ph/, which plaides definitively for 2 distincts 
melodic forms.  
 

 
Figure 3. Extract of the data bank sorting the items according 

to their identical broad phonetic labellisation. 
 
The second way is sorting the syllables according to their 
phonetic contents (Figure 3 below). This Table presents 
an extract of the data bank where the data have been 
sorted by the phonetic contents of the syllables (column 3 
“Phonetics”), and their corresponding melodic labels (3 
and 4 registers). This extract was choosen because of the 
several items with the same phonetic content, for instance 
/la/, /ma/… 
If two or several syllables sharing the same phonetic 
contents, share also the same melodic coding, thus the 
codings have some chance to be validated. If not, it could 
mean either that perhaps the difference is due to the 
speaker variation (tonetics), or to a drawback in the 
number of the melodic ranges, or to an approximation of 
the melodic coding, or finally that there may exist 2 
different syllables / words with 2 melodic segments units. 
Of course each coding allows to cross the data sortings for 
a better understanding. For all the questions arising, the 
ressource is of course to increase the number of data, and 
also to consult the corresponding F0 values in question 
both under Praat-MELISM and the excell files where all 
the F0 values are supplied. 

5.4. First results  
In the overall, the Mo Piu intonation is a very melodic 
one, and often we wonders whether the person is speaking 
or singing. In our experience, it is the first language even 
heard of that kind. This impression comes from the 
presence of some special indices such as the use of big 
and rapid contrats both at the pitch level and at the 
duration one, even if they don’t occur necessary at the 
sime time, and moreover the existence of sorts of motives 
or ritornellos based on symmetric notes. 
In other respects, the samples analysed show the regular 
use of a lengthening before a pause, which may be a very 
long one. As the limits of the syllable are right now under 
discussion, in order to supply quantification in ms, we 
only chose in each case the duration of the lenghtened 
vowel before a pause. For the 24 samples observed, this 
vowel lenghtening spreads from 110 ms to 1000 ms, 
mean, 591 ms which is very long. Depending on a few 
examples, this result however is just of course a 
preliminary one. 
The second point concerns the question whether the Mo 
Piu language is mono- or plurisyllabic. An argument in 
favour of this thesis stems on the length of the mean 
duration of the syllables: 378 ms. This duration is a long 
one, corresponding in fact to the length of plurisyllables in 
other languages. Moreover this mean duration 
encompasses great variations (from 40 ms to 1380 ms) in 
the same way as the mean duration of the wovels 
lengthening before pauses. Another argument is also the 
abundance of plateaux, as it is difficult to imagine a lot of 
plurisyllabic words made of successive and long plateaux. 
Grounded on these findings, the hypothesis of a 
monosyllabic language, seems the most reliable.This issue 
joins the following point. 
The third point is now concerning the melodic segments 
and their components. As said before, the first evidence is 
the great use of plateaux. Over the 173 syllables, 68% are 
corresponding to plateaux, and among them, 42% of the 
173 syllables are middle plateaux /Pm/. Based on this 
regularity, and the great amount of plateaux at different 
levels, we finally incline to thinking that the Mo Piu 
language is tonal.  
In fact, we find (see Figure 4 below) either different 
syllables corresponding to the same tone (Figure 4, see 
circles Table above) or different tones for the same 
syllable (Figure 4, see circles Table below), which greatly 
confirms that Mo Piu is a tonal language. Moreover the 
great variation in duration suggests that this parameter 
plays a significative role at the lexical meaning.  
Besides 80% of the labelled vowels have a simple form. 
The fact that the complex forms are rare (20%) argues 
also for the role of duration (short ~ long) as a relevant 
parameter for meaning.  
We are now considering the tonal content of the melodic 
forms (Table 2 below). In the Table 2 below, the tonal 
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codings concerning the 173 vowels (syllable nucleus) 
have been reported, with put side by side, in the left 
columns, the codings corresponding to the 3 registers, and 
in the right columns, the 4 registers ones with the new 
distribution of the same data. In a grey shade, the items 
with very few occurrences being in fact the tonetic 
variations of the other ones, can be easily discarded. They 
are many. 
 

 
Figure 4. Extract of the data bank showing that a same melodic 
segment may correspond to different syllables, and conversely. 

 
The words being monosyllabic, we can now support the 
theory that the syllable segmentation corresponds in fact 
to the word segmentation (eventhough the precise limits 
are still under discussion). In this case, some word tones 
seem to be good candidates: 
- simple forms 

- for the plateaux (P) 
- 3 registers: /Ph/, /Pm/, /Pb/, 
- or in the 4 registers version: /Pa/, /Ph/, /Pm/, /Pg/, 

- for the falling tones (M) 
- /Dhm/ both for 3 and 4 registers. A question 
remaining to explore is for instance for the 3 
registers, whether /Dhm/ could be merged with 
/Dmm/.   

- for the rising tones  
- /Mmh/ for 3 registers, 

- complex forms 
- /Dhm-Pm/ both for 3 and 4 registers, which lead 
to the conclusion that /Dhb-Pb/ could be a tonetic 
variation for /Dhm-Pm/ (3 registers) as /Dhm-Pm/ 
(4 registers) suggests it.  

For the complex forms, we have also to explore whether 
this opposition of forms /Dhm-Pm/ ~ /Dhm/could not be 
resolved as well by a simple opposition in duration (for 
instance /Dhm-Pm/ resulting in fact to /Dhm/ long tone as 
opposed to /Dhm/ short one). 
   

3 melodic registers 4 melodic registers 
Melodic segments Population Melodic segments Population 

Ph 30 Pa 21 
Pm 72 Ph 39 
Pb 17 Pm 50 
  Pg 9 
    

Dhh 1 Daa 1 
Dhm 5 Dah 2 
Dmm 4 Dam 1 

  Dhm 6 
    

Mhh 2 Maa 1 
Mmh 5 Mha 2 
Mmm 1 Mhh 4 
Mbm 2 Mmh 3 

    
Pb-CV-Pm 1 Pa-Dag 1 
Pb-Mbm 1 Ph-Maa 1 
Ph-Dhb 1 Pm-Mmm 1 
Pm-Mhh 1 Pg-CV-Pm 1 

    
Ph-Dhm-Pm 2 Pa-Dam-Pm 1 
Pm-Dmb-Pb 2 Ph-Dhm-Pm 1 
Pb-Mbm-Pm 1 Ph-Dmg-Pg 1 

  Ph-Dhg-Pg 1 
  Pg-Mgh-Ph 1 
    

Pb-Mbm-Dmb- 1 Pm-Mbh-Dhm- 1 
Pb-Mbh-Dhb- 1 Pm-Mma-Dam- 1 

Pm-Mmh-Dhm- 1 Pg-Mgh-Dhg- 1 
    

Dhb-Pb 7 Dah-Ph 1 
Dhm-Pm 7 Dag-Pg 3 
Dmm-Pm 3 Dam-Pm 2 
Dmb-Pb 3 Dhm-Pm 10 

  Dhg-Pg 2 
  Dmm-Pm 1 
  Dmg-Pg 1 
    

Mmh-Ph 2 Mma-Pa 1 
  Mmh-Ph 1 

Total 173  173 
Table 2. Population of the tonal segments according to 

the 3 (left columns) and 4 registers codings (right 
columns). 

 

Grounded on the argument of the tonetic variations due to 
the melodic context or the speaker, a deeper analysis of 
the other melodic items with a smaller population has to 
be undertaken, in order to minimise the number of the 
different forms. 
 

6. CONCLUSION 
 

This paper focussed on a first presentation of a language 
and a culture which have never been studied before. This 
study is very attractive and tempting because we work 
under exceptional circonstances: we attempt to discover 
the intonational / tonal system of a language without 
having no prior knowledge of it. Our experience of the 
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prosody and melody of various languages is our unic tool 
and safeguard. 
We undertook this study carefully, step after step. For 
more security we based our investigation on the syllable 
considered as a stable reference unit. If the Mo Piu 
language is plurisyllabic, the remaining task consists in 
joining the syllables as simple bricks of the word unit. But 
we don’t rely on this hypothesis because it is impossible 
that any language could supply successive words with 
several syllables, each of them being most of the time long 
duration plateaux. If conversely, this language is 
monosyllabic, as our arguments seem to prove it, the word 
segmentation is near to be effective (it just remains to 
clear out the right limits of the syllable).  
Based on this first experiment, the analysis of the melodic 
segments inclines us to establish that the Mo Piu language 
is tonal and monosyllabic.Moreover the first results show 
also clearly the repetition of a few tonal candidates, 
corresponding to  
- several levels of plateaux (low, middle and high, i.e. 3 

registers: /Ph/, /Pm/, /Pb/, or in the 4 
registers version, acute, high, middle and grave: /Pa/, 
/Ph/, /Pm/, /Pg/), 

- a F0 falling slope simple (/Dhm/) or more complex in 
two parts (/Dh-Pb/) if this opposition doesn’t finally 
stem on a simple opposition of duration,  

- and for the F0 rising slopes,  to the /Mmh/ one. 
 

Concerning the other candidates, less numerous, we have 
to study either they are simply tonetic variations to the 
other ones, due to the phonetic and melodic context, or 
due to the speaker, or true tones but naturally with less 
occurrences in this language. 
At this state of the study, it still remains to find out how 
many tonal oppositions are relevant for the Mo Piu 
tonologic system, and what are their definitive shapes.  
For the moment, it is important to pay attention to all the 
cues which can supply right information about human 
recognition, as it could provide interesting paths and 
unexpected milestones for the needs of the automatic 
processings. 
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ABSTRACT

This paper presents techniques for building speech synthesizers tar-
geted at limited data scenarios - limited data from a target speaker;
limited or no data in a target language. A resource sharing strategy
within speakers and languages is presented giving promising direc-
tions for under-resourced languages. Our results show the impor-
tance of the amount of training data, the selection of languages and
the mappings across languages in a multilingual setting. The ob-
jective evaluations conclusively prove that the presentedadaptation
techniques are well suited for building voices in resource-scarce con-
ditions.

Index Terms: Speech Synthesis, Adaptation, Voice conversion,
under-resourced languages.

1. INTRODUCTION

In today’s digital age, there is an increasing use and acceptance of
text-to-speech(TTS) technologies in the internet, mobilephones and
dialogue systems. Besides, the use of speech as an output modal-
ity also enables information access for low-literate and visually im-
paired users. There is a compelling case for the developmentof
speech synthesis technology in possibly all languages of the world.
However, most languages have little or no resources required for
building synthesis systems. Even for languages rich in speech and
language resources, there is a need for efficient strategiesfor user-
customization. Eliciting limited data (< 2 mins) from the subject
should sufficiently allow adaptation of an existing synthesizer to his
voice. In this paper, we address both these situations as resource-
scarce scenarios for bilding acceptable quality speech synthesizers.

While there is no definite notion of the minimum amount of re-
sources required for training, availability of at least onehour of clean
speech recordings is the norm for building high-quality functional
speech synthesizers. This is in addition to phonetic and linguistic
knowledge that requires annotated text resources in the language.
This can be expensive and non-trivial for most languages. Many
languages still have limited or no resources required to build text-to-
speech systems. This makes building synthesis systems challenging
using existing techniques. While, unit selection [10] continues to be
the underlying technique in most commercial systems, its require-
ment of a large amount of well recorded and labeled speech data to
ensure optimal unit coverage makes it prohibitive for under-resource
situations. Statistical parametric synthesis [16], on theother hand
is more liberal in its requirements, produces a more flexiblevoice
comparable in quality to unit selection synthesis. Hence itis ideal
for building voices in resource-scarce conditions.

Section 2 briefly describes our statistical parametric speech syn-
thesis framework. A description of the resources required for build-
ing parametric voices follows in Section 3 including strategies for
building voices under the resource-scarce conditions. Experiments
and results are presented in Section 5.

2. STATISTICAL PARAMETRIC SPEECH SYNTHESIS

We use Clustergen [6], a statistical parametric framework within the
Festvox [13] voice building suite. Fig. 1 shows a schematic rep-
resentation of the training and testing phases in Clustergen. In the
training phase, source and excitation parameters of the speech are
extracted. Text-normalization and letter-to-sound(LTS)rules are ap-
plied on the transcription. The speech and phonetic transcriptions
are automatically segmented using Hidden Markov Model (HMM)
labeling. The speech features are then clustered using available pho-
netic and linguistic knowledge at a phoneme state level. Trees for
duration, spectral (e.g. MFCC) and source (e.g. F0) features are
built during the training phase. During testing (i.e. Text-to-Speech)
input text is processed to form phonetic strings. These strings, along
with the trained models are used to generate the feature parameters
which are vocoded into a speech waveform by a synthesis filter(e.g.
MLSA for MFCCs).

Fig. 1. Schematic diagram of the Clustergen framework

In this framework, models are stored as Classification And Re-
gression Trees (CART) of the phone state. Each phone is realized as
a left-to-right Markov chain of three states (roughly corresponding
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to the initial, middle and final states of a phone). The intermediate
nodes of the tree are questions about phonetic and other highlevels
of contextual information (e.g., parts of speech). At the leaf nodes of
the tree are the Gaussian codebooks corresponding to the feature in-
stances falling in that path of the tree. The parametric representation
(multi-dimensional Gaussians, in this case) makes transformations
feasible via simple matrix algebraic operations. This flexibility of
parametric models makes them well suited for adaptations required
in under-resource conditions. Although this framework is similar to
HTS [1], Clustergen generates the utterance frame by frame,rather
than by state, allowing more detailed modeling.

3. BOOSTING RESOURCES FOR VOICE BUILDING

In this section, the resources required for building a voiceare de-
scribed, The specific alternatives for dealing with each kind of re-
source scarcity—that of limited target speaker data and target lan-
guage data are presented in subsections 3.1 and 3.2 respectively.
According to [11], the issues that need to be addressed whilebuild-
ing a voice for a new language are 1) Definition of a phoneme set,
2) Creation of a lexicon and/or Letter-to-Sound(LTS) rules, 3) Text
analysis, 4) Building prosodic models and 5) Building a waveform
synthesizer.

For languages that have an IPA, SAMPA or a phoneset defined
on another standard, they may be adequate to produce synthesizers
of acceptable quality. However, for languages that have no estab-
lished phonesets, it takes a few expert hours to design one based on
the acoustic phonetic information of the phonemes in the language.
For languages that are fairly phonetic (high grapheme-to-phoneme
correspondence), grapheme-based phonesets have been shown to be
adequate[17]. It should be noted that there is a certain arbitrariness in
the allophonic variations within a language or even among speakers
and there is no one best phoneset, optimal for all voices. Similarly,
construction of a lexicon and LTS rules is non-trivial and the effort
varies across languages, but a rule-based or a data-driven,statistical
model for LTS has become commonplace for synthesizers in most
languages [18]. In the following sections, the issues with limited
amount of speech data are presented.

3.1. Limited data from a target speaker

As mentioned earlier, building a voice for a speaker requires a good
amount clean recorded speech. It is thus desirable to have techniques
that can work with just a few minutes of speech and produce good
quality output. Recalling from Section 2, building a voice implies
constructing decision trees for duration, source and spectral features.
When the data is limited, phone coverage and contextual converge
are both insufficient. This hurts any automatic technique tolabel the
data. Even the estimated parameters (Gaussian means and variances)
tend to be unreliable.

To compensate for this, data from one or more speakers may be
used to build the ‘source model’ upon which the adaptation tech-
nique can impose the target speaker’s identity.

This problem is studied extensively as ‘model adaptation’ pro-
posed for speech recognition, starting with the work of [19], later
also successfully applied for speech synthesis [20]. The selection
of the source speakers on which to adapt may also be improved.
Techniques involving speaker clustering and cohort selection have
previously shown significant gains. There is also related work in
voice transformation and feature space transforms [4] thatdeal with
limited target speaker data.

3.2. Limited data in a target language

Lack of sufficient speech data for building speech systems isa com-
mon problem for most minority languages of the world. The Glob-
alPhone [8] project addresses this problem for speech recognition
by exploiting existing resources in several languages to create a new
language synthesizer. Similar attempts in speech synthesis [2] [14]
also succeeded in creating a new language synthesizer sharing re-
sources from several languages. This process is briefly described in
the next section.

3.2.1. Multilingual Speech Synthesis

The ‘source’ voice in case of a target language adaptation isa mul-
tilingual voice. The training data for such a voice is speechincluded
from several languages and the processed transcriptions inthe re-
spective languages. Since the phonetic properties (and labels) of
the languages could be different, a global phoneset is created for
the multilingual voice which assigns the same phonetic category to
phonemes of different languages with the same acoustic phonetic
properties. This strategy optimally shares the speech dataacross lan-
guages wherever appropriate. This also helps ‘boost’ the phonetic
coverage of each language. However, this process requires carefully
developed phone mappings between languages. The voice is built in
a similar way as a monolingual voice after the mapping.

For the target language, the phoneset is mapped to that of the
global set of the multilingual voice. The adaptation follows the same
strategy as in a monolingual case transforming only the phonemes
appropriate to the data presented for the target language. As shown
in our results, the choice of the languages included in the training,
and the amount of data in each language also affects the quality of
the voice in a target language.

4. EVALUATION OF VOICES

We use Mel-Cepstral Distortion (MCD), a spectral distance measure
proposed for evaluating voice conversion performance. It is given by
the equation

MCD = 10/ln10
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are the target and the estimated spectral
vectors respectively. MCD is known to correlate well with the qual-
ity of a voice [12]. The significance of MCD is quantitativelyshown
as a function of the training data size. A reduction of0.12 MCD is
shown as being equivalent to doubling the amount of trainingdata
used for building the voice. This is shown to be consistent across
speakers and languages. The MCD measure is hence relevant both
in the limited target speaker and limited new language data in this
work.

5. EXPERIMENTS AND RESULTS

In this section, we report our observations of the adaptation tech-
niques in each limited data situation. In all experiments, 50 dimen-
sional Mel-Frequency Cepstral Coefficients (static + deltafeatures)
are used as the spectral representation. The features are clustered us-
ing phonetic and contextual questions. For growing the CARTtrees
thresholded with a stop value of 50 instances at the leaf node. All
adaptations are done only on the spectral features. A simplez-score
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mapping is done for the fundamental frequency to adjust to the dy-
namic range of the target speaker.

5.1. Limited target speaker data

To evaluate the limited target speaker data scenario, we usevarying
amounts of adaptation data of an American male speaker takenfrom
the arctic database [7]. As the source model, we use 41 American
English speakers of the Wall Street Journal speech corpus [15]. An
‘average’ voice is built from 3 hours of speech data sampled evenly
across 41 speakers. It is shown that such an average voice is closer
to an arbitrary new speaker since it has the average characteristics of
all training speakers, and tends to be speaker independent.

We report two experiments of voice adaptation, one model
based, MLLR adaptation [19] and the other feature based using Joint
density GMM-based estimation (GMM-JDE) [3]. Since the target
data is limited, adaptation is done only on the Gaussian means and
the original variances are retained.

Figure 2 shows the MCD of the estimated speech with respect to
the reference data as a function of the amount of data used foradapta-
tion. It can be seen that even with 20 utterances there is a significant
improvement in the voice and it is closer to the target speaker. The
two techniques begin almost giving same improvements, and begin
to converge with increasing adaptation data. The GMM-JDE tech-
nique converges more quickly. MLLR outperforms the GMM-JDE
technique when more adaptation data is presented. This shows that
of the two techniques, MLLR exploits data more effectively for this
task.
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Fig. 2. Performance with increasing size of adaptation data from
target speaker

5.2. Limited new language data

For simulating a limited new language data condition, a subset of the
Globalphone database is selected. This subset consisted of10 female
speakers, one from each of Chinese (ZH), English (EN), German
(DE), Japanese (JP), Croatian (KR), Portuguese (PT), Russian (RU),
Spanish (ES), Swedish (SW) and Turkish (TR). Of these, German is
set aside as a test target language. The remaining 9 languages are
included in different amounts to also study the effect of data size in
a multilingual setting. 10% of the sentences are set aside astesting
data for each language.

Figure 3 presents the MCDs of the individual languages using
the same multilingual voice. The x-axis is the amount of training
data contributed by each language. The near-linear patternof (es,
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Fig. 3. MCDs of individual languages using a multilingual voice.
Note: en/zh have the same amount of training data and the same
MCD score.

pt, sw ru, en and zh) suggests that MCD (hence, voice quality)is
proportional to the training data size, and this holds even in the mul-
tilingual setting. The good performance of Turkish and Japanese
irrespective of the amount of training data may be explainedby their
simple phonetic structures.

For testing the new languages, we choose German (DE) and Tel-
ugu (TE) languages. The phonemes of these languages are mapped
to their closest alternative from any of the nine different languages
included as training. The overlap in the acoustic phonetic feature
values of these phonemes are used to determine the closenessbe-
tween phonemes (currently no weight is given to different acoustic
phonetic features). The multilingual voice is incrementally adapted
with data from the target language. Figure 4 shows the performance
of the adaptation as MCD gains as a function of increasing amount of
adaptation data. It can be seen that the German voice has a relatively
lower MCD than the Telugu voice even without any adaptation.This
may be explained by the fact that Telugu belongs to the Dravidian
language family which is not represented in the training languages,
while European languages are well represented. Informal listening
tests also show that while the voices are understandable, they have
new accents caused by the training languages.
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6. LANGUAGE SELECTION EXPERIMENTS

In this section, we report our experiments with changing thesubset
of languages included in training the multilingual voice. From, the
initial subset of 9 languages chosen for training in the previous sec-
tion, two subsets are created one including all but English and the
other consisting of all but Chinese language. The choice of these
languages is for two reasons: 1) They are phonetically quitedistinct
and 2) They contribute the same number of training sentences(as
can be seen in the overlayed en/zh tags in the Fig. 3)
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From 6, as we expected the removal of English, a language pho-
netically similar to German, gives worse results, while theremoval
of Chinese, does not make much difference to the quality of German
voice.
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For the same experiment for creation of the Telugu voice, we
find the removal of English does not make much difference, which
we believe is due to the fact that Telugu and English are phonetically
not very close. The unexpected result though is that the removal of
Chinese improves the results. This shows that language selection
is clearly important. One hypothesis for this result is the fact that
Telugu has a larger number of stop distinctions than English(e.g.
aspirated and unaspirated) such allophones do appear in English but

are not phonetic. The initial models have these distinctions con-
flated, but become distinct with more adaptation data. However in
Chinese, aspirated and unaspirated allophones do not occurwithin
stops, hence the training data actually biases the initial phone mod-
els more and requires more training data to contract.

7. CONCLUSIONS

This work proposes adaptation techniques for under-resourced lan-
guages that clearly give promising results. The selection of initial
models, although can be done by simple acoustic phonetic feature
matching, our results show that more subtle selection of initial pho-
netic models and the languages that contribute to them may give even
better results. We have yet to discover an efficient automatic method
to improve these existing techniques.

The second important result is that the resulting synthesisquality
seems to be linearly related to amount of training data, evenacross
several languages.
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ABSTRACT 

 

In this paper, our recent progress in developing and 

evaluating Malay Large Vocabulary Continuous Speech 

Recognizer (LVCSR) with considerations of linguistic 

information is discussed. The best baseline system has a 

WER of 15.8%. In order to propose methods to improve the 

accuracies further, additional experiments have been 

performed using linguistic information such as part-of-

speech and stem. We have also tested our system by 

creating a language model using a small amount of texts 

and suggested that linguistic knowledge can be used to 

improve the accuracy of Malay automatic speech 

recognition system. 

 

Index Terms— Speech Recognition, Agglutinative 

Language, Language Modeling, Part-Of-Speech, Stem 

 

1. INTRODUCTION 

 

Malay is spoken by more than 200 million people in 

Southeast Asia. It is an agglutinative language which allows 

base words to be combined with affixes to form new words 

[1]. This may change the meaning and part-of-speech of the 

base word. For example, “guna” (verb) can be combined 

with “peng” (prefix) to become “pengguna” (noun), 

meaning user. There are many studies on how affixation can 

be taken advantage of in an agglutinative language; one of 

it is class-based language model [2]. By using class-based 

language model, each part-of-speech (POS) is modeled as a 

distinct class and words are linked to their respectively POS 

to avoid data sparseness problem. 

 

Some studies have suggested using morpheme-based units 

for modeling agglutinative language to avoid the need to 

have large dictionaries [3]. In these systems, affixes and 

based words are treated as morphemes to be re-combined 

later, like hidden-event language models. Other possibility 

is to model agglutinative language using factored language 

model with language features such as part-of-speech and 

stem information [4].  

 

Using part-of-speech information in factored language 

model has been found to reduce word error rates (WER) of 

the agglutinative LVCSR system. There were also other 

findings that linguistic information does not necessarily 

improve the system. For instance, the stem information has 

been found to increase the WER in Estonian LVCSR [3]. In 

most cases, agglutinative characteristics can be useful in 

language modeling as it can provide an additional feature 

that can be used to classify different lexicon entries. For 

example, by knowing that “pengguna” consists of base 

word “guna” and prefix “peng”, its maximum likelihood 

probability can be interpolated to those probabilities of 

these sub-words [5]. 

 

This paper discusses our recent work in Malay LVCSR, 

particularly on Malay language modeling using 

agglutinative information. Section 2 discusses about Malay 

phonemes and agglutinative information. Section 3 

describes about factored language models using 

agglutinative information. Section 4 and Section 5 

elaborates on our testing results. Section 6, 7 and 8 includes 

the discussion, conclusion and future work, respectively. 
 

2. MALAY PHONEMES AND AGGLUTINATIVE 

INFORMATION 

 

In Malay language, a word can be formed by attaching base 

words with prefix, suffix, infix, circumfix, proclitic, enclitic 

and particle [5]. A prefix is located in front of base words, 

while a suffix is appended at the end of the base words. A 

compulsory prefix and suffix forms the circumfix. On the 

other hand, an infix is located within the base word. 

Enclitics functions as objective pronounce while proclitic 

functions as subjective pronounce. Particles are used to 

express various emotions. Only one clitic and one particle 

are allowed to attach to the base word. 

 

There are 34 phonemes in Malay: 24 original phonemes and 

10 borrowed phonemes [6]. From these 34 Malay 

phonemes, there are 25 consonants, 6 vowels and 3 
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diphthongs. We are able to use the n-gram language model 

because Malay sentence structures are fixed, which means 

that the language users may not switch the positions of 

words like what is allowed in some other languages like 

Arab, which requires extra independent word location 

modeling. [7]  

 

 

3. FACTORED LANGUAGE MODEL USING 

MALAY LINGUISTIC APPROACH 

 

Factored Language Model (FLM) [4] is a flexible 

framework which allows various types of language 

information to be incorporated. In FLM, the system utilizes 

different back-off paths to calculate the back-off 

coefficients. To specify these back-off paths, FLM use a 

Factored file. A Factored file (a control file for factored 

language model) is used to describe the specifications of 

language model that consists of various types of linguistic 

information.  

 

In our Malay LVCSR system, we use word, stem and POS 

information. Word information will be removed from the 

back-off chains first before POS and stem information.  

Since the probability estimation for having a word in a 

sentence is more affected by the word’s nearest history 

word, thus the near history word should be retained in the 

back-off chained. Cutoff point is set to 1 by default. To 

represent this information in training transcription, the 

following format is used: 

 

W-pengguna:S-peng:P-noun 

 

Where W denotes word, S denotes stem and P denotes part-

of-speech. All words in the sentences were converted to the 

above format before they are trained using Factored 

Language Modeling. 

 

 

4. EXPERIMENTS 

 

In our LVCSR system, we have 34 different phone-like 

units and 9 non-speech units (including SIL and various 

other noises, like CLICK and etc). We used Sphinx ASR 

from CMU [8] to carry out the test. For training the 

acoustic model, 67 hours of Malay continuous read speech 

was used [10]. SRILM toolkit [9] and CMU-CAM 

Language Modeling toolkit were used for language 

modeling. We evaluated Malay language modeling using 

different amount of text corpus. The text corpus was 

collected from various newspapers over several years [10]. 

The moderate size text consists of 20.5 thousand sentences 

while the large training text corpus consists of more than 

3.5 million sentences with about 71 million words, while 

testing text corpus contains more than 8 thousand sentences. 

The training text corpora do not contain any entries from 

testing text corpus. The vocabulary size is about 32 

thousand words. 

 

In Section 4.1, we look at the effect of different n-gram 

order to the language perplexity. Next, different smoothing 

methods will be used to evaluate language model perplexity 

in Section 4.2. In Section 4.3, the language model with 

lower perplexity will be selected for testing using Malay 

automatic speech recognition system in different 

configurations. 

 

4.1. Language Modeling with Different N-Gram Order 

 

In this section, we set up the experiments to train the 

language models using the moderate corpus described 

above to avoid computational power and memory 

constraints for higher order of n-grams. The language 

model was trained using SRILM toolkit with Good-Turing 

smoothing method. The orders of n-grams ranged from 1-9 

were tested. Table 1 shows the perplexity and entropy of 

the language models.  

 

Table 1: Perplexity and Entropy vs. N  

 

N-Gram Order Perplexity Entropy 

1 1723.6 10.75 

2 498.21 8.96 

3 417.09 8.7 

4 426.41 8.74 

5 437.72 8.77 

6 443.03 8.79 

7 445.47 8.8 

8 446.5 8.8 

9 447.3 8.81 

 

The results shows that both perplexity and entropy are near 

to optimal when n=3.  

 

4.2. Language Modeling with Common Smoothing 

Methods 

 

In this experiment, we utilized CMU-CAM toolkit to train 

and evaluate Malay language models (trigram) using four 

common types of smoothing methods. These methods are 

common in the literature, like Absolute, Good-Turing, 

Linear and Witten-Bell methods [11]. We tested the 

approaches using the language models (trigram) created 

from moderate size text corpus and large size text corpus. 

The purpose of these experiments is to find out the best 

language model to be used for our Malay LVCSR system. 

Different smoothing methods can work well in different 

configurations.  
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Table 2: Perplexities vs. Smoothing Methods 

(Moderate Size Corpus) 
 

Smoothing Method Perplexity 

Absolute 457.388 

Good-Turing 448.609 

Linear 478.024 

Witten-Bell 451.077 

 

Table 2 shows that Good-Turing outperforms other 

smoothing methods slightly in term of perplexity with 

moderate amount of texts. We further evaluated the 

smoothing algorithms using large amount of texts and the 

results are shown in Table 3 and Table 4. Language models 

with different n-gram orders from 1-gram to 4-gram were 

trained using Good-Turing, Witten-Bell and Linear 

smoothing algorithms. Table 3 shows that tri-gram with 

Witten-Bell smoothing method has the lowest perplexity 

compared to other number of grams and smoothing 

methods.  

 

Table 3: Perplexities of Large Language Models 

 

LM 

Order 

Good-

Turing 

Witten-Bell Linear 

1 2549.02 2549.02 2549.02 

2 385.48 378.44 374.38 

3 93.56 73.42 74.36 

4 39.09 19.33 22.97 

 

Table 4: Entropies of Large Language Models 

 

 

 

We are aware of some newest smoothing methods like 

Kneser-Ney and Modified Kneser-Ney methods, which are 

reported to perform better.  

 

4.3 Incorporating Statistical LM into Malay LVCSR 

Baseline System 

 

We discussed about training language models in Section 4.1 

and Section 4.2. The purpose of these experiments is to find 

out the smoothing method that can best model Malay. In 

this section, we will incorporate these language models into 

our Malay LVCSR. We trained our acoustic models using 

two third of available 67 hours of speech sound corpus 

while the rest were used for testing purpose [10]. Different 

set of speakers were used for training and testing 

transcriptions.  

 

The first experiment used was carried out using language 

model created with the moderate size language model, 

while the second experiment was using language model 

created with large text corpus.  

 

Table 5: Malay LVCSR WER using various Language 

Models 

 

Type of Language Model Word Error Rate 

Moderate Size Training Corpus 20.3 

Large Size Training Corpus 15.8 

 

Witten-Bell smoothing method was used for comparison 

purpose. We observed that large training corpus 

outperformed moderate training corpus by reducing 

LVCSR WER from 20.3% to 15.8% (4.5% reduction). 

 

 

5. LINGUISTIC FEATURES EVALUATION 

 

In this section, we include part-of speech and stem 

information to evaluate language models built using Malay 

speech corpus. We used an internal POS tagger and an 

internal Malay Stem Extractor to parse and tag all Malay 

training and testing transcriptions. The POS tagger is part 

of S-SSTC project [12]. 

 

The POS tagger is a stochastic-based tagger based on Q-tag 

while the stem extractor is a JAVA program written with 

2554 base-words and a rich set of linguistic segmentation 

rules. 

 

For preliminary test, we have extracted the linguistic 

information from about 10106 training sentences and 1072 

testing sentences. For each word in a sentence, the POS and 

stem information is attached. 

         

5.1 Factored Language Models (FLM) 

 

In our Malay language modeling, we utilized word, stem 

and POS information. The testing text corpus contains 8245 

sentences with 2773040 words. The text corpora are tagged 

with stem extractor and POS tagger. 

 

The experiments are designed in two-folds. First we plan to 

find out language modeling top limit in text prediction. 

Secondly, we want to know whether we could reduce the 

amount of text corpus used for training without sacrificing 

the WER of ASR. This is because we do not necessary have 

a large text corpus all the time, especially for under 

resourced languages. The results for bigram using FLM are 

shown in Table 6. In Table 6, W(-1) denotes the immediate 

LM 

Order 

Good-

Turing 

Witten-Bell Linear 

1 11.32 11.32 11.32 

2 8.59 8.56 8.55 

3 6.55 6.20 6.22 

4 5.29 4.27 4.52 
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previous word, S(-1) denotes the stem of the immediate 

previous word while P(-1) denotes the part-of-speech of the 

immediate previous word. For notation purpose, we used W 

to denote word, S to denote stem and P to denote part of 

speech. The number in the bracket denotes n-th previous 

word. W(-1) indicates the word before, and W(-2) denotes 

the word before the previous word. 

 

Table 6: Perplexities with Linguistic Information 

 

Configuration in FLM  Perplexity  

W(-1) S(-1) P(-1)  1031.7  

W(-1) S(-1)  1301.12  

W(-1) P(-1)  447.582  

 

The back-off will be performed from the rightmost 

information to the leftmost information. E.g. for “W(-1),S(-

1)” type of FLM, S(-1) will be eliminated first. We used 

Good-Turing smoothing algorithm with cut-off point of 1 

and interpolation at all back-off levels.  

 
With these configurations (Table 6), we can see that third 

configuration using word and POS information in factored 

language modeling outperformed first and second 

configurations. The second configuration, on the other 

hand, also verified that paper [3]’s observation about the 

incapability of stem information to reduce WER. Besides 

evaluating the effects of linguistic information on 

perplexities, we also evaluated different FLM 

configurations using stem information.  

 

Table 7: Perplexities with Different FLM Configurations 

Factored Language File Perplexity Perplexity 

excluding 

end-of-

sentence 

tokens 

bigram.flm (Use W-1 only) 705.466 1139.49 

bigram1.flm (Use W-1 and 

S-1, then backoff to W-1) 

731.614 1186.67 

bigram2.flm (Use W-1 and 

S-1, then backoff to S-1) 

762.414 1240.38 

bigram3.flm (Use W-1,S-

1,S0, then backoff to W-1, S-1 

finally backoff to S-1) 

524.083 829.517 

bigram4.flm (Use W-1, S-1, 

S0, then backoff to W-1, S-1, 

finally backoff to W-1) 

499.333 787.544 

bigram5.flm (Use S-1, S0, 

then backoff to S-1) 

275.737 416.359 

bigram6.flm (Use W-1, S-1, 1231.09 2074.51 

then backoff to S-1) 

trigram.flm (Use W-1, W-2, 

then backoff to W-1) 

685.124 1104.27 

trigram1.flm (Use W-1, W-2, 

S-1, then backoff to W-1, W-

2, finally backoff to W-1) 

722.47 1170.76 

trigram2.flm (Use W-1, W-2, 

S-1, then backoff to W-1, S-1, 

finally backoff to W-1) 

875.898 1439.58 

trigram3.flm (Use W-1,W-2, 

S-1,S-2, then backoff to W-1, 

S-1, S-2, next backoff to S-1, 

S-2, finally backoff to S-1) 

1236.85 2084.92 

trigram4.flm (Use W-1,W-2, 

S-1, S-2, then backoff to W-1, 

W-2, S-1, next backoff to W-

1, W-2, finally backoff to   

W-1) 

836.143 1369.57 

trigram5.flm (Use W-1,W-2, 

S-1, S0, then backoff to W-1, 

W-2, S-1, next backoff to W-

1, W-2, finally backoff to   

W-1) 

726.307 1177.44 

trigram6.flm (Use W-1,W-2, 

S0, then backoff to W-1, W-2, 

finally backoff to W-1) 

625.477 1002.93 

trigram7.flm (Use S0, S-1, S-

2, then backoff to S-1, S-2, 

finally backoff to S-2) 

488.727 769.603 

trigram8.flm (Use S0, S-1, S-

2, S-3, then backoff to S-1, S-

2, S-3, next backoff to S-2, S-

3, finally backoff to S-3) 

885.772 1457.01 

 

For explanation on how to understand the factored file, the 

reader may refer to [4]. The best FLM specifications are in 

the first column of Table 7. In this experiment, we used 80k 

sentences of training transcriptions and 8k of sentences of 

testing transcriptions. 

 
The results are affected by data sparseness problem. We 

can observe that “S0,S1,W1” can perform better than 

“S0,S1,S2,W1,W2”. The reason for above observation is 

that FLM increases data sparseness problem in language 

modeling as there are more varieties of identical word 

forms. On the other hand, large text corpus may not be 

feasible to some under-resourced languages. Moreover, 

processing time and availability of language expert are also 

the concerns. This has increased the requirement for robust 

parameter estimation. 

 

The factored language models were evaluated based on 

above text corpus and their perplexities are lowest when 

only stems were used. It is due to data sparsity problem 
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occurred for large lexicon. The lowest perplexity that has 

been obtained is 275.737 using stem solely and bi-gram. 

We observed that using stem information alone with small  

text corpus could have the lowest perplexities. From the 

test, the language model that gives the best result use the 

following equation: 

),( 1−ttt sswP  

 

It does not necessary conclude that POS works better in 

huge corpus, but in a large text corpus, most of the 

linguistic information (like POS and stem) has already been 

embedded in the word sequence. The stem information will 

add on to the data sparsity problem as more unique lexical 

items are available. The reason is for the same size of 

corpus of Malay language, the identical number of POS is 

less than stems. 

 
5.2 Different Corpus Sizes Using Linguistic Information 

for Malay 

 

In this section, we want to examine the effect of corpus size 

using stem information. We designed the experiments so 

that the number of sentences was varied from 1000 to 

900000. In fact, our text corpus consists of about 3.5 

million sentences, but when using more sentences, more 

times are needed. This is especially true for mobile devices 

which have limited processing power during decoding 

stage. The result is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First configuration is a trigram using word and POS 

information only while second configuration is a trigram 

using word, POS and stem information. We can see that 

with a limited text corpus, stem information always give 

better perplexities, which is in contrast with those reported 

for Estonian language. [3] For all corpus size, perplexities 

with stem information outperformed perplexities without 

stem information.  

 

 

6. DISCUSSIONS 

 

In these experiments, language model built from large 

corpus using Witten-Bell smoothing algorithm has been 

found to have the lowest perplexity in Malay ASR. On the 

other hand, although we found that word and POS 

information only is adequate enough in Table 6, stem 

information has shown that it can lower the perplexity in 

Table 7. 

 

Error analysis was carried out using SCLITE. Most errors 

are caused by similar pronunciations between words and 

word phases. The observations implied that language 

modeling can play a very important role whenever there are 

acoustic ambiguities. This has encouraged our researchers 

to move towards this direction. 
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Figure 1: Perplexities vs Corpus Sizes using Linguistic Information 
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7. CONCLUSION 

 
In conclusion, the development of Malay Large Vocabulary 

Speech Recognition System has been presented. Various 

experiments on Malay Language Modeling have been 

performed and 3-gram with Witten-Bell smoothing is found 

to be the best configuration. We also concluded that 

linguistic information like POS and stem can aid in 

reducing WER/perplexity in resource limited environments.  

 

 
8. FUTURE WORK 

 

Our proposal is to develop the 2-pass decoder which 

utilizing the benefits of morphology information. Some 

literature has shown that agglutinative language tends to 

create compound words that can be rectified by hidden 

event language model. Moreover, building n-gram for 

multi-words and morpheme-like units can further reduce 

WER for Malay LVCSR system.  

 

In Malay language, we can extract some information like 

part-of-speech, stem, plural or singular, present-past-future 

tenses. [1] The combination of the information will be used 

to improve our speech recognition system. For derived 

word detection, we can improve the correction reliability by 

using statistical language modeling techniques, like bigram. 
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Abstract
This paper describes the development of a speech-to-text
transcription system for the Finnish language. Finnish is a
Finno-Ugric language spoken by about 6 million of people
living in Finland, but also by some minorities in Sweden,
Norway, Russia and Estonia. System development was car-
ried out without any detailed manual transcriptions, relying
instead on several sources of audio and textual data were
found on the web. Some of the audio sources were asso-
ciated with approximate (and usually partial) texts, which
were used to provide estimates of system performance.

1 Introduction
Traditionally speech-to-text transcription (STT) systems are
trained on large amounts of carefully transcribed speech data
and huge quantities of written texts. However obtaining the
needed transcribed audio data remains quite costly and re-
quires substantial supervision. Several research directions
have addressed reducing these costs [6] and much of the re-
cent audio training data, as in the DARPA Gale program are
associated with quick transcriptions (QTR) [7]. For certain
audio sources, it is possible to find associated texts, rang-
ing from quite accurate, but usually incomplete, transcrip-
tions, to closed captions, summaries or other less closely re-
lated texts. A variety of approaches have been investigated
most relying on supervision from a language model. The
approaches differ in their details: use or not of confidence
factors [8] or [9], [10], doubling vs iterative training [11]
and the amount of data used.

In this study, system development is also lightly super-
vised, in that no detailed annotations are available for the
development and test data. Initially approximate reference
transcriptions were used to assess both acoustic and lan-
guage models during system development. Only afterward
∗This work was supported in part by OSEO under the Quaero program

and by the European Commission under the VITAL project.

were the transcripts manually corrected in order to have a
better estimate of the true performance.

The next section gives an overview of the characteristics
of the Finnish language, followed by a description of the
approach and corpus used in this study. This is followed by
a description of the language models, phone set and acoustic
models, after which experimental results are provided.

2 Finnish Language

Part of Uralic languages, Finnish is a Finno-Ugric language
spoken by about 6 million of people living in Finland, but
also by some minorities in Sweden, Norway, Russia and Es-
tonia.

Finnish shares a basic vocabulary with the other Uralic
languages and has various derivational suffixes. It has reg-
ular letter-to-sound correspondences, which simplifies the
problem of pronunciation modeling. While Finnish has a
smaller core vocabulary than English, it allows creation of
new words by extensive use of agglutination, resulting in a
very large lexical variety.

Most of the reported speech-to-text transcription results
for the Finnish language are substantially worse than results
reported for more resourced languages such as English or
French. A first explanation could be that the extensive use
of agglutination in Finnish which has impact on the lan-
guage modeling difficulties. In [1] it is highlighted that us-
ing a 20K word vocabulary in English gives a lower OOV
rate than a 500000-word vocabulary in Finnish. For exam-
ple 40-million-word English corpus contains about 190000
distinct words, while the corresponding Finnish corpus con-
tains about 1.9 million unique words. A proposed solution
to this problem is the decomposition of words into morphs
as shows in [2, 3].

But another explanation of this poor results is the lack of
suitable speech and text training data resources. If in 2002,
about 72% of the websites were in English although that

1
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was the language of only a third of the Web users, in 2003
Finnish is found to be used in 1% of a random selection of
web pages [4].

The results are less dramatic when one looks at the lan-
guages used by people to communicate with each other via
the Web: they then prefer to use their mother tongue. More-
over, the recent rise of the blog, reflecting a desire to reach a
smaller audience closer to the writer, could allow an increase
in the range of languages used on the Internet, in particular
French [5].

3 Approach and Corpus

The general approach taken in the work is similar to that
of [11, 12, 13] in that a speech recognizer is used to pro-
vide “approximate” transcripts for acoustic model training.
The audio data is transcribed in batches, and in successive
iterations the models are trained on more data. In [14] an
analysis of training behavior is compared for supervised and
unsupervised approaches.

In contrast to previous studies where audio and text data
were available for model training, the first challenge in this
study was locating audio and text data in Finnish. Three
types of audio data were found. The first data are from a
website which we refer to as BN Learning website, diffus-
ing news audio data with close transcriptions targeting an
audience of non-native speakers of Finnish. The data on this
site use a simplified language so as to be accessible to for-
eigners. A total of 31 hours of audio with corresponding
approximate transcriptions (102k words) have been down-
loaded since November 2007. A second data set contain-
ing 19 hours of audio with approximate transcriptions was
downloaded from the Finnish News Agency. These audio
correspond to short newswires diffused hourly for native
Finnish speakers. The transcripts cover only part of the au-
dio and are not aligned.

Since the initial word error rate estimates were quite
low on these data compared to previously published re-
sults for Finnish, it was decided to extend the range of data
sources and types (general news, special reports, interactive
shows).1 A total of 190 hours of varied broadcast data were
collected from a variety of Finnish sources. The audio data
used in this study are summarized in Table 3. In addition to
the audio data and (when available) associated transcripts,
30M words from text materials were collected.

Initial acoustic and language models were built using just
the BN learning corpus. Then the FNA data were added,
and finally some of the more general data. In order to pro-

1These sources were found by a native Finnish speaker who also, after
we had developed a system with lightly supervised references, corrected
the transcripts of the BN Learning and FNA news data.

Texts
Transcription

Newspapers
BNL FNA

Train 78K 193K 30M

Dev 24K 48K

Table 1: Text corpora used for language modeling.

vide supervision in acoustic model training, the language
models used in the early decoding stages of the audio data
were heavily biased, being trained on texts from the same
epoch of the BNL transcripts. The language models used
for test purposes were initially also only trained on the BNL
data, but quickly additional texts were included. It should
be noted that both AM and LM development were ongoing,
as the text normalization was progressively improved.

4 Language models

Texts from over 20 different sources, mainly newspapers,
formed the language model training corpus. As can be seen
in Table 1 approximate transcriptions of audio data repre-
sent less than 1% of the text corpus. Concerning the tran-
scriptions, it should be noted that the BN learning texts
uses a substantially simplified language compared to stan-
dard Finnish broadcast news.

In Finland, newspaper articles are written in Finnish or
in Swedish, both being official languages. Also sometimes
small citations or entire articles can be found in English,
Russian, Estonian or other languages in texts downloaded
from Internet. Since the language is not always clearly in-
dicated in the texts, text based language identification using
the program TextCat [15] was run on each processed para-
graph and only Finnish paragraphs were retained.

As is standard practice, the texts were split into sentences
and the main punctuation was removed. During normaliza-
tion all words were converted to lowercase, and words with
a dash or a colon were separated, keeping the dash and colon
as words. Numbers were transformed to a full, spoken form.
This is quite complicated for the Finnish language which
has 15 declensions cases and all parts of numbers should be
declined. Some cases are constructed by adding suffixes,
such as ’s’ in ordinals, after each component number. Given
the complexity of expanding numbers into words for differ-
ent cases, and our lack of knowledge about the Finnish lan-
guage, it was decided to first only use the nominative case.
After processing, the texts contained a total number of about
30M words, with a vocabulary size of about 1.4M words.

Finnish is an agglutinative language, using suffixes to ex-
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press grammatical relations and also to derive new words,
so the vocabulary expands rapidly. There is no grammati-
cal gender for nouns however all 15 cases are even even for
proper names. This makes the loan words difficult to treat
since each word could appear in each of these 15 cases. For
example, the following forms were found in the texts:

Bush Bushia Bushien Bushiin Bushilla Bushille
Bushilta Bushin Bushissa Bushista Bushit Bushkin

Obama Obamaa Obamaan Obamalla Obamalle
Obamalta Obaman Obamassa Obamasta Obamat

A list of words was selected by interpolation of unigram
models trained the normalized texts from different newspa-
pers and the approximate transcripts associated with the au-
dio data. The Morfessor [16] decompounding algorithm is
applied to this list to determine possible word decomposi-
tions. For example, for the word elinaikakerroin (survival
factor) Morfessor proposes elin + aika + kerroin, which is
mapped to elin aika kerroin in order to keep track that
the lexical entries result from a decomposition. In order to
avoid creating too many small, easily confusable lexical en-
tries, a minimum of 3 characters per unit was imposed. All
of the texts are decomposed using the selected decompo-
sitions proposed by Morfessor. Since the resulting lexical
entries differentiate words from the decomposed forms, the
language models decide the appropriate form and the forms
in the hypotheses can simply be glued back together. The
total number of tokens in the text corpus is increased as a re-
sult of word decomposition, but the number of distinct word
forms is divided by two.

As mentioned in Section 3 biased n-gram language mod-
els were constructed to decode the audio by training on only
the associated approximate transcriptions collected from the
same period (usually 1 month) in order to provide strong,
but flexible supervision. These initial LMs were based on
full word lexical entries (no decomposition) and were used
only for the first acoustic models.

For the second iteration, language models trained on all
the transcripts from the same year and type as the audio
data were constructed in order to have a more general LM.
The LMs were interpolated with a general language model
trained on the entire text corpus, with each component LM
having an equal mixture weight.

Different language models were used in speech recogni-
tion experiments. For most of the experiments, the language
models use a 300k word list optimized on the BNL+FNA
dev data. The n-gram language models were obtained by in-
terpolation of backoff n-gram language models trained on
separate subsets of the available language model training
texts using the modified Kneser-Ney smoothing. The char-
acteristics of the 300k 4-gram language models are summa-

Type BNL dev FNA dev FNA test BN test
OOV 0.67 1.81 4.01 3.85
ppx 193 386 2418 2668

Table 2: Perplexity (PPX) and Out Of Vocabulary (OOV)
rates for the different sets of dev and test data using a 300k
LM. The LM mixture weights were tuned on the dev data.

rized in Table 2. The mixture weights were automatically
chosen using the EM algorithm to minimize the perplexity
of the development data. It can be seen that the perplexity
and OOV rates of the BNL data and the FNA dev are much
lower than the test data.

5 Phone Set & Acoustic models
Words of foreign origin excluded, Finnish is written with 8
letters for vowels and 13 for consonants. All the vowels and
almost all the consonants can be either short or long sounds.
The phone set used in this work is composed of 42 phones:
16 vowels, 27 consonants and three units for silence, breath
and filler. The long and short phones are represented with
separate symbols and have separate acoustic models. Stan-
dard Finnish is basically a phonetic language where each
letter corresponds to one and the same phoneme, and each
phoneme corresponds to one and the same letter [17]. So,
with very few exceptions, the lexicon observes a strict cor-
respondence between letters and phonemes, with a low num-
ber of variants (avg 1.1 pronunciations/word).

A multi-language, cross-language bootstrapping [18] was
used to initialize the acoustic models. Phones from English,
French, German, Italian and Arabic were mapped to Finnish
phones, and models extracted from corresponding acoustic
model sets served as initial seed models. The first month
of BN learning data was decoded using these models and a
language model built only on transcriptions of that month
(with a 22k word LM). The acoustic models were trained in
a lightly supervised manner [13], one month at a time until
the full 14 hours of speech from the BN Learning (BNL)
corpus was used. For the first stages a 22k LM was used to
decode the audio data. Data from the standard BN (FNA)
were then progressively added with larger models trained
after each step.

The standard cepstral features (perceptual linear predic-
tion - PLP) were used. The PLP feature vector has 39 cep-
stral parameters: 12 cepstrum coefficients and the log en-
ergy, along with the first and second derivatives. The acous-
tic models are tied-state, left-to-right context-dependent,
HMMs with Gaussian mixtures. The triphone-based
context-dependent phone models are word-independent, but
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Audio Learning FNA BN

Train 19h 11h 170

Dev 7h 4h -

Test - 4h 16h

Table 3: Audio corpus (in hours) used for training, dev and
test for the Finnish STT system.

Model Audio corpus
set ctx #Gaussians Hours Sources

BN0 8345 190k 26 BNL+FNA
BN1 9713 239k 35 +BN 9 hrs
BN2 10568 272k 42 +BN 16 hrs
BN3 12493 355k 63 +BN 37 hrs
BN4 18268 369k 195 +BN 169 hrs

Table 4: Characteristics of different acoustic model sets.

word position-dependent. The tied states are obtained by
means of a decision tree. The acoustic models are gender-
independent and speaker-adaptive trained (SAT). Silence is
modeled by a single state with 1024 Gaussians. The best
model trained on only the BN Learning corpus cover about
5.6k phone contexts, with 3.7k tied states and 32 Gaussians
per state. With the additional 11 hours of FNA data, the
acoustic models cover 8k contexts and 6k tied states. These
models, trained on the pooled data were also then MAP [19]
adapted to each audio corpus. As more of the varied BN data
was progressively added, larger models were built, with the
largest covering about 18k contexts as shown in Table 4.

6 Experimental results

This section reports a series of experiments assessing recog-
nition performance as a function of the available acoustic
and language model training data. The system is based
on the LIMSI broadcast news transcription [20] was used.
It has two main components, the audio partitioner and the
word recognizer. During development of the Finnish STT
system, all evaluation was done using selected portions of
the web transcriptions as references (based on string align-
ments). These may be inexact and often contain either fewer
or more words than in exact transcriptions. After system
development, a native Finnish speaker corrected these tran-
scriptions and a real scoring was realized.

Figure 1 shows the recognition results using web tran-
scripts and the corrections made by a native Finnish on the
BN learning corpus. In these experiments, acoustic mod-
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Figure 1: Performance on BN Learning development data
using a 700k LM estimated on a 10M word text corpus.

els were built using only the BNL data with a vocabulary
of 700k decomposed words and language models built on a
8M text corpus available at the time. As can be seen in the
figure, the two error curves closely follow each other, with
slightly optimistic results with the approximate transcripts.

As in [12] a speech recognizer was used to automati-
cally transcribe unannotated data and generating ”approx-
imately” labeled training data. As the amount of training
data increases iteratively, more accurate acoustic models are
obtained, which can then be used to transcribe another set
of unannotated data. The data were added progressively,
choosing the data with good likelihood scores first [8, 9].
The characteristics of the acoustic models are given in Ta-
ble 4.

Figure 2 shows that using web references for scoring can
give an idea of system performance of different acoustic
sets. For each set of curves, the solid line corresponds
to scoring with approximate web transcripts and the dot-
ted lines scoring with manually corrected references when
available. It can be seen that although the absolute levels are
different, the behavior of the curves are quite similar. There
is a particularly a big difference for the FNA test, which is
due to the fact that available web transcriptions do not cover
all of the audio data, so the insertion rate is very high. In
contrast, the curves are very close for the BNL dev data for
which close approximate transcriptions are available. It can
also be seen that as progressively more varied BN data are
included in the training, the BNL and FNA results slowly
degrade. The first set of models (BN0) are trained on only
FNA and BNL data, so these are closer to the dev and test
data. These experiments all used the same 300k word list

4
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Figure 2: System performance with manual or web refer-
ences (when available). Acoustic models are built on BNL
and FNA, and progressively more BN data. A 300k vocabu-
lary obtained by interpolation of 1-grams on BNL+FNA dev
was used.

BNL FNA dev FNA test BN
Web 8.8 14.4 21.9 -

Human 9.1 16.3 37.3 29.4

Table 5: WER with manual references of best system for
each type of data with a two pass decoding and unsupervised
acoustic model adaptation.

selected by interpolating 1-grams so as to optimize the cov-
erage of the BNL and FNA dev data, and language models
trained on the 34M word (decompound words) corpus.

Table 5 gives the best results obtained on different data
types. These results are obtained using a 2 pass system,
with unsupervised acoustic model adaptation between de-
coding passes [20]. The acoustic models are also specific
to each data type, being MAP [19] with the available audio
training data from each audio corpus (using the automatic
transcripts).

7 Conclusions

This paper has described the development of a speech-to-
text transcription system for the Finnish language. The first
task was locating appropriate resources for acoustic and lan-
guage model training, and system assessment. In doing so
the methodology used in lightly supervised or unsupervised

acoustic model training has been extended to system devel-
opment since no carefully transcribed development data was
available for model optimization. Transcription word error
rates were reported with approximate web transcripts that
were used during system development and with manual tran-
scripts that were later created, and although the approximate
transcripts give an optimistic estimate of the true word error
rates they were found to be useful for system optimization.
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Vogt-Kölln Str. 30, D-22527 Hamburg, Germany

abate,tachbeli,menzel@informatik.uni-hamburg.de

ABSTRACT

Out-of-vocabulary (OOV) words are a major source of er-
ror in a speech recognition system and various methods have
been proposed to increase the performance of the systems by
properly dealing with them. This paper presents an automatic
speech recognition experiment conducted to see the effect of
OOV words on the performance speech recognition system
for Amharic (a morphologically rich language). We tried to
solve the OOV problem by using morphemes as dictionary
and language model units. It has been found that for a small
vocabulary (5k) system morphemes are better lexical and lan-
guage modeling units than words. An absolute improvement
(in word recognition accuracy) of 11.57% has been obtained
as a result of using a morph-based vocabulary. However,
for large vocabularies morpheme-based systems did not bring
much performance improvement as they suffer from acoustic
confusability and limited language model scope while word-
based recognizers benefit much from OOV rate reduction.

Index Terms— Out-of-Vocabulary problem, Morpheme-
based speech recognition, Amharic

1. INTRODUCTION

Most large vocabulary speech recognition systems operate
with a finite vocabulary. All the words which are not in
the system’s vocabulary are considered out-of-vocabulary
words. These words are one of the major sources of error
in an automatic speech recognition system. When a speech
recognition system is confronted with a word which is not in
its vocabulary, it may recognize it as a phonetically similar
in-vocabulary unit/item. That means the OOV word is mis-
recognized. This in turn might cause its neighboring words
also to be mis-recognized. [1] indicated the fact that each
OOV word in the test data contribute to 1.6 errors on the av-
erage. Therefore, different approaches have been investigated
to cope with the OOV problem and consequently to reduce
the error rate of automatic speech recognition systems. One
of these approaches is vocabulary optimization [2], where the
vocabulary is selected in a way that it reduces the OOV rate.

This involves either increasing the vocabulary size or includ-
ing frequent words in a vocabulary. This approach may work
for morphologically simple languages like English where a
20k vocabulary has 2% OOV rate and a 65k one has only
0.6% [3].

However, for morphologically rich languages, for which
OOV is a severe problem, a much larger vocabulary is re-
quired to reach the 1% OOV rate. [3] indicated the fact that
for Russian and Arabic 800k and 400k vocabularies are re-
quired, respectively for a 1% OOV rate. Increasing the vo-
cabulary to alleviate the OOV problem is not the best solution
especially for morphologically rich languages as the system
complexity increases with the size of the vocabulary. There-
fore, modeling sub-word units, particularly morphs, has been
used for morphologically rich languages. Many researchers
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] did morpheme-based or
sub-word based speech recognition experiments.

In this paper, we show the effect of OOV rate on the
performance of an Amharic speech recognition system. We
investigate options to reduce the OOV problem using mor-
phemes as a lexical and language modeling unit and study
its effect on the performance of the system. Section 2 gives
a brief description of the Amharic word morphology. After
reviewing previous works on morpheme-based speech recog-
nition for Amharic in Section 3, we present the results of our
experiments in Sections 4, 5 and 6. Finally, conclusions are
drawn and recommendations for future works are derived in
Section 7.

2. AMHARIC MORPHOLOGY

Amharic is a member of the Ethio-Semitic languages, which
belong to the Semitic branch of the Afro-Asiatic super family
[15]. It is related to Hebrew, Arabic, and Syrian. Amharic
is a major language spoken mainly in Ethiopia. According
to the 1998 census, it is spoken by over 17 million people
as a first language and by over 5 million as second language
throughout different regions of Ethiopia [16].

Like other Semitic languages such as Arabic, Amharic ex-
hibits a root-pattern morphological phenomenon. A root is a
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set of consonants (called radicals) which has a basic ’lexi-
cal’ meaning. A pattern consists of a set of vowels which
are inserted (intercalated) among the consonants of the root
to form a stem. The pattern can be combined with a particu-
lar prefix or suffix to make a single grammatical form [17] or
another stem [18]. For example, the Amharic rootsbr1 means
’break’, when we intercalate the patternä-̈a and attach the suf-
fix -ä we getsäbb̈arä ’he broke’ which is the first form of a
verb (3rd person masculine singular in past tense as in other
semitic languages) [17]. In addition to this non-concatenative
morphological feature, Amharic uses different affixes to form
inflectional and derivational word forms.

Some adverbs can be derived from adjectives but, adverbs
are not inflected. Nouns are derived from other basic nouns,
adjectives, stems, roots, and the infinitive form of a verb
by affixation and intercalation. For example, from the noun
lǧ ’child’ another nounlǧInät ’childhood’; from the adjec-
tive däg ’generous’ the noundägn̈at ’generosity’; from the
stemsnIf, the nounsnIfna’laziness’; from rootqld, the noun
qäld ’joke’; from infinitive verb mäsb̈ar ’to break’ the noun
mäsb̈ariya ’an instrument used for breaking’ can be derived.

Case, number, definiteness, and gender marking affixes
inflect nouns. Table 1 presents, as an example, the genitive
case markers for nouns.

Person singular plural
Vowel Consonant
ending ending

1st -ye -e -aččn
2nd masculine -h -Ih
2nd feminine -š -Iš -aččhu
2nd polite -wo -wo

3rd masculine -w -u
3rd feminine -wa -wa -aččäw
3rd polite -aččäw -aččäw

Table 1. Genetive Case Markers (Adapted from Titov (1976))

Adjectives are derived from nouns, stems or verbal roots by
adding a prefix or a suffix. For example, it is possible to derive
dnIgayama’rocky’ from the noundnIgay’rock, stone’;znIgu
’forgetful’ from the stemznIg; sänäf ’lazy’ from the root
snf by suffixation and intercalation. Adjectives can also be
formed through compounding. For instance,hod̈as̈afi ’toler-
ant, patient’, is derived by compounding the nounhod ’stom-
ach’ and the adjectivesäfi ’wide’. Like nouns, adjectives are
inflected for gender, number, and case [18].

Unlike the other word categories such as noun and ad-
jectives, the derivation of verbs from other parts of speechis
not common. The conversion of a root to a basic verb stem re-
quires both intercalation and affixation. For instance, from the

1For transcription purposes, IPA representation is used with some modi-
fications.

root gdl ’kill’ we obtain the perfective verb stemgädd̈al- by
intercalating pattern̈a-̈a. From this perfective stem, it is pos-
sible to derive the passive stemtägädd̈al- and the causative
stemasg̈add̈al- using prefixes ẗa- and as-, respectively. Other
verb forms are also derived from roots in a similar fashion.

Verbs are inflected for person, gender, number, aspect,
tense and mood [18]. Table 2 shows how a perfective Amharic
verb inflects for person, gender and number. Other elements
like negative markers also inflect verbs in Amharic.

Person Singular Plural
1st säbb̈arku/hu säbb̈arn

2nd masculine säbb̈arh/k
2nd feminine säbb̈ařs säbb̈arǎcčhu
2nd polite säbb̈aru

3rd masculine säbb̈ar̈a
3rd feminine säbb̈ar̈ačč säbb̈aru
3rd polite säbb̈aru

Table 2. Inflection of a Perfective Verb

From the above brief description of Amharic word mor-
phology it can be seen that Amharic is a morphologically rich
language. It is this feature that makes the OOV problem more
serious in Automatic speech recognition system.

3. PREVIOUS WORK

The application of automatic word decomposition (using
Harris algorithm) for automatic speech recognition of less-
represented languages, specifically Amharic, has been inves-
tigated by [12]. In their study, the units obtained through
decomposition have been used in both lexical and language
models. They reported recognition results for four different
configurations: full word and three decomposed forms (de-
taching both prefix and suffix, prefix only and suffix only).
A word error rate (WER) reduction over the base line word-
based system has been reported using 2 hours of training data
in speech recognition in all decomposed forms although the
level of improvement varies. The highest improvement (5.2%
absolute WER reduction) has been obtained with the system
in which only the prefixes have been detached. When both
the prefixes and suffixes have been considered, the improve-
ment in performance is small, namely 2.2%. This might be,
as the authors indicate, due to the limited span of the n-gram
language models.

Decomposing lexical units with the same algorithm led to
worse performance when more training data (35 hours) was
used [13]. This can be explained by a higher acoustic confus-
ability. [13] tried to solve this problem by using other mod-
ified decomposition algorithms. Their starting algorithm is
Morfessor [19] which has been modified by adding different
information. They were able to achieve a word error rate re-
duction only when a phonetic confusion constraint was used
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to block the decomposition of words which would result in
acoustically confusable units.

In contrast to [12] and [13], [14] used morphemes only
for the language modeling component. They applied a lat-
tice rescoring framework to avoid the influence of acoustic
confusability on the performance of the speech recognizer.
Lattices have been generated in a single pass recognition us-
ing a bigram word-based language model and rescored using
sub-word language models. Improvement in the performance
of the speech recognition has been obtained. However, this
method does not solve the out-of-vocabulary problem since a
word-based pronunciation dictionary has been used.

4. WORD-BASED SPEECH RECOGNITION

4.1. The Speech Corpus

The speech corpus used to develop the speech recognition
system is an Amharic read speech corpus [20]. It contains
20 hours of training speech collected from 100 speakers who
read a total of 10850 sentences (28666 tokens). Compared to
other speech corpora that contain hundreds of hours of speech
data for training, our models obviously suffer from a lack of
training data.

Although the corpus includes four different test sets (5k
and 20k both for development and evaluation), for the purpose
of the current investigation we have used the 5k development
test set, which includes 360 sentences (4106 tokens or 2836
distinct words) read by 20 speakers.

4.2. Acoustic, Lexical and Language Models

The acoustic model consists of 6610 cross-word triphone
HMMs each with 3 emitting states. The states of these mod-
els and all the cross-word triphone models that are potentially
needed for recognition are tied using decision-tree based
state-clustering that reduced the number of triphone models
from 77658 logical models to 10215 physical ones. Their
mixture is added incrementally and 12 Gaussian mixtures
have been found to be the optimal.

Vocabulary of the three full-word form pronunciation dic-
tionaries (5k, 20k and 65k) have been prepared by taking the
most frequent words from a text corpus consisting of 120262
sentences (2348150 tokens or 211120 types). Table 3 shows
the out-of-vocabulary rates of the 5k development test set
against these vocabularies. Although we tried to optimize the
vocabularies by taking the most frequent words, the OOV rate
is still high.

Vocabulary Token OOV (%) Type OOV (%)
5k 36.43 51.55
20k 20.41 29.23
65k 9.33 13.36

Table 3. OOV rate of the 5k development test set

In order to minimize the development effort, the pronun-
ciation dictionaries have been encoded by means of a simple
procedure that takes advantage of the orthographic represen-
tation (a consonant vowel syllable) which is fairly close tothe
pronunciation in many cases. There are, however, notable dif-
ferences especially in the area of gemination and insertionof
the epenthetic vowel.

The text corpus from which the vocabularies have been
selected has also been used to train language models. As we
have three dictionaries (5k, 20k and 65k), we have developed
three trigram language models one for each vocabulary using
the SRILM toolkit [21]. The language models are made open
by including a special unknown word token. The modified
Kneser-Ney smoothing method has been used to smooth all
the language models.

4.3. Performance of Word-based Speech Recognizers

Speech recognition experiment has been performed using the
5k, 20k and the 65k vocabularies. In each case the systems
have been evaluated with the 5k development test set. Fig-
ure 1 presents the word recognition accuracy for each vocab-
ulary. As it can be seen from the figure, the OOV rate de-
creases when the vocabulary size increases. As the OOV rate
decreases the performance of the speech recognition system
increases. The best performance (78.3%) has been obtained
for the 65k which has OOV rate of 9.33%. The results show
that the OOV rate highly affects the performance of speech
recognition systems. To deal with this problem, morphemes
instead of words have been considered as dictionary entries
and units in language models.

Fig. 1. Word Recognition Accuracy of three Word-based Rec-
ognizers.

5. MORPHEME-BASED SPEECH RECOGNITION

5.1. Morphological Segmentation

To use morphemes in speech recognition system a word
parser, which splits word forms into their constituents, is
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needed . Different attempts [22, 23, 24] have been made to
develop a morphological analyzer for Amharic using differ-
ent methods. However, none of the systems can be directly
used for our purpose. The systems developed by [22] and
[23] suffer from lack of data. The morphological analyzer
developed by [24] seems to suffer from a too small lexicon.
It has been tested on 207 words and analyzed less than 50%
(75 words) of them. Moreover, the output of the system is
not directly useful for our study which needs the morphemes
themselves instead of their morphological features. Sincethe
source code of the analyzer has not yet been made available,
it is not possible to customize it.

An alternative approach is offered by unsupervised corpus-
based methods that do not need annotated data. These meth-
ods are particularly interesting for resource scarce languages
like Amharic. Thus, Morfessor [19] which is a freely avail-
able, language independent unsupervised morphology learn-
ing tool that tries to identify all the morphemes found in a
given word has been used to morphologically segment our
text corpus. The morphologically segmented text consists of
15,925 distinct morphs. Figure 2 shows the morph length
(in terms of number of characters) distribution of the corpus.
As can be observed from the figure, the length of most of
the morphs is between four and six characters. In order to
facilitate the conversion of morpheme sequences to words,
a special word boundary marker has been attached to word
boundary morphemes which made the morphemes context-
sensitive and consequently increased the number of distinct
morphemes to 28,492.

Fig. 2. Morph Length Distribution.

5.2. Acoustic, Lexical and Language Models

The acoustic model has been developed in a similar fashion
as for the word-based recognizers. The training data has a set
of 6459 cross-morph triphone HMMs each with 3 emitting
states. The states of these models and all the possible cross-
morph triphone models are tied and, therefore, the number of
triphone models is reduced from 57799 logical to 7685 phys-
ical models. Similar to the word-based models, 12 Gaussian
mixtures have been found to be the optimal.

The entries in the pronunciation dictionary are mor-
phemes. From the morphologically segmented corpus, three

dictionaries have been prepared: 5k and 20k by taking the
most frequent morphs and 28.4k by considering all the mor-
phemes. The morph-based OOV rates of these vocabularies
on the 5k development test set are presented in Table 4 which
shows that the OOV rate is highly reduced as a result of using
morphs. The token OOV rate for the 5k morph vocabulary,
for instance, is only a little bit higher than the token OOV rate
of the 65k full-word vocabulary.

Vocabulary Token OOV (%) Type OOV (%)
5k 10.75 28.43
20k 0.67 1.83

All (28.4k) 0.03 0.08

Table 4. Morph OOV rate of the 5k development test set

As we have three dictionaries (5k, 20k and 28.4k), we
have developed three open vocabulary morph-based trigram
language models, one for each vocabulary. Similar to the
word-based language models, the morpheme-based ones have
also been smoothed using modified Kneser-Ney smoothing
technique.

5.3. Performance of Morph-based Speech Recognizers

The morpheme-based speech recognition system has been
evaluated on the 5k development test set using the 5k, 20k and
28.4k morph vocabularies. The results are reported in terms
of morph recognition accuracy (MRA) and word recognition
accuracy (WRA). The word recognition accuracy has been
computed after words have been obtained by concatenating
the recognized morph sequence. The best performance (see
Table 5) has been obtained with the 28.4k morph vocabulary
which has an OOV rate of 0.03. Since the OOV rate is very
small, an accuracy even higher than the one reported here was
expected. The reasons for this disappointing performance (in
spite of having a small OOV rate) might be a higher acoustic
confusability and the limited language model scope.

Vocabulary MRA (%) WRA (%)
5k 55.34 50.04
20k 67.67 62.00

28.4k 68.26 62.78

Table 5. Performance of morph-based speech recognizer

6. COMPARISON OF WORD- AND MORPH-BASED
SPEECH RECOGNIZERS

The morph vocabularies have a very low OOV rate com-
pared to the word vocabularies. This has a positive effect
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on speech recognition accuracy, especially for small vo-
cabularies, namely 5k. The word-based model has a word
recognition accuracy of 38.47% when the 5k vocabulary has
been used. On the other hand, the morpheme-based sys-
tem reaches a word recognition accuracy of 50.04% for the
5k morph vocabulary2, which means an absolute improve-
ment of 11.57%. However, for the 20k the morpheme-based
speech recognizer performed slightly worse (62.00%) than
the equivalent word-based system which has a word recogni-
tion accuracy of 62.51%. The 28.4k vocabulary has morph
and word recognition accuracies of 68.26% and 62.78%, re-
spectively. The performance of the recognizer with 28.4k
morph vocabulary is only slightly better than the 20k word-
based recognizer although it includes all the morphs in the
text and has a very low OOV rate. As we have already
mentioned, besides the acoustic confusability, the limited
scope of the morpheme-based n-gram language model might
contribute to the poor performance of the morpheme-based
speech recognizer since taking three morphemes might not
mean taking three words. This has also been commented by
[12] who suggested the use of higher order n-gram models.
Thus, higher order morpheme-based language models have
been used in our morpheme-based speech recognizers.

We generated lattices using the 20k and 28.4k vocabulary
morpheme-based recognizers and rescored the lattices with
a quadrogram morpheme-based language model which has
been developed in the same manner as the trigram models.
The best path transcription decoded from the rescored lattices
have morph and word recognition accuracy of 69.70% and
64.46%, respectively for the 28.4k vocabulary and 68.92%
and 63.51% for the 20k one (see Table 6). Absolute 1.95%
and 1% word recognition accuracy improvement (over the
20k word-based recognizer) have been obtained for the 28.4k
and 20k vocabulary morpheme-based recognizers, respec-
tively, as a result of rescoring the lattices with a quadrogram
language model.

Vocabulary MRA (%) WRA (%)
20k 68.92 63.51

28.4k 69.70 64.46

Table 6. Lattice rescoring with quadrogram morpheme-based
language model

As it can be seen from Table 7, rescoring with a penta-
gram language model did not lead to further improvement.
Rather, the morph and word recognition accuracies (for both
20k and 28.4k vocabularies) became worse than the recog-

2Comparing the morph-based systems directly with the word-based ones
may not be fair because they have a higher coverage than word-based systems
of the same vocabulary size. On the other hand, the morph-basedsystems are
also dis-favoured by the concatenation of illegal morph-sequences, increas-
ing number of small and acoustically confusable units and a limited language
model scope.

nizer that used the quadrogram morph-based language model.
This might be due to data sparseness. As the language model
training corpus is very small many of the pentagrams might
not be encountered in the training data and therefore esti-
mated in terms of lower order n-grams. Regarding the lan-
guage models quality, the pentagram language models did not
bring much perplexity improvement (less than 1%) over the
quadrogram ones for the 20k and the 28.4k vocabularies. The
perplexity gains of the quadrogram language models over the
trigram ones are 8.291% and 8.386% for the 20k and 28.4k
vocabularies, respectively.

Vocabulary MRA (%) WRA (%)
20k 67.69 62.17

28.4k 68.48 63.17

Table 7. Lattice rescoring with pentagram morpheme-based
language model

7. CONCLUSIONS AND FURTHER WORK

Speech recognition experiments for Amharic have been con-
ducted to study the effect of OOV words problem for a highly
inflectional language and to find out whether the problem
can be reduced by using morphemes as lexical and language
model units. We did both word-based and morph-based
speech recognition experiments. For the word-based sys-
tems the OOV rate decreases as the vocabulary size increases
and word recognition accuracy increases as the OOV rate
decreases. It has also been found that using morphemes as
dictionary entries and language model units highly reduces
the OOV rate and consequently boosts the word recognition
accuracy, especially for small vocabularies (5k). However, as
the morph vocabulary grows, the morpheme-based recogniz-
ers did not bring notable improvement in word recognition
accuracy, which might be due to higher acoustic confusability
and a limited language model scope. Rescoring lattices with
higher order morpheme-based language model (quadrogram)
brought word recognition accuracy improvement.

Although the morpheme-based recognizer benefits from
the low OOV rate, it is disadvantaged from the small and
acoustically confusable units. Therefore, further improve-
ment can be obtained if care is taken (for instance, using
confusion constraints as in [13]) to avoid acoustically confus-
able units. Moreover, we just concatenated recognized mor-
pheme sequences up to a word boundary marker and no effort
has been made to avoid concatenation of illegal morpheme
sequences. Attempts in this line may also boost the perfor-
mance of morpheme-based speech recognizer. For example,
rules (such asignore the subject marker morph if it comes at
the beginning of a morph sequence) that obstruct the concate-
nation of illegal morph sequences can be used.
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ABSTRACT
The national language of the Grand-Duchy of Luxembourg,
Luxembourgish, has often been characterized as one of Euro-
pe’s under-described and under-resourced languages. In this
contribution we report on our ongoing work to take Luxem-
bourgish on board as an e-language : an electronically sear-
chable spoken language. More specifically, we focus on the
issue of producing acoustic seed models for Luxembourgish.
A phonemic inventory was defined and linked to inventories
from major neighboring languages (German, French and En-
glish), with the help of the IPA symbol set. Acoustic seed mo-
del sets were composed using monolingual German, French
or English acoustic model sets and corresponding forced ali-
gnment segmentations were compared.

Next a super-set of multilingual acoustic seeds was used
putting together the three language-dependent sets. The
language-identity of the aligned acoustic models provides
information about the overall acoustic adequacy of both the
cross-language phonemic correspondances and the acoustic
models. Furthermore some information can be gleaned on
inter-language distances : the German acoustic models provi-
ded the best match with 54.3% of the segments aligned using
German seeds, 35.3% using the English ones and only 10.4%
using the French acoustic models. Since Luxembourgish is
considered a Western Germanic language close to German,
this result is in line with its linguistic typology.

Introduction
Luxembourg is a small country in Western Europe, bor-

dered by Belgium, France and Germany (see Figure 1). The
national language Luxembourgish ("Lëtzebuergesch") is the
language spoken by native Luxembourgers. From a linguis-
tic typological point of view, Luxembourgish belongs to the
West central dialects of High German and is therefore part
of the Germanic Franconian languages. Just like the En-
glish language, Luxembourgish can be considered as a mixed
language with strong Romance and Germanic influences.
Because of the fact that Luxembourgish is embedded in
this multilingual context on the divide between Romance
and Germanic cultures, people switch from one language

Fig. 1. Geographical situation of Luxembourg in the heart of
Western Europe and on the globe.

to another fairly easily. Therefore, the linguistic situation in
Luxembourg poses a real challenge for researchers concerned
with both automatic and human language processing for at
least two reasons. First, Luxembourgish is strongly embedded
in a multilingual context, entailing frequent code-switching
and code-mixing. Luxembourgish hence represent an interes-
ting testbed for multilingual processing [1]. Second, Luxem-
bourgish may be considered as a partially under-resourced
language, as the written production remains relatively low.
Such languages currently represent a hot topic in the field
of automatic speech processing, because of a limited writ-
ten production of Luxembourgish, a poorly observed writing
standardization (as compared to other languages such as En-
glish and French), and a large diversity of spoken varieties.

In the next section we give some more insight into the
linguistic situation in Luxemburg, with a focus on the luxem-
bourgophone situation. Section 2 presents the phonemic in-
ventory of Luxembourgish and its link with other major Wes-
tern languages. Section 3 presents alignment results with sets
of monolingual and multilingual seed models. Section 4 sum-
marizes the achieved results and discusses some major future

74



challenges for both speech technologies and linguistic studies
of Luxembourgish.

1. LINGUISTIC SITUATION OF LUXEMBOURGISH

1.1. Multilingual context

Luxembourg, a small country of less than 500,000 inha-
bitants in the center of Western Europe, is composed of about
65% of native inhabitants and 35% of immigrants. The na-
tional language Luxembourgish is considered the official lan-
guage of Luxembourg only since 1984. Luxembourgish is the
(Moselle Franconian) language spoken by native Luxembour-
gers, French and German being easily used for communica-
tion among residents [2]. Major languages practiced by im-
migrants used to be Portuguese and Italian. The immigrated
population generally speaks or learns one of Luxembourg’s
other official languages : French or German. Recently, En-
glish has joined the set of prestigious languages of commu-
nication, and tends to become a major communication tool in
professional environments.

Although the country is often considered a successful
example of a multilingual society, the linguistic situation of
Luxembourg remains complex. Different reasons contribute
to this. First, the small size of the country entails a depen-
dance on neighboring countries (Germany, France, Belgium)
with a very high rate of cross-boundary exchanges. Moreover,
its historical background and its geographical situation puts
Luxembourg at the frontier of the Germanic and Romance
worlds. Last but not least, an important proportion of im-
migrants of different linguistic origins adds to the complex
linguistic situation that can be observed in Luxembourg.

1.2. An under-resourced language

As was pointed out by [3] and [4], Luxembourgish should
be considered as a partially under-resourced language, mainly
because of the fact that the written production remains relati-
vely low and that linguistic knowledge and resources, such as
lexica and pronunciation dictionaries, are sparse. Rather sur-
prisingly, written Luxembourgish is not systematically taught
to children in primary school : German is usually the first
written language learned, followed by French [5]. A number
of proposals for standardizing the orthography of Luxembour-
gish can be traced back to the middle of the 19th century. Re-
cently, a successful standardization eventually emerged from
the work of a number of specialists charged with the task of
creating a dictionary that was published between 1950 and
1977 [6]. The latest spelling reform [2] has been adopted in
1999, and is being used to create official language resources
(Cortina, CPLL dictionary). Nonetheless, up until today, Ger-
man and French are the most practiced languages for writ-
ten communication and administrative purposes in Luxem-
bourg, guaranteeing a larger dissemination, whereas Luxem-
bourgish is mainly being used for oral communication. It is
precisely because of the strong influence of both German and

French that Luxembourgish exhibits a large amount of both
pronunciation and derived potential writing variants. Pronun-
ciation variants may give rise to resulting variations in writ-
ten Luxembourgish, as Luxembourgish orthography strives
for phonetic accuracy [2]. The question then arises, in parti-
cular for oral transcripts, whether the written form reflects the
perceived pronunciation form or whether some sort of norma-
lization process is at work that eliminates part of the variation.
With respect to automatic speech recognition, text normaliza-
tion is an important issue in order to achieve reliable estimates
for n-gram based language models. In sum, Luxembourgish is
predominantly a spoken language that tends to reproduce the
observed variations when written.

The limited production of written material is related to
the easy use of French and German as written communication
languages. Further, no orthographic standards were clearly es-
tablished before the end of the 20th century. This implies a
high degree of variation in the observed written forms. An ex-
haustive Luxembourgish dictionary was produced after World
War II, and this large scale effort actively contributed to the
elaboration of spelling standards settled in 1975 and revised
in 1999) [7, 8]. Written Luxembourgish sources, although not
very widespread, can yet be found over the last decades and
even centuries. It is difficult to estimate the numbers of Ro-
mance/Germanic influenced words in Luxembourgish, as pro-
portions greatly depend on communicative settings. Nonethe-
less, one may note that vernacular Luxembourgish is highly
influenced by its Germanic filiation, whereas more technical
and administrative jargons include a higher proportion of Ro-
mance words. Examples in Table 2 are almost all of Germa-
nic influence, except those illustrating nasal vowels, and the
/Z/and /4/ consonants.

Beyond written material, the existence of sibling re-
sources, providing similar content in both written and au-
dio modalities are particularly helpful for automatic speech
recognition (ASR). Steps to an autonomous ASR system in-
clude acoustic modeling, the development of a pronunciation
dictionary and language modeling [9]. Most languages make
use of broadcast news audio data, together with, as written
sources, newspaper texts, news wires and related web pages.
In Luxembourg news broadcasts are proposed in Luxem-
bourgish on a daily basis, however newspapers remain for
the most part bilingual German/French, with only limited
code-switching and code-mixing to Luxembourgish, gene-
rally for titles. Yet, it is important to highlight recent efforts
that have been made regarding the establishment of word
lists and multilingual dictionaries in electronic form [10].
Furthermore concerning the WEB, Luxembourgish actually
holds rank 55 in the list of 272 official Wikipedias, publi-
shed by the Wikimedia Foundation for various languages
(http ://meta.wikimedia.org/wiki/List_of_Wikipedias). The num-
ber of Luxembourgish native speakers can be estimated to
300,000. The immigrated population and the number of daily
cross-boarder commuters has steadily increased over the past
decades. A relatively high number of more or less proficient
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L2 speakers can be found among them, especially as they
express a great interest in learning the basics of the Luxem-
bourgish language.

1.3. Luxembourgish corpora

As was mentioned before, sibling resources, providing
both audio and related written material are of major interest
for ASR development. The most relevant resource we found
here, consists in the Chamber (House of Parliament) debates
and to some extend in news channels, such as delivered by
the Luxembourgish radio and television broadcast company
RTL.

The Parliament debates are broadcast and made available
on the official web site (www.chd.lu), together with written
reports (the Chamber reports), which correspond to rather
close manual transcripts of the oral debates. Another inter-
esting sibling resource stems from the Luxembourgish radio
and television broadcast company RTL, which produces news
written in Luxembourgish on its web site (www.rtl.lu), toge-
ther with the corresponding audio data. However only very li-
mited amounts of written Luxembourgish can be found here,
whereas RTL has a profuse audio/video production. Table 1
summarizes the different text and audio resources currently
being collected. 12M words have been extracted from the

Table 1. Major Luxembourgish text and audio sources for
ASR. Collected amounts are given in number of words

written sibling : audio+written
Source : WIKIPEDIA CHAMBER RTL

lb.wikipedia.org www.chd.lu www.rtl.lu
Volume : 500k 12M/(300h) 700k/(40h)
Years 2008 2002-2008 2007-2008

Chamber reports (years 2002-2008), which mainly comprise
professionally transcribed oral debates. However they also in-
clude some written subjects in French. The collected audio
data correspond to the debates of the two most recent years,
totalling a volume of approximately two hundred hours.

2. PHONEMIC INVENTORY

The word lists derived from the written material allow to
fix optimal vocabularies for the ASR system. A further step
consists in providing pronunciations for each lexical entry.
Such pronunciations rely on a phonemic inventory. Hereaf-
ter we will give details about the Luxembourgish phonemic
inventory, detailing vowels, diphthongs and consonants.

The adopted Luxembourgish phonemic inventory in-
cludes a total of 60 phonemic symbols plus 3 extra-phonemic
symbols (for silence, breath and hesitations). Table 2 present
the selected phonemic inventory together with illustrating
examples. Luxembourgish is characterized by a particularly

high number of diphthongs. To minimize the phonemic in-
ventory size, we could have chosen to code diphthongs using
two consecutive symbols, one for the nucleus and one for the
offglide (e.g. the sequence /a/ and /j/ for diphthong aI

<
). We

prefered the option of coding diphthongs and affricates using
specific unique symbols. Given the importance of French
imports, nasal vowels, although not required for typical
Luxembourgish words, were included into the inventory.
Furthermore, the native Luxembourgish makes use of a rather
complex set of voiced/unvoiced fricatives.

Concerning linguistic studies [11], many aspects of the
Luxembourgish language have been explored on limited spo-
ken material. They still need to be investigated on a larger
scale and on fluent speech, in particular for pronunciation va-
riants. The existing phonetic, phonological, prosodic, lexical
and morphosyntactic studies are generally carried out using
limited objective observations. Large oral corpus-based stu-
dies might be carried out, provided Luxembourgish automatic
speech alignment and transcription systems were available.

In the following, we raise some issues concerning high-
quality pronunciation dictionaries.

2.1. Spelling

Luxembourgish spelling standards aim at minimizing pro-
nunciation ambiguities, even though minor problems remain.
For example, the au letter sequence is ambiguous with res-
pect to /EÚ/ (Haut) or /ÀÚ/ (haut) pronunciations.

Concerning Romance or Germanic origins of Luxem-
bourgish lexical entries, writing standards may stay more
or less close to the language of origin, as discussed in sec-
tion 1.1. For French words such as attaquer (eng. to
attack) or abdiquer (eng. to abdicate), the corresponding
lëtzebuergesch orthographic forms are attackéieren and
abdiquéieren (after the official Luxembourgish COR-
TINA spellchecker 1). For Romance items, different pronun-
ciation rule sets need to be developed, that differ from Germa-
nic or Moselle-Franconian pronunciation rules. For instance,
depending on the origin, qu letter sequence of germanic
items such as quälen, quëtschen, Quetschen calls
for a /kw/ pronunciation, whereas Romance rules generally
demand a simple /k/ pronunciation.

3. ALIGNMENT EXPERIMENTS

Alignment experiments are carried out using different ini-
tializations for the Luxembourgish acoustic models and dif-
ferent pronunciation dictionaries.

3.1. Acoustic seed models

Many researches have addressed the issue of building
acoustic seed models for underresourced languages [12].

1More information about the Cortina Luxembourgish spellchecker can be
found at http ://cortina.lippmann.lu.
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In this work three sets of context-independent and gender-
independent acoustic models were built, one for each seed
language (i.e., English, French, German). The models were
trained on manually transcribed audio data (between 40 and
150 hours) from a variety of sources, using language specific
phone sets. The amount of data used to train the acoustic mo-
dels and the number of phonemes per language are given in
Table 3. Each phone model is a tied-state left-to-right, 3-state
CDHMM with Gaussian mixture observation densities (typi-
cally 32 components). The acoustic features are derived from

Table 3. Characteristics of English, French and German ori-
ginal acoustic model sets.

Language #phonemes #training (h)
English 48 150
French 37 150
German 49 40

a PLP-like [13] acoustic parametrization, which has been
used in the LIMSI systems since 1996. The speech features
consist of 39 cepstral parameters derived from a Mel fre-
quency spectrum estimated on the 0-8kHz band every 10ms.
For each 30ms frame, the Mel scale power spectrum was
computed, and the cubic root taken, followed by an inverse
Fourier transform. LPC-based cepstrum coefficients were
then computed. These cepstral coefficients were normalized
on a segment cluster basis using cepstral mean removal and
variance normalization. Each resulting cepstral coefficient
for each cluster has a zero mean and unity variance. The 39-
component acoustic feature vector consists of 12 cepstrum
coefficients and the log energy, along with the first and second
order derivatives.

Four sets of pseudo-Luxembourgish acoustic models,
each including 63 phones, were created from the English,
French and German seed models by mapping the Luxem-
bourgish phonemes to a close equivalent in each of the three
model sets. Table 2 include the adopted cross-lingual associa-
tions, to initialze seed models for Luxembourgish. It can be
noted that some symbols are used several times for different
Luxembourgish phonemes. In particular, for the diphthongs,
which are missing in French, we chose to select the phonemes
corresponding to the nucleus vowel. A fourth model set was
constructed by concatentating the first three model sets, so
that the decoder could chose among the three languages’ mo-
dels (see Table 4). For each word, choose the acoustic models
from the language with the best match.

3.2. Multilingual pronunciation variants

For the alignment experiments using the language-dependent
phone sets the same pronunciation dictionary was used.
We introduced some variants for the most frequent func-
tion words, French imports and some variants to account

Table 4. Pseudo-Luxembourgish acoustic models using either
English, French and German acoustic model sets or a super-
set of multilingual acoustic seeds.

Language #phonemes #training (h)
English 63 150
French 63 150
German 63 40
Super-set (E,F,G) 3x63 340

for word-final mobile-n deletion (or insertion) [4]. Example
variants are shown in Table 5.

Table 5. Excerpt of the Luxembourgish pronunciation dic-
tionary as used for the proposed alignments. The upper part
shows typical examples of variants (frequent words, French
loan words, mobile-n deletion). The lower part illustrates the
pronunciation dictionary used for alignments with the multi-
lingual acoustic super-set.

lexical entry (English) citation form variants
déi (those) deI

<
dI

President (president) pK@zidEnt pKezidã
Europa OI

<
Kopa øKopa

an (and, in) Àn À

Multilingual dictionary
déi (those) dgeI

<g df eI
<f deeI

<e dgIg df If deIe

3.3. Luxembourgish audio alignment

The Luxembourgish audio corpus with corresponding
detailed acoustic transcripts comprised 80 minutes of hand
transcribed audio data (Chamber (70’) and News (10’)). We
produced these detailed transcripts from scratch for the news
data. For the Chamber data, the audio stream was manually
segmented into speaker turns, according to the existing bona
fide report. For each speaker, the bona fide transcriptions
were changed if necessary to faithfully reflect the speech
flow. All uttered audible speech events, including disfluencies
and speech errors were manually transcribed. The quality of
the manual verbatim transcripts were checked via the resul-
ting word lists for typos and orthographic inconsistencies.
The transcript quality further needs to be questioned, if signi-
ficant amounts of data are rejected during alignment. As the
same transcripts were used for the different Luxembourgish
acoustic seed models, if more data are rejected for a given
model set than for the others, this set may be considered as
less appropriate, without blaming the transcripts.

The percentage of the audio data aligned with phone seg-
ments varies from 77-80%, the lowest figure corresponding
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Table 6. Total duration (in seconds) aligned as phones, as ex-
tra phonemic segments (silence, breath or hesitation) or rejec-
ted due to model/data mismatch.

Language phon.dur. #extra dur. rejected
English 3910 673 516
French 3933 790 373
German 4043 921 131
Super-set (E,F,G) 4077 814 203

to English, the highest to the multilingual and German confi-
gurations. The remaining 20-23% of the acoustic data are ei-
ther aligned with extra-phonemic symbols or rejected by the
alignment system, due to model/data mismatch. It can be no-
ted that English has the highest rate of rejected data : 516
seconds which correspond to 10% of the data. Such a high
rejection rate normally would require to check the manual
transcripts and/or the pronunciation dictionary. Fortunately,
for the other configurations, the rejection rates are much lo-
wer, the lowest rates being achieved by the German language
(131 seconds, < 3%). German has the highest contribution to
the extra-phonemic symbol set.

The average phone segment duration remains almost
stable with respect to the different monolingual seed ali-
gnments. Variations here stem from variable proportions of
the acoustic signal assigned to the extra-phonemic models.
The German alignment yields the smallest average phone
duration of 0.07 seconds on average (silence, breath and hesi-
tation segments are not considered). For English and French
the average segment duration corresponds to 0.08 seconds.
We could observe that independently of acoustic-phonetic
considerations, the (German) silence (including background
noise) model was made use of more frequently during the
German monolingual alignment, than was the case for the
French or English silence models. This explains the smaller
average phone duration. This might be related to the rela-
tively small volume of training data (40h) for the German
originated seeds (as opposed to French and English), with a
lower capacity to cover various acoustic conditions.

The results presented in Table 6 further suggest that the
German acoustic models are globally best at explaining the
Luxembourgish data, as the smallest volume of data was re-
jected.

On a more linguistic level of analysis, the results show
that unvoiced segments tend to be longer than their voiced
counterparts, and that diphthongs and nasal vowels are about
30% longer than oral vowels. More precise results on the
Luxembourgish phonemes will be produced in the future,
with acoustic models trained on a larger set of Luxembour-
gish data.

3.4. Multilingual alignments

The alignment produced by the acoustic super-set mo-
del, together with the multilingual pronunciation dictionary
achieves the highest proportion of aligned acoustic phone seg-
ments. In this configuration, it is interesting to investigate the
results on two levels : (i) on the phone segment level, we can
measure the proportions of segments aligned using the seeds
of a given language. Are there differences in proportions as a
function of phonemes ? (ii) on the word level, we may check
whether the proportion of aligned French seeds is higher for
French loan words than for native Luxembourgish words.

For example, we may expect that for Luxembourgish
diphthong segments, the proportion of aligned English seeds
may increase, especially for diphthongs not covered by the
German language. Conversely the proportion of French and
English seeds used for Luxembourgish and German specific
sounds (e.g. X) should remain very low.

Table 7 displays aligned monolingual seed proportions as
produced by the multilingual super-set. More than half of the
55873 segments were aligned using the German seeds. About
one third corresponds to English seed models and only 10% of
the segments were aligned using the French models. Results
for some phonemes are shown to illustrate that proportions
can notably vary with phoneme identity.

Table 7. Proportions of aligned German, English, French
seeds in the multilingual super-set configuration. The num-
ber of phone occurrences is provided. Results are given on
average and a subset of selected phonemes.

Phone type German English French # occ.
overall 54.3 35.3 10.4 55873
p 67.05 21.85 11.10 865
t 55.91 35.23 8.86 3588
k 55.15 36.64 8.21 1048
ç 56.80 34.52 8.67 588
X 80.87 14.29 4.84 413
h 36.05 59.36 4.59 785
Z 41.96 25.00 33.04 112
y 25.00 15.62 59.38 32
Y 41.03 25.64 33.33 39

4. SUMMARY AND PROSPECTS

The main goal of the present contribution was to draw
attention to the complex linguistic situation of Luxembour-
gish, a partially under-resourced and under-described lan-
guage. For ASR development, the use of sibling resources
that provide similar contents in both written and oral/auditory
modalities is extremely useful. Although there are relatively
few written resources in Luxembourgish as compared to other
European languages, corpus studies in Luxembourgish will
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substantially add to the current debate on the processing of
pronunciation variants in automatic and natural speech pro-
cessing.

In the present work, we focused on the issue of produ-
cing acoustic seed models for Luxembourgish. A phonemic
inventory was defined and linked to inventories from ma-
jor neighboring languages (German, French and English),
with the help of the IPA symbol set. For each of these lan-
guages, acoustic seed models were composed using either
monolingual German, French or English acoustic model sets.
During Luxembourgish speech alignments, a super-set of
multilingual acoustic seeds was used putting together the
three language-dependent sets. The language-identity of the
aligned acoustic models provides information about the ove-
rall acoustic adequacy of both the cross-language phonemic
correspondances and the acoustic models. Furthermore some
information can be gleaned on inter-language distances : the
German acoustic models provided the best match with 54.3%
of the segments aligned using German seeds, 35.3% using
the English ones and only 10.4% using the French acoustic
models. Since Luxembourgish is considered a Western Ger-
manic language close to German, this result is in line with its
linguistic typology.

Computational ASR investigations and corpus-based ana-
lyses will not only enhance the development of a more full-
fledged ASR system for Luxembourgish, but can also be used
to generate more specific predictions about the role of the
actual experience that listeners have with pronunciation va-
riants. In turn their predictions can then be tested in other
domains such as psycholinguistics. Given the implications of
large corpus-based analyses, it is hoped that this line of re-
search on Luxembourgish will sparkle more interest for this
language in researchers working in the domains of ASR and
linguistics.
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Table 2. Cross-lingual phone association table. Luxembourgish target phonemes are associated to identical or similar (in grey)
phonemes of the different French, German, English source languages.

Carrier word (Eng.) Lux. Fre Ger Eng
ORAL VOWELS

liicht (light) i i i i
Lidd (song) I i I I

Süden (south) y y y i
schützen (shelter) Y y Y I

Leed (sorrow) e e e e
zéng (ten) ¤ e e E

fäeg (able) E : E E : E

hätt (would) E E E E

Föhn (hairdryer) ø ø ø O

mëll (soft) œ œ œ @

et (it) @ @ @ @

hat (had) a a a A

hatt (she) À a À A

Rot (advice) o o o o
Loft (air) O O O O

Luucht (lamp) u u u u
Hutt (hat) Ú u Ú Ú

NASAL VOWELS : French imports
enfin Ẽ Ẽ E æ
enfin ã ã a 2

bon õ õ o o
DIPHTHONGS

liewen (to live) I@
<

i i i
léien (to tell lies) eI

<
e e e

läit ((he) lies down) EI
<

e e e
lauschteren (to listen) EÚ

<
E E æ

leien (to lie down) aI
<

a aI
<

aI
<

lauden (to ring) aÚ
<

a aÚ
<

aÚ
<

Europa OI
<

O OI
<

OI
<

lounen (to hire) OÚ
<

o o o
luewen (to praise) Ú@

<
u Ú Ú

SYLLABICS

Kanner (children) 5 @ 5 2

feinem (fine) m
"

m m
"

m
"lafen (to run) n

"
n n

"
n
"eidel (empty) l

"
l l

"
l
"

Carrier word (Eng.) Lux. Fre Ger Eng
PLOSIVES

paken (to package) p p p p
taaschten (to touch) t t t t

kachen (to cook) k k k k
baken (to bake) b b b b
droen (to carry) d d d d

goen (to go) g g g g
FRICATIVES & AFFRICATES

Feier (fire) f f f f
lues (slow) s s s s

Zuch (train) µ s s s
Schoul (school) S S S S

Eechen ç S ç S

Zuch (train) X k X k
Hand (hand) h {br} h h

Wieder (weather) v v v v
Summer (summer) z z z z

Gilet (vest) Z Z Z Z

Ligen (lie) J Z ç Z

NASALS & GLIDES

Mamm (mother) m m m m
Noper (neighbour) n n n n

méng (mine) N n N N

Leit (people) l l l l
Rou (rest) K K K ô

Här (mister) 5
�

@ 5
�

@

Suite (suite) 4 4 Y w
Juli (July) j j j j

Quetsch (plum) w w Ú w
EXTRA-PHONEMIC SYMBOLS

silence {sil} {sil} {sil} {sil}
hesitation {hes} {hes} {hes} {hes}

breath {br} {br} {br} {br}
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ABSTRACT
This paper presents a comparative study of two approaches to
statistical machine translation (SMT) and their application to
a task of English-to-Latvian translation, which is still an open
research line in the field of automatic translation.

We consider a state-of-the-art phrase-based SMT and an
alternative N -gram-based SMT systems. The major differ-
ences between these two approaches lie in the distinct repre-
sentations of bilingual units, which are the components of the
bilingual model driving translation process and in the statisti-
cal modeling of the translation context.

Latvian being a rather free word order language implies
additional difficulties to the translation process. We contrast
different reordering models and investigate how well they
deal with the word ordering issue.

Moving beyond automatic scores of translation quality
that are classically presented in MT research papers, we con-
tribute presenting a manual error analysis of MT systems out-
put that helps to shed light on advantages and disadvantages
of the SMT systems under consideration and identify the most
prominent source of errors typical for both SMT systems.

Index Terms— Natural languages, finite state machines,
language processing, statistical machine translation.

1. INTRODUCTION

Translation into languages with relatively free word order has
received a lot less attention than translation into fixed word
order languages (English), or into analytical languages (Chi-
nese). Free word order languages differ crucially from the

∗The bulk of the work presented in this paper was done during the first
author’s Ph.D studies in Centre de Recerca TALP, Universitat Politècnica de
Catalunya, Barcelona (Spain).

languages that follow a restrictive word order scheme, first of
all, in the way how the pragmatic information is conveyed. In
fixed word order languages (like, German, English, or Span-
ish) the order of syntactic constituents varies negligibly (or
does not vary at all) and the emotional component of the mes-
sage is usually transmitted through intonation variation1. In
contrast to them, the free word order languages (like, Latvian,
Russian, or Greek) often rely on the order of constituents to
convey the topicalization or focus of the sentence.

Latvian language is the target language in the experiments
that we report in this paper. There are about 1.5 million native
Latvian speakers around the world: 1.38 million are in Latvia,
while others are spread in USA, Russia, Sweden, and some
other countries. Also Latvian language is second language
for about 0.5 million inhabitants of Latvia and several tens of
thousands from neighbor countries, especially Lithuania2.

Latvian is one of two living Baltic languages and it
is characterized by rich morphology, relatively complex
pre- and postposition structures and high level of morpho-
syntactic ambiguity. Despite that it descends from the same
ancestor language as Germanic languages, it differs from
them significantly and the experience gained from machine
translation into German or English can hardly be transferred
to the English-to-Latvian translation task.

Nowadays, scientific community is starting to express
doubts that the models working pretty well for fixed word
order languages are still efficient for free word order lan-
guages (for example, construction of an English-to-Czech
SMT system taking into consideration very rich morphology

1There are some exceptions to the general rule, for example, when it is
necessary to emphasize the object of the sentence (I agree with you -> With
you I agree), or in question sentences.

2Source: State Language Agency http://www.valoda.lv/lv/
latviesuval
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and relatively free word order of Czech is one of the goals of
the Euromatrix(plus) project3). A thorough discussion of the
appropriate word ordering strategy (using contextual informa-
tion) for English-to-Turkish rule-based machine translation
can be found in [1]; in [2], the authors concentrate on SMT of
indigenous Australian languages (one of the two languages
under consideration is a prototypical non-configurational lan-
guage).

However, translation from Latvian into English and vice
versa has not received much attention in the SMT community:
the first and only study on Latvian-to-English SMT, to our
knowledge, was dated to 2007 [3], that is much later than
SMT systems for popular language pairs.

In this paper, we study some aspects of English-to-Latvian
MT. First, we compare the outputs of two SMT systems fol-
lowing two different approaches to MT and reporting results
in terms of automatic evaluation metrics. We consider a “de
facto“ standard phrase-based Moses4 system [4] and an N -
gram-based SMT system [5]. We then study two alternative
word reordering techniques for each translation system and
measure how effective they are translating from English into
a non-configurational Latvian language.

The paper concludes with human error analysis performed
in order to identify the major strengths and weaknesses of the
Moses and N -gram-based SMT systems when translating into
Latvian.

The rest of this paper is organized as follows. Section 2
briefly describes phrase- and N -gram-based SMT system
configurations, Section 3 outlines the experimental setup,
Section 4 details the results of automatic translation quality
evaluation, along with the results of human evaluation and er-
ror analysis, while Section 5 presents the conclusions drawn
from the study.

2. TWO APPROACHES TO SMT

SMT is based on the principle of translating a source sentence
(fJ

1 = f1, f2, ..., fJ ) into a sentence in the target language
(eI

1 = e1, e2, ..., eI ). The problem is formulated in terms of
source and target languages; it is defined according to equa-
tion (1) and can be reformulated as selecting a translation with
the highest probability from a set of target sentences (2):

êI
1 = arg max

eI
1

{
p(eI

1 | fJ
1 )

}
= (1)

= arg max
eI
1

{
p(fJ

1 | eI
1) · p(eI

1)
}

(2)

where I and J represent the number of words in the target and
source languages, respectively.

Modern state-of-the-art SMT systems operate with the
bilingual units extracted from the parallel corpus based on

3http://www.euromatrix.net/
4http://www.statmt.org/moses/

word-to-word alignment. They are enhanced by the maximum
entropy approach and the posterior probability is calculated
as a log-linear combination of a set of feature functions [6].
Using this technique, the additional models are combined
to determine the translation hypothesis êI

1 that maximizes a
log-linear combination of these feature models [7], as shown
in (3):

êI
1 = arg max

eI
1

{
M∑

m=1

λmhm(eI
1, f

J
1 )

}
(3)

where the feature functions hm refer to the system models
and the set of λm refers to the weights corresponding to these
models.

There have been a bunch of publications that investigate
the source of the possible improvements and degradations
in translation quality when using translation systems under-
lined by different statistical models. For example, in [8], the
N -gram-based system is contrasted with a state-of-the-art
phrase-based framework, while in [9], the authors seek to
estimate the advantages, weakest points, and possible over-
lap between syntax-augmented MT and N -gram-based SMT.
In [10] the comparison of phrase-based, hirearchical, and
syntax-based SMT systems is provided.

In this section we discuss the translation models compared
in this work.

2.1. Phrase-based SMT

Most of modern state-of-the-art SMT systems follow the
phrase-based approach to translation. The basic idea of this
approach is to segment the given source word sequence into
monolingual phrases, afterwards translate them and compose
the target sentence [6].

A phrase-based translation is considered as a three step
algorithm: (1) the source sequence of words is segmented in
phrases, (2) each phrase is translated into target language us-
ing translation table, (3) the target phrases are reordered to be
inherent in the target language.

A bilingual phrase (which in the context of SMT do not
necessarily coincide with their linguistic analogies) is any
aligned pair of m source words and n target words that sat-
isfies two basic constraints: (1) words are consecutive along
both sides of the bilingual phrase and (2) no word on either
side of the phrase is aligned to a word outside the phrase [11].
The probability of the phrases is estimated by relative fre-
quencies of their appearance in the training corpus.

The system built for the English-to-Latvian translation
experiments is implemented within the open-source MOSES
toolkit [12]. Standard training and weights tuning procedures
which were used to build our system are explained in details
on the MOSES web page: http://www.statmt.org/
moses/. Two word reordering methods are considered: a
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distance-based distortion model (see 2.1.1) and lexicalized
MSD block-oriented model (see 2.1.2).

2.1.1. Distance-based

A simple distance-based reordering model default for Moses
system is the first reordering technique under consideration.
This model provides the decoder with a cost linear to the dis-
tance between words that should be reordered.

2.1.2. MSD

A lexicalized block-oriented data-driven MSD reordering
model [13] considers three different orientation types: mono-
tone (M), swap (S), and discontinuous(D). MSD model con-
ditions reordering probabilities on the word context of each
phrase pair and considers decoding process a block sequence
generation process with the possibility of swapping a pair of
word blocks. Notice that in the experiments conducted within
the framework of this study a MSD model was used together
with a distance-based reordering model.

2.2. N-gram-based SMT system

Alternative approach to SMT is the N -gram-based ap-
proach [5], which regards translation as a stochastic pro-
cess that maximizes the joint probability p(s, t), leading to a
decomposition based on bilingual n-grams, typically imple-
mented by means of a Finite-State Transducer [14].

The core part of the system constructed in this way is a
translation model (TM), which is based on bilingual units,
called tuples, that are extracted from a word alignment ac-
cording to certain constraints. A bilingual TM actually con-
stitutes an n-gram LM of tuples, which approximates the joint
probability between the languages under consideration and
can be seen here as a LM, where the language is composed
of tuples.

The tuple-based approach is considered monotonous be-
cause the model is based on the sequential order of tuples
during training. However, for a great number of translation
tasks, a certain reordering strategy is required. In the frame-
work of this study we consider two reordering models: a non-
deterministic reordering method (see 2.2.2) and a determinis-
tic version of the statistical machine reordering (SMR) algo-
rithm (see 2.2.3).

2.2.1. Additional features

The N -gram translation system implements a log-linear com-
bination of five additional models:

• an n-gram target LM;

• a target LM of Part-of-Speech (POS) tags;

• a word penalty model that is used to compensate for the
system’s preference for short output sentences;

• source-to-target and target-to-source lexicon models as
shown in [15]).

2.2.2. Extended word reordering

An extended monotone distortion model based on the auto-
matically learned reordering rules was implemented as de-
scribed in [16]. Based on the word-to-word alignment, tu-
ples were extracted by an unfolding technique. As a result,
the tuples were broken into smaller tuples, and these were se-
quenced in the order of the target words.

The reordering strategy is additionally supported by a 4-
gram LM of reordered source POS tags. In training, POS tags
are reordered according to the extracted reordering patterns
and word-to-word links. The resulting sequence of source
POS tags is used to train the n-gram LM.

2.2.3. Statistical machine reordering

A SMR technique is described in details in [17]. Here, re-
ordering is thought as a first-pass translation performed on the
source corpus, which converts it into an intermediate repre-
sentation, in which source-language words are presented in an
order that more closely matches that of the target language. A
monotone sequence of source words is translated into the re-
ordered sequence using SMT techniques: SMR and SMT are
performed using the same modeling tools as N -gram-based
systems but using different statistical log-linear models.

Statistical word classes are used to introduce generaliza-
tion power to the reordering model.

2.2.4. Decoding and optimization

The open-source MARIE5 decoder was used as a search
engine for the translation system. Details can be found
in [18]. The decoder implements a beam-search algorithm
with pruning capabilities. All the additional feature mod-
els were taken into account during the decoding process.
Given the development set and references, the log-linear
combination of weights was adjusted using a simplex opti-
mization method and an n-best re-ranking as described in
http://www.statmt.org/jhuws/.

3. EXPERIMENTS

3.1. Data

We used JRC Acquis 2.2 parallel corpus [19] of about 270K
parallel sentences. Development set contained of 500 sen-
tences randomly extracted from the bilingual corpus, test cor-
pus size was 1,000 lines. Both the datasets were provided

5http://gps-tsc.upc.es/veu/soft/soft/marie/
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with 1 reference translation. Basic statistics of the bilingual
corpus can be found in Table 1.

Latvian English
Training

Sentences 269.98 K 269.98 K
Words 5.40 M 6.65 M

Vocabulary 101.25 K 60.47 K

Development

Sentences 0.50 K 0.50 K
Words 9.90 K 12.36 K

Vocabulary 3.08 K 2.30 K

Test

Sentences 1.00 K 1.00 K
Words 20.18 K 24.64 K

Vocabulary 4.98 K 3.49 K

Table 1: Basic statistics of the JRC-Acquis corpus.

3.2. Experimental details

Word alignments were estimated with GIZA++ tool6 assum-
ing 4 iterations of the IBM2 model, 5 HMM model iterations,
4 iterations of the IBM4 model, and 50 statistical word classes
(estimated with the mkcls tool7).

Phrase-based experiments were conducted following the
guidelines provided on the Moses site4. We used the 2008
version of Moses decoder. As an alternative to a traditional
(unfactored) model (PB-u), we considered a factored phrase-
based SMT (PB-f ) that constructed translation/generation
models on the basis of the factorized corpus (preface words,
POS tags, and lemmas for English and Latvian).

6http://code.google.com/p/giza-pp/
7http://www.fjoch.com/mkcls.html

A 4-gram target LM with unmodified Kneser-Ney backoff
discounting was generated using the SRI Language Modeling
Toolkit [20] and was used in all the experiments.

The following MSD reordering system configuration was
used: (msd-bidirectional-fe configuration).

The SMR experiments were carried out using 50 classes
in the reordering step.

4. RESULTS

4.1. System configurations and evaluation

Two SMT systems (PB-u - unfactored and PB-f - factored)
were contrasted considering the set of experiments carried out
on the phrase-based system. Within each system configura-
tion we considered two reordering models: a distance-based
model alone (as described in 2.1.1) and a distance-based
model operating together with a MSD model (see 2.1.2).

N -gram-based SMT system was enhanced with two alter-
native reordering models: SMR (see 2.2.3) and an extended
input graph model (details can be found in 2.2.2).

We considered four evaluation metrics:

• The BLEU score [21] that accounts for evaluation of
the translation quality, by measuring the distance be-
tween a given translation and the set of reference trans-
lations using an n-gram LM (a 4-gram in this study);

• The NIST score [22] which is based on the BLEU
score, but weights n-grams in order to provide less
informative n-grams with higher weights;

• The WER score [23] which calculates the minimum
word-level Levenshtein distance between a translation
system output and a reference translation;

• The PER score [24] which is a variation of WER met-
ric, alleviating the effect of a possibly different word
order between an acceptable translation hypothesis and
reference translation.

System Reordering Dev Test
BLEU NIST PER WER

Phrase-based SMT (Moses)

PB-u distance 42.38 43.87 78.80 38.34 51.12
distance + MSD 42.69 43.95 78.91 38.48 50.47

PB-f distance 42.11 42.96 78.68 38.71 51.75
distance + MSD 42.40 43.80 78.63 38.63 50.93

N-gram-based SMT (TALP)

NB SMR 43.20 44.64 82.03 35.01 47.98
Input graph 43.52 45.11 82.40 35.05 47.97

Table 2: English-to-Latvian experimental results.

90



Automatic evaluation was case sensitive and punctuation
marks were considered.

4.2. Automatic evaluation

The results of automatic evaluation of translation quality are
shown in Table 2. Best scores are placed in cells filled with
grey (within phrase-based and N -gram-based experimental
sets).

The major conclusion that can be drawn from the results
is that the N -gram-based translation model significantly out-
performs the phrase-base system for the English-Latvian lan-
guage pair. The absolute difference in BLEU score of the best
ranked NB (namely, NB with input graph reordering model)
and PB (namely, PB-u with distance-based and MSD reorder-
ing models) systems is about 1.15 BLEU points (that accounts
for ≈2.6% in a relative scale). This difference is statistically
significant for a 95% confidence interval and 1000 resam-
ples [25]8.

Another important observation is that both “distance+MSD”
PB models (factored and unfactored) are comparable in terms
of automatically evaluated accuracy and both outperform
their “distance-based only” versions. The difference between
PB-u and PB-f “distance+MSD” systems is not statistically
significant. We speculate that a reordering model plays more
important role than a translation model factorization when
translating into free word order languages.

The NB system enhanced with an input graph POS re-
ordering model achieves better MT performance than the
SMR version of this system and this difference is statistically
significant.

The difference between “distance-based only” and “dis-
tance+MSD” versions of the phrase-based SMT systems is
not statistically significant in case of the unfactored TM and
it is significant in case of the factored model.

According to the PER metric, the introduction of the MSD
model does not introduce any significant improvement. At the
same time, the performance of the “distance+MSD” configu-
rations expressed in the WER score is about 0.6-0.8 points
better9 than the performance shown by the distance-based re-
ordering models. As a rough approximation, these results can
be interpreted as that the MSD model implies an important
improvement in word ordering within a sentence and outper-
forms the distance-based model applied alone.

4.3. Human evaluation and error analysis

Human analysis of translation output allows going beyond au-
tomatic scores and, in the general case, provides a compre-
hensive comparison of multiple translation systems.

8Hereafter, statistical significance test is carried out on the BLEU score
measured on the test dataset.

9For the WER and PER metrics the lower the score, the better the perfor-
mance of a SMT system.

Two best systems according to automatic scores were cho-
sen from the phrase-based and N -gram-based experiment sets
for human evaluation (PB-u with distance-based and MSD re-
ordering models, and NB with input word graph model). Ev-
ery non-repetitive test line from the output of these systems
was presented to the judge, who was instructed to decide that
the two translations were of equal quality, or that one trans-
lation was better than the other. The results of the standard
systems comparison can be found in Table 3 and demonstrate
that the NB system outperforms the PB one.

PB-u NB
+distance +input graph Equal
+MSD

Preference 58 193 539

Table 3: Human evaluation results (standard systems).

In addition, we performed error analysis on 100 first sen-
tences from the test data. The analysis of typical errors gen-
erated by each system was done following the error classi-
fication scheme proposed in [26] by contrasting the systems
output with the reference translation. Table 4 presents the
comparative statistics of errors generated by the PB-u system
enhanced with distance-based and MSD reorderings and the
NB system with input graph reordering model.

Evaluation of the word order correctness for free word
order languages is not a trivial task. We considered equally
all admissible word order combinations for the Latvian trans-
lations. The clumps are marked erroneous only if the word
order is not acceptable in Latvian. In this sence, error analy-
sis gives a more complete and fair view of translation quality
than automatic scores which just compare a translation output
with a reference translation.

The most prominent source of errors generated by the PB-
u system, in comparison wit the NB system, is related to miss-
ing words found in the translation output. We explain it by a
high analytical inflection of the Balto-Slavic languages that is
modeled better by the N -gram-based system since it involves
surrounding context not only for phrase reordering, but condi-
tions translation decisions on previous translation decisions.

However, the aforementioned feature of the N -gram-
based architecture turns to be a weakness when dealing with
local word reordering, that is reflected in the high number of
reordering errors produced by the NB system. Experimental
results show that internal phrase-based reordering enhanced
with the distance-based and MSD block-oriented reordering
models (viewing translation as a monotone block sequence
generation process) outperforms the POS-based word graph
reordering model used in N -gram-based experiments (22 lo-
cal word/phrase order errors coming from the Pb-u system
vs. 37 errors of this type produced by the NB system).

At the same time, long-range word dependencies are mod-
eled by PB-u and NB with comparable performance. For clar-
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Type Sub-type PB-u + MSD NB + input graph
Missing words 64 16

Content words 52 10
Filler words 12 6

Word order 35 58
Local word order 11 23
Local phrase order 11 14
Long range word order 6 7
Long range phrase order 7 14

Incorrect words 128 82
Wrong lexical choice 25 20
Incorrect disambiguation 10 4
Incorrect form 51 46
Extra words 34 9
Style 8 2
Idioms 0 1

Unknown words 4 8
Punctuation 20 18
Total 250 182

Table 4: Error statistics for a 100-line representative test set.

ity’s sake, it is important to notice that the English-to-Latvian
translation task is not characterized by the high number of
long-range reordering dependencies.

Other important sources of errors of the PB-u system are
extra words embedded into translated sentences (34 for the
PB-u vs. 9 for the NB). We explain it by the key difference
in internal representation of translation units between phrase-
based and N -gram-based SMT systems.

5. CONCLUSIONS AND FUTURE WORK

In this paper two alternative SMT systems are compared: the
standard phrase-based and the N -gram-based SMT systems.
Both translation systems include modern reordering models
in final configuration. The comparison was created to be as
fair as possible, using the same training material and the same
tools on the preprocessing, word-to-word alignment, and lan-
guage modeling steps.

The results shows that the N -gram-based SMT outper-
forms Moses-based translation system for the English-to-
Latvian translation task in terms of automatic scores (the
difference is ≈1.15 BLEU points) and human “best/worse”
evaluation (the output of the N -gram-based system was
ranked higher than the one of the phrase-based system in
193 sentences, while the opposite occurred in 58 cases).

Human error analysis clarifies advantages and disadvan-
tages of the systems under consideration and reveals the most
important sources of errors for both systems. The phrase-
based system suffers from the missing words problem, while,

in case of N -gram-based SMT, the most frequent errors are
caused by weak word reordering on the local level.

Findings of this study, along with the robust error analysis
of the SMT system outputs can be a very important step on
the way of the translation quality improvement when dealing
with free word order languages.

A study on introducing of a feature intending to reflect a
free word order scheme of the Latvian language is an interest-
ing research topic to be done in the future. Another appeal-
ing research topic can be to modify the standard evaluation
metrics used for the automatic assessment of translation qual-
ity such that they could consider multiple addmisible word
permutations within a sentence to express the same message
typical for the non-configurational languages.
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ABSTRACT 
 
Nasta’leeq is a bidirectional, diagonal, non-monotonic, 
cursive, highly context-sensitive and very complex writing 
style for languages like Urdu, Punjabi, Balochi and 
Kashmiri. Each is written in a variant of the Perso-Arabic 
script. The style is characterized by well-formed 
orthographic rules that are passed down from generation to 
generation of calligraphers and old manuscripts. It is present 
in calligraphic arts and printed materials of the present, but 
orthographic rules have not been quantitatively analyzed in 
detail for the above-mentioned languages. This paper first 
presents the salient features of the Perso-Arabic script and 
briefly introduces its different writing styles. It also briefly 
discusses alphabets of major Pakistani languages. Finally, it 
gives the quantitative analysis of Nasta’leeq and explains its 
context-sensitive behavior with respect to Pakistani 
languages, knowing that it is equally true for Arabic, Persian 
and other languages written in derivations of the Perso-
Arabic script. Finally, it discusses the Context-Sensitive 
Substitution Grammar of Nasta’leeq, a computational model 
of Nasta’leeq. 
 

Index Terms— Nasta’leeq, script, Arabic, Persian, 
Urdu, Punjabi, Sindhi, Balochi, Kashmiri 
 

1. INTRODUCTION 
 
Pakistan is a country with at least six major languages and 
58 minor ones [1]. Urdu, the national language, has over 11 
million (7.57%) native speakers while those who use it as a 
second language are more than 105 million [2]. Punjabi, the 
mother tongue of 44.15% of the population, is the biggest 
language of Pakistan. Other major languages are Pashto, 
Sindhi, Balochi and Kashmiri. The size of these languages 
and Urdu is shown in Table 1. 

The benefits from the Information Technology (IT) 
revolution cannot be reaped unless masses use it, which is 
not possible unless computing is possible in the languages 
that are understood by the masses [3]. Information has 
become such an integral part of our global society that 
access to it is considered as a basic human right. Internet is 
believed to be the dominant carrier of information across the 
globe. Currently, English is the lingua franca for Internet 

and most of the information is available in it, but that makes 
information practically inaccessible to the vast majority of 
the world. This is applicable especially to countries like 
Pakistan where those who may be considered barely literate 
in Urdu represent only 43.92% population (66 millions 
according the 1998 census). That is rather a large number 
compared to the nearly 26 millions (17.29%) who, having 
passed the ten-year school system (matriculation), can 
presumably read and understand a little English. Internet and 
computer programs function in English in Pakistan and not 
even in Urdu let alone in the other languages. This means 
that most Pakistanis are either excluded from the digital 
world or function in it as handicapped aliens. In other 
words, Pakistani languages are under-resourced. Indeed, 
knowledge of English of most matriculates from Urdu and 
Sindhi medium schools is so rudimentary that they cannot 
carry out any meaningful interaction, especially those that 
would increase their knowledge or analytical skills, with the 
digital world. Perhaps only 4.38% graduates (about 6.5 
millions) could do so [1]. 

Language Number of Speakers 

Urdu* 164,290,000 

Punjabi 66,225,000 

Pashto 23,130,000 

Sindhi 21,150,000 

Balochi 5,355,000 

Kashmiri 4,496,000 
* We include native and 2nd language speakers of 
Urdu. Source: [1] 

Table 1: Speakers of Pakistani languages 
 

2. ARABIC SCRIPT AND ITS WRITING STYLES 
 
The Arabic script is a cursive writing system. It has many 
writing styles, including Naskh, Kufi, Sulus, Riqah, 
Deevani, etc. Some of them are shown in figure 1. The 
Nasta’leeq writing style was developed in Iran during the 
14th and 15th centuries by combining Naskh and Taleeq (an 
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old obsolete style)1. It is one of the main genres of the 
Islamic calligraphy. It is rich in calligraphic content. Owing 
to complexities of orthographic rendering, the basic shapes 
identified in this section are unable to render a language in 
an acceptable form in any Nasta’leeq style. A detailed 
quantitative analysis of Nasta’leeq with respect to Pakistani 
languages is given in section 4. 

u@ÐδÖZz õôÑ̼‚Zu[ pŰz 

<Ļĥ¯وا @ĻĂºا<Ŕ|و 
FƎŲʫوا JłŪا�Fƀ©و 

aوسخ�الشمayوالقم�

 وÁÇراéËåس واéãåر
Figure 1: Different writing styles for Arabic 

The distinguishing characteristics of Perso-Arabic script 
are discussed for the benefit of the unacquainted reader. It is 
read from right-to-left. Figure 2 shows some sample 
characters of Pakistani languages. Unlike English, 
characters do not have upper and lower case. 

b ` ^ [ \ \ ٿ \ ] _ ^ ] \ [ Z
p f e e ڊ e e ڏ b c b g i g g ڃ b څ ڇ

v u t s r q p o n m l k ړ ږ ڙ
 y y x w u ڻ y ڼ z } | ~ ~ ~ ې ~ {
Figure 2: Sample characters of Pakistani languages

The shape assumed by a character in a word is context-
sensitive, i.e. the shape is different depending on whether 
the position of the character is at the beginning, in the 
middle or at the end of the constituent word. This generates 
three shapes, the fourth being the independent shape of the 
character [4,5]. Figure 3 shows these four shapes of the 
character Beh in Naskh writing style. 

 
Figure 3: Context-sensitive shapes of BEH [4] 

To be precise, the above is true for all except certain 
characters that only have the independent and the 
terminating shape when they occur at the beginning and the 
middle or end of a word respectively [4,5]. Some of these 
characters are shown in Figure 4. 

Z W p f e e ڊ e eڏ  g i g gږ ړ g ڙ ~ 
Figure 4: Sample characters having only two shapes

Hamza appears at the beginning of a word [4], but it 
could come at the beginning of a ligature. Also it takes the 
independent shape instead of the final shape when it comes 

                                                           
1 http://en.wikipedia.org/wiki/Nasta%27liq_script  

at the end of the word. Thus, it has initial, middle and 
independent shapes [4,5], as illustrated in figure 5. 

 
Figure 5: Shapes of Hamza (circled) [5] 

The Arabic, Persian and Pakistani languages have a 
large set of diacritical marks that are necessary for the 
correct articulation of a word. The diacritical marks appear 
above or below a character to define a vowel or to geminate 
a character [4,5]. They are the foundation of the vowel 
system in these scripts. The most common diacritical marks 
with the character Beh are shown in Figure 6. 

 G[  F[ E[
Figure 6: BEH with Diacritical Marks 

Diacritics, though part of the writing system, are 
sparingly used [4]. They are essential for ambiguities 
removal, natural language processing and speech synthesis 
[4,5,6,7]. 
 

3. PAKISTANI LANGUAGES 
 
Pakistani languages are written in an alphabet that is derived 
from the Perso-Arabic alphabet. It is not possible to discuss 
all Pakistani languages here. This paper only discusses the 
six languages given in Table 1 because the last five 
represent the major geographical divisions of Pakistan, and 
Urdu is the National language of Pakistan. All of these 
languages belong to the Indo-European language family. 
Their family tree is given in Figure 7. 

 
Figure 7: Language tree of 6 major Pakistani languages 

The character sets of each of these languages are 
discussed separately here with their Unicode values. In 
Unicode, Arabic and its associated languages like Urdu, 
Punjabi, Pashto, Sindhi, etc. have been allocated the code 
points 0600h – 06FFh, 0750h – 077Fh and FB50h – FEFFh. 
 
3.1. Urdu 
 
Urdu is the National language of Pakistan and one of the 
state languages of India with more than 60 million native 
speakers. It is one of the largest languages of the world, if 
one considers Hindi/Urdu as dialects of the same language 
called Hindustani by Platts [8]. Table 2 gives the size of 
Hindi/Urdu. 
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Speakers Native 2nd Language Total 
Hindi 366,000,000 487,000,000 853,000,000 
Urdu 60,290,000 104,000,000 164,290,000 
Total 426,290,000 591,000,000 1,017,000,000 

Table 2: Hindi and Urdu speakers [7] 

Urdu is written in Nasta’leeq style. It has 35 consonant 
characters representing 27 consonant sounds as some 
consonant sounds are represented by two or more consonant 
characters, e.g. the sound ‘s’ is represented by three 
different characters Seh (_), Seen (k) and Sad (m) [7]. Out 
of 35 consonant characters, 32 are adopted from Persian. 3 
retroflex consonants are added to accommodate the 
indigenous sounds of the Indian sub-continent. These 
characters are Tteh (^) [ʈ], Ddal (e) [ɖ] and Rreh (g) [ɽ]. 
Non-aspirated consonants of Urdu are given in Table 3. 

Sr. Symbol Unicode Sr. Symbol Unicode 
1 [ [b] 0628 19 m [s] 0635 

2 \ [p] 067E 20 n [z] 0636 

3 ] [ṱ] 062A 21 o [ṱ] 0637 

4 ^ [ʈ] 0679 22 p [z] 0638 

5 _ [s] 06B2 23 q [ʔ] 0639 

6 ` [ʤ] 062C 24 r [ɣ] 063A 

7 b [ʧ] 0686 25 s [f] 0641 
8 b [h] 062D 26 t [q] 0642 
9 c [x] 062E 27 u [k] 06A9 
10 e [ḓ] 062F 28 v [g] 06AF 

11 e [ɖ] 0688 29 w [l] 0644 
12 f [z] 0630 30 x [m] 0645 
13 g [r] 0631 31 y [n] 0646 
14 g [ɽ] 0691 32 z [v] 0648 
15 i [z] 0632 33 { [h] 06C1 
16 g [ʒ] 0698 34 ~ [j] 06CC 

17 k [s] 0633 35 > [ṱ] 0629 

18 l [ʃ] 0634    
Table 3: Non-aspirated Urdu consonants 

The phenomenon of aspiration does not exist in Persian 
or Arabic but it exists in languages of the region e.g. Hindi, 
Urdu, Punjabi, etc. In Urdu, the special character Heh 
Doachashmee (|) is used to mark the aspiration. Thus 
aspirated consonants are represented by the combination of 
the consonant to be aspirated and Heh Doachashmee (|) e.g. 
[ [b] + | [h] = J [J [bʰ], ` [ʤ] + | [h] = J [Y [ʤʰ], etc. Urdu has 
15 aspirated consonants [7]. Aspirated Urdu consonants are 
given in Table 4. 

 

 

 

Sr. Symbol Sr. Symbol Sr. Urdu 
1 J [J [bʰ] 6 J Y [ʧʰ] 11 JÏ [kʰ] 
2 J J [pʰ] 7 |e [ḓʰ] 12 JÏ [gʰ] 
3 J[J [ṱʰ] 8 |e [ɖʰ] 13 Jà [lʰ] 
4 J[J [ʈʰ] 9 |g [rʰ] 14 Jb [mʰ] 
5 J [Y [ʤʰ] 10 |g [ɽʰ] 15 J [J [nʰ] 

Table 4: Aspirated Urdu consonants 

In addition to consonants, Urdu has 10 vowels and 7 of 
them also have nasalized forms [9]. They are represented 
with the help of four long vowels (Alef Madda (W), Alef (Z), 
Waw (z) and Yeh (~)) and three short vowels (Arabic Fatha 
F◌, Damma  E◌ and Kasra G◌). The representation of a vowel is 
context-sensitive, i.e. a vowel may be written in two or more 
ways according to the context in a word, e.g. the vowel 
sound [ə] is represented by Alef (Z) + Zabar (F◌) at the start of 
a word and by Zabar (F◌) in the middle of a word. The vowel 
sound [ə] never comes at the end of a word. Nasalization of 
a vowel is marked with Noon-ghunna (y) and with Noon (y) 
at the end and in the middle of a word respectively [7]. For 
more details, see [7]. 

Urdu contains 15 diacritical marks. They represent 
vowel sounds, except Hamza-e-Izafat ( Y◌) and Kasr-e-Izafat 

(G◌) that are used to build compound words, e.g. õ[ Y˨$66 Y{gZeGZ 

[ɪḓɑrəhɪsɑɪns] (Institute of Science), õY õZä Õs [3 Gà
Õ

àGg6Ð6 [tɑrixɪpedɑɪʃ] 
(date of birth), etc. Shadda ( H◌) is used to geminate a 

consonant e.g.  H[g [rəbb] (God), 6JH [ŐZ [əʧʧʰɑ] (good), etc. 
Sukun (H◌) is used to mark the absence of a vowel after the 
base consonant [7,8]. 

Pakistani languages also share the Perso-Arabic 
punctuation and special symbols. These punctuation marks 
and symbols are given in Table 5. 

Sr. Symbol Unicode Sr. Symbol Unicode 
1 Ô 060C 10 ؏ 060F 
2 ; 061B 11 ؐ◌ 0610 
3 ? 061F 12 œ◌ 0611 
4 X 06D4 13 Ÿ◌ 0612 
5 ؀ 0600 14 ؓ◌ 0613 
6 ؁ 0601 15 ؔ◌ 0614 
7 ؂ 0602 16 ؕ◌ 0615
8 ؃ 0603 17 % 066A 
9 C 060E    

Table 5: Punctuation marks and other symbols 

Urdu has a numeral system that is derived from Persian. 
It assigns the same Unicode values as Persian ranging 06F0 
– 06F9 but employs different shapes for number 4, 5 and 7. 
They are shown in Table 6. 

 

97



Sr. Symbol Unicode Sr. Symbol Unicode 
1 0 06F0 6 5 06F5 
2 1 06F1 7 6 06F6 
3 2 06F2 8 7 06F7 
4 3 06F3 9 8 06F8 
5 4 06F4 10 9 06F9 

Table 6: Urdu numerals 
 
3.2. Punjabi 
 
Punjabi is written in two mutually incomprehensible scripts. 
One is the derivation of Perso-Arabic script (called 
Shahmukhi) used in Pakistan and the other is Gurmukhi, 
used in India. The Punjabi (Shahmukhi) alphabet is a 
superset of the Urdu alphabet and has one additional non-
aspirated consonant, Rnoon (y) [ɳ] [5,6]. The rest is the 
same as Urdu. Punjabi is also traditionally written in 
Nasta’leeq style. For more details on the Punjabi 
(Shahmukhi) alphabet see [5,6]. 
 
3.3. Pashto 
 
Like Persian, Pashto does not have the aspiration. Heh Gol 
({) takes the shape of Heh Doachashmee (|) when it comes 
at the start or middle of a ligature. Retroflex sounds also 
exist in Pashto like in Urdu and Punjabi, but Pashto employs 
different graphemes for them. Table 7 gives a shape 
comparison of retroflex consonants in six major Pakistani 
languages. 

IPA Urdu, Balochi, 
Kashmiri Punjabi Pashto Sindhi 

ʈ ^ ^ ] \ 

ɖ e e p ڊ 

ɽ g g ڙ ړ 

ɳ -  y ڻ ڼ 
Table 7: Comparison of retroflex consonants 

In Pashto, there exist five different kinds of Yeh. One is 
employed as a consonant and the others represent different 
vowel sounds. They are shown in Figure 8. 

~ [j], ~ [i], ې [e], ~ [əy], 6~ [ə] 
Figure 8: Five Yehs of Pashto 

Pashto has 39 consonants and uses the same Persian 
number system without any change. The vowel system of 
the Pashto script is also context-sensitive and is represented 
with the help of long vowels and diacritical marks. Pashto is 
traditionally written in Naskh style. Table 8 shows 
remaining Pashto characters that are not present in Urdu or 
have different shapes than in Urdu. 

 

 

Sr. Symbol Unicode Sr. Symbol Unicode 
1 b [dz] 0681 4 k [ȿ] 069A 

 0685 5 u [g] 06AB [ts] څ 2

    0696 [ȥ] ږ 3
Table 8: Pashto characters 

 
3.4. Sindhi 
 
Sindhi has 40 non-aspirated consonants and 11 aspirated 
consonants. In Sindhi, aspiration is expressed in different 
ways. For example, the aspiration of Jeem (`) is indicated 
by Heh Doachashmee (|) like in Urdu and Punjabi, and the 
aspiration of Beh ([) is expressed by a separate new 
character with four dots below \. Sindhi aspirated and non-
aspirated consonants that are not present in Urdu or have 
different shapes from those in Urdu are given in Table 9. 

Sr. Symbol Unicode Sr. Symbol Unicode 
1 [ [ɓ] 067B 12 e [ɖʰ] 068D 

2 \ [bʰ] 0680 13 ڙ [ɽ] 0699 

 - [ɽʰ] ڙ| 067F 14 [ṱʰ] ٿ 3

4 \ [ʈ] 067D 15 s [pʰ] 06A6 
5 ^ [ʈʰ] 067A 16 ڪ [k] 06AA 
6 b [] 0684 17 u [kʰ] 06A9 
 06B3 [ɠ] ڳ 0683 18 [ɲ] ڃ 7
 0687 19 v [ŋ] 06B1 [ʧʰ] ڇ 8
9 e [ḓʰ] 068C 20 ڻ [ɳ] 06BB 

 068A 21 ~ [j] 064A [ɖ] ڊ 10
    068F [ɗ] ڏ 11

Table 9: Aspirated and non-aspirated Sindhi consonants 

Sindhi has 16 vowels that are also context-sensitive. 
Pashto and Sindhi are both traditionally written in 

Naskh and their analysis for a Nasta’leeq style has never 
been done before. We have done it because they could also 
be written in Nasta’leeq just like Arabic2. Thus it is 
worthwhile to provide an analysis of Nasta’leeq for Pashto 
and Sindhi and provide an opportunity to the Pashto and 
Sindhi communities to write their languages in Nasta’leeq. 
 
3.5. Balochi 
 
Balochi uses a modified alphabet of Urdu and is written in 
Nasta’leeq style. Balochi has removed the redundant 
characters for the same sound, e.g. for the sound of [s], it 
keeps the character Seen (k) and discards the others ( _ Ôm ). 
Thus Balochi has 22 consonants. Like Persian and Pashto, it 

                                                           
2 Arabic is also traditionally written in Naskh but there are 
very beautiful manuscripts of Arabic and Qur’an in the 
Indian sub-continent that are written in Nasta’leeq style. The 
first author has seen one in Pakistan. 
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also has no aspiration. It has two additional diacritics; one is 
the Hamza mark (Y◌) above and the other is similar to the 
inverted Damma ( E◌), but is horizontally reversed and much 
flatter (E◌). Some native speakers also write Balochi using 
the Urdu script. 
 
3.6. Kashmiri 
 
Kashmiri employs the Urdu alphabet with a few additions to 
represent its specific vowels. Kashmiri has two additional 
Yehs (~), one with an oval below (~) and the other with a 
‘v’ mark above (~). It also has two additional Waws (z), one 
with a circle at the ending tail (z) and the other with a ‘v’ 
mark above (ۆ).  In diacritical marks, it adds two diacritical 
marks, a slightly modified Hamza (ء) written above and 
below the character. The extra characters of Kashmiri are 
shown in Table 10. It is also traditionally written in 
Nasta’leeq style. 

Sr. Symbol Unicode Sr. Symbol Unicode 
1 ~ [] - 4 ~ [e] 06CE 

2 z [ɔ] 06C4 5 6◌ [ə] - 

 - [] ◌06C6   [:o] ۆ 3
Table 10: Kashmiri characters 

 
4. ANALYSIS OF NASTA’LEEQ 

 
The rendering of Pakistani languages in Nasta’leeq is very 
complex because the shape of a character not only depends 
on its position (at the start, in the middle or at the end) in the 
word but also depends on surrounding characters in the 
word. The fundamental shapes of the analysis of Section 2 
are not sufficient to produce orthographic rendering of 
major Pakistani languages in Nasta’leeq, because Nasta’leeq 
is inherently context-sensitive. Figure 9 shows different 
context-sensitive shapes of the character Beh. 

 [ 6 [ Ý [à  [ä ä [ w w [ õ õ [ú ù [o o [ú ú [p p
 [Þ Þ [H H [ I I [à ß [á á [E E [J J [â â [ÌÌ 

Figure 9: Context-sensitive shapes of Beh 

Wali and Hussain [10] have given a quantitative 
analysis of Nasta’leeq (Nafees style) for Urdu. In this study, 
we give a quantitative analysis of the Noori style of 
Nasta’leeq for the six major Pakistani languages of Table 1. 

For analysis purposes, we can divide our discussion in 
four parts, concerning independent shapes, two, three and 
four characters-joining. After the analysis of four characters 
long ligatures, the joining is recursive for ligatures longer 
than four, thus no further analysis and no new shapes are 
required to represent a text in Nasta’leeq style. This is 
shown in Figure 10. 

 [$ [ [ [ [ [ [ [› [»Figure 10: Recursive nature of Nasta’leeq 

To ease the analysis, we can divide characters into 
different groups on the basis of similarity in shapes. For 
example, the set of characters shown in Figure 11 can be 
grouped under the name Beh_Family. 

 ] \ [ ^ _ [ ] \ ٿ \ ^
Figure 11: Beh_Family members 

The basic shape of each character of Figure 11 is 
exactly the same except their Noktas (dots or marks) above 
or below. Similarly, we can divide all other characters into 
different groups. All different groups of characters are given 
in Table 11. 

Sr. Name Members 
1 Alef Z Z ٲ ٳ Z W Z 
2 Beh ^ \ ٿ \ [ ] _ ^ ] \ [ 
3 Jeem ڃ ڇ b څ b c b b ` 
4 Dal e ڊ ڏ e p f e e 
5 Reh ړ ږ ڙ g i g g 
6 Seen k l k 
7 Sad n m 
8 Toain p o 
9 Ain r q 

10 Feh s s 
11 Qaf t 
12 Kaf u ڪ v ڪ ڳ u v 
13 Lam w 
14 Meem x 
15 Noon y y y ڼ ڻ 
16 Waw ۆ z z 
17 Heh { 
18 Heh-

Doachashmee | 

19 Hamza ء 
20 Choti-Yeh ~ ~  ~ ې ~ ~~ 
21 Bari-Yeh } 

Table 11: Character families 

In addition to all characters of Table 11, there exist 
certain ligatures that are treated like independent characters 
in Nasta’leeq. They are given in Figure 12. They act like 
independent characters that do not join with the following 
character in the ligature and have only two (independent and 
final) shapes. 
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w  +Z  =لا ،u  +Z  =» ،v  +Z  =Ç 
u  +Z  =»، v  +Z  =Ç ،ڳ  +Z  = 

Figure 12: Ligatures 1 
 
4.1. Independent Shapes 
 
All characters of Table 11, the ligatures of Figure 12, the 
punctuation marks and the special symbols of Table 6, the 
Urdu Numerals of Table 5 and the Arabic numerals are 
independent characters. In addition to the punctuation marks 
of Table 6, other English punctuation marks like single 
quotes, double quotes, colon, etc. are also included in 
Nasta’leeq. 

There are certain special ligatures that are included in 
Nasta’leeq, e.g. Allah ligature (الله), Muhammad ligature (محمد), 
etc. 23 other two character ligatures are also included in 
Nasta’leeq. In addition to all the above characters, 
Nasta’leeq also has a large set of diacritical marks that 
contains the diacritical marks of Arabic, Persian, Urdu, 
Punjabi, Pashto, Sindhi, Balochi, and Kashmiri. All these 
ligatures and diacritical marks are given in Table 12. 

Sr. Symbol Sr. Symbol Sr. Symbol 
 ◌  35 H 18 وسلم 1
 ◌W 36  " 19 الله 2
 ◌  37 Y 20 محمد 3
 ◌Y 38  " 21 صلى الله عليه وسلم 4
5 "  22   39 G◌ 
6 9  23 "  40 E◌ 
7 D  24 41  ۓ H◌ 
8 L  25 { 42 D◌ 
9 P  26 43 ؤ D◌ 
10 D  27 Ì 44 D◌ 
11 "  28 F◌ 45 ٜ◌ 
12 "  29 E◌ 46 E◌ 
13 "  30 F◌ 47 E◌ 
14   31 F◌ 48 G◌ 
15 "  32 E◌ 49 E◌ 
16   33 G◌ 50 6◌ 
17 "  34 H◌ 51 ◌ 

Table 12: Ligatures and diacritical marks 
 
4.2. Two Characters Joining 
 
We do the analysis of two characters joining in reverse 
order, i.e. first we identify the final shape for an initial 
shape, a context before. The group having only two shapes 
consists of Alef, Dal, Reh, Waw, two characters from Choti-
Yeh_Family, ~ (Alef Maskura) and ~ (Pashto yeh with tail), 

Bari-Yeh, La and Ka families. Some of these characters 
have two final shapes depending on their joining behavior 
with different families, e.g. Reh_Family has two final 
shapes, one shape has only two (independent and final) 
shapes for Beh, Jeem, Kaf, Lam, Noon, Hamza and choti-
yeh families and the other for the rest. The final shapes of 2-
shapes families are given in Table 13. 

Sr. Shape Examples 
1   [ 6  [ 6 î  [6   6 
2 ä [ä ä [u ä‡ ä¡ ä [ä ä ää 
3 w u  [ w w [w wu u¢ u [w w  ww 
4 â â  [ââ  [<â Îâ ßâ  [ââ   ââ 
5 Ì Ì  [Ì Ì [ ÌÏ Ìè Ì [ Ì Ì ÌÌ 
6 Z  [°Z ÐZ áZ óZ ðZ 
] لا &لا 6لا D] لا ]  لا 7  لا  لا 
8 ‘ ‘  [Ï ‘ [[ ‘f ‘7 ‘ [ Ï ‘  Ï‘ 

Table 13: Final shapes of Alef, Dal, Reh, Waw, Bari-yeh, La, 
Ka and two Choti-Yehs 

Final shapes of the other families are given in Table 14. 

Sr. Shape Examples 
1 Ý ›  [ Ý [Ý Ý ›  [ Ý  Ý 
2   [à  [[ r Û  [à  à 
3 Ò õ  [ õ õ [f õÒ Òm õ [ õ õ  õõ 
4 ù   [ú ù [U ùÓ ùä ù [ ú ù úù 
5 o  [o o [y o‰ o o [o o oo 
6 ú   [ú ú [U úÓ úä ú [ ú ú úú 
7 p p  [p p [z pŠ p p [p p  pp 
8 Þ  [Þ Þ [h ÞÉ Þm Þ [ Þ Þ  ÞÞ 
9 H  [H H[ H‹ H‹ H [H H  HH 

10 I  [ I I [̂ IË IÝ I [I I  II 
11 ß  [à ß [o ßr ßÛ ß [à ß àß 
12 á  [á á [a áÍ á á [á á  áá 
13 E  [E E [b E E£ E [E E EE 
14 J  [J J [Y J5 Jm J [J J JJ 

Table 14: Final shapes 

Hamza (ء) does not have a final shape. Thus there are 22 
final families depending upon their final shapes, given in 
Table 13 and 14. 

The above two tables not only give us the final shapes 
of all the families of Table 11 and of the ligatures of Figure 
12 (La لا and Ka family » ،Ç Ô» ÔÇ Ô ), they also give us the 
analysis of initial shapes of the Beh, Jeem, Seen, Sad, Noon 
and Choti-yeh families. The analysis of initial shapes of 
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Beh, Noon, Hamza and Choti-yeh family in the above 
examples shows that they have the same base form for the 
initial shape with variations in Noktas. It is also clear that 
the initial form for final shapes of the Sad and Ain families 
are the same. Thus the Behinit family (including initial 
forms of Beh, Noon, Hamza and Choti-yeh families) has 21 
initial shapes. The initial shapes of the Behinit and Jeeminit 
families are given in Table 15. 

Sr. Behinit 
Shape 

Jeeminit 
Shapes Final Families 

1 6  Alef_Final 
2  Ý Beh_Final 
3 à [ Jeem_Final 
4 ä u Dal_Final 
5 w w Reh_Final 
6 õ f Seen_Final 
7 ú U Sad_Ain_Final 
8 o y Tah_Final 
9 p z Feh_Final 

10 Þ h Qaf_Final 
11 H  Kaf_Final 
12 I ^ Lam_Final 
13 à o Meem_Final 
14 á a Noon_Final 
15 â < Waw_Final 
16 E b Hehgol_Final 
17 J Y Heh-doachashmee_Final 
18 Ì  Choti-Yeh_Final 
19 * ° Bari-yeh_Final 
20  D La_Final 
21 Ï [ Ka_Final 
* Behinit family with Bari-yeh is stored as ligatures 

Table 15: Initial shapes of Beh and Jeem families 

With 21 initial shapes of all families, all possible two 
character ligatures can be represented in Nasta’leeq. The 
Kaf and Lam families do not have an initial shape for Alef 
because these pairs are stored as ligatures, as shown in 
Figure 12. 
 
4.3. Three Characters Joining 
 
The final shapes have already been identified in the previous 
section. Similar to the initial shapes, 21 medial shapes are 
identified for the final shape families. The medial shapes of 
Behmedi and Jeemmedi families for final families are given 
in Table 16. 
 
 
 

Sr. Behmedi 
Shape 

Jeemedi 
Shapes Final Families 

1 3 = Alef_Final 

2 » 1 Beh_Final 

3 â r Jeem_Final 

4 s = Dal_Final 

5 3 p Reh_Final 

6  1 Seen_Final 

7  1 Sad_Ain_Final 

8   Tah_Final 

9   Feh_Final 

10   Qaf_Final 

11 A = Kaf_Final, Gaf_Final 

12 ‚ = Lam_Final 

13  r Meem_Final 

14 $  Noon_Final 

15 â Å Waw_Final 

16 ø q Hehgol_Final 

17 P ˆ Heh-doachashmee_Final 

18  ˜ Choti-Yeh_Final 

19 ,  Bari-yeh_Final 

20 3 = La_Final 

21  6 Ka_Final 
Table 16: Medial shapes of Beh and Jeem families 

The Behmedi shapes can be grouped into four different 
families according to their joining behavior with the 
previous character. This is shown in Table 17. 

Name of Family Shape Members 

Behmedi1 1, 2, 4, 7, 8, 9, 10, 11, 12, 15, 
16, 19, 20, 21, 24, 25, 28, 29 

Behmedi2  3, 13, 17, 18, 26, 30 

Behmedi3  6, 14, 22, 23, 27 

Behmedi4  5 
Table 17: Behmedi families 

For the families of Table 17, we need four initial shapes of 
each family having an initial shape. Thus the Behinit family 
has four new shapes for the Behmedi family, one shape for 
the Jeemmedi family and so on. All additional initial shapes 
of the Behinit and Jeeminit families, identified for medial 
shapes, are given in Table 18. 
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Sr. Behinit 
Shape 

Jeeminit 
Shapes Medial Families 

22 3 " Behmedi1 

23 P / Behmedi2 

24 $  Behmedi3 

25 3 3 Behmedi4 

26 = D Jeemmedi 

27   Seenmedi 

28 Ï  Sadmedi, Tahmedi, 
Ainmedi, Fehmedi 

29 o  Kafmedi, Gafmedi, 
Lammedi 

30   
Meemmedi, 
Hehgolmedi, Heh-
doachashmeemedi 

Table 18: More initial shapes of Beh and Jeem families 

We have thus 30 initial shapes and 21 medial shapes 
that represent all possible ligatures of length three of the six 
major Pakistani languages when written in the Noori 
Nasta’leeq style. It is not possible to list all shapes of all 
characters due to space shortage. 
 
4.4. Four Characters Joining 
 
We do our analysis in the reverse direction, i.e. from left-to-
right. In the analysis of three characters joining, we have 
already identified the shapes of the last two characters of our 
ligatures of length 4 that are final shapes and medial shapes 
for our final shapes. Now first we need to identify the 
medial shapes that will join with the already identified 
medial shapes. Secondly, we need to identify the initial 
shapes that will join with newly identified medial shapes in 
the previous step and this will complete our joining analysis. 

Sr. Behinit 
Shape 

Jeeminit 
Shapes Medial Families 

22  6 Behmedi1 

23   Behmedi2 

24  6 Behmedi3 

25 ø  Behmedi4 

26   Jeemmedi 

27  6 Seenmedi 

28   Sadmedi, Tahmedi, 
Ainmedi, Fehmedi 

29 : 6 Kafmedi, Gafmedi, 
Lammedi 

30   Meemmedi, Hehgolmedi, 
Heh-doachashmeemedi 

Table 19: More medial shapes of Beh and Jeem families 

The process of identifying the new medial shapes is the 
same as that used to identify the initial shapes for the first 21 
medial shapes. Similar to the Behinit family, the Behmedi 
family also has four new shapes for its first 21 members, 
one shape for the Jeemmedi family and so on. All additional 
medial shapes of the Behmedi and Jeemmedi families, 
identified for medial shapes, are given in Table 19. 

Table 17 shows that the Behmedi2 family includes the 
medial shapes # 26 and 30. Thus, fortunately, we do not 
have new initial shapes for these newly identified medial 
shapes of Table 19. Hence, our analysis for Noori 
Nasta’leeq style is complete. 

Ligatures longer than 4 can be built using recursively 
the shapes already identified. That is shown in Figure 10. 
We have 1 or 2 final shapes, 30 initial shapes and 30 medial 
shapes for the characters of major Pakistani languages. Thus 
we need more than 1300 glyphs to represent the scripts of 
major Pakistani languages in the Noori Nasta’leeq style or 
build a good looking font for these languages. 
 

5. CONTEXT-SENSITIVE SUBSTITUTION 
GRAMMAR 

 
The analysis given in Section 4 can be represented in the 
Context-Sensitive Substitution Grammar. Figure 13 shows 
some rules of the contextual substitution grammar of 
Nasta’leeq. 

Initial Rule 
beh → behinit1 aiknoktabelow 
jeem → jeeminit1 aiknoktabelow 
No Context (Before | After) 
Medial Rule 
Beh → behmedi1 aiknoktabelow 
Jeem → jeemmedi1 aiknoktabelow 
No Context (Before | After) 
Final Rule 
beh → behfina1 
jeem → jeemfina 
No Context (Before | After) 
Contextual Substitution Rule for Behfina1 
behinit1 → behinit2 
jeeminit1 → jeeminit2 
behmedi1 → behmedi2 
jeemmedi1 → jeemmedi2 
Context ( | behfina1) 
Contextual Substitution Rule for Jeemfina1 
behinit1 → behinit3 
jeeminit1 → jeeminit3 
behmedi1 → behmedi3 
jeemmedi1 → jeemmedi3 
Context ( | jeemfina) 
Contextual Substitution Rule for Behmedi1 
Family 
behinit1 → behinit22 
jeeminit1 → jeeminit22 
behmedi1 → behmedi22 
jeemmedi1 → jeemmedi22 
Context ( | <behmedi1 Family>) 

Figure 13: Context-Sensitive Substitution Grammar 
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The Initial Rule tells that Beh ([) and Jeem (`) are 
substituted by behinit1 (6) and jeeminit1 () respectively 
with appropriate Nokta on them whenever they come at the 
initial position of a ligature. Medial and Final rules also 
have the same kind of interpretation for the medial and final 
positions respectively. The Contextual Substitution Rule for 
Behfina1 tells that default initial shapes behinit1 (6) and 
jeeminit1 () at the initial position are substituted by 
behinit2 () and jeeminit2 (Ý) when they are followed by a 
glyph of the Behfina1 family. It also tells that default medial 
shapes behmedi1 (3) and jeemmedi1 (=) at the medial position 
are substituted with behmedi2 (») and jeeminit2 (1) when 
they are followed by a character of the Behfina1 family. The 
other rules have the same kind of interpretations. Figure 13 
shows a very small part of the Context-Sensitive Substitution 
Grammar of Noori Nasta’leeq. This shows the contextual 
nature and complexity of the Noori Nasta’leeq style. 
Theoretically, the Context-Sensitive Substitution Grammar 
is a computational model of the Noori Nasta’leeq contextual 
complexity. 
 

6. CONCLUSION 
 
Nasta’leeq is a bidirectional, diagonal, non-monotonic, 
cursive, highly context-sensitive and very complex writing 
system for languages written in the Arabic or in extended 
Arabic scripts like those of Urdu, Punjabi, Pashto, Sindhi, 
Balochi, Kashmiri, etc. The analysis of Nasta’leeq for major 
Pakistani languages applies equally to Arabic, Persian and 
other languages written in extended Arabic scripts. The 
analysis of Nasta’leeq and the Context-Sensitive Substitution 
Grammar, discussed in this paper, can be used to build a 
good quality and high speed font for the Arabic, Persian, 
Urdu, Punjabi, Pashto, Sindhi, Balochi and Kashmiri 
languages to write them in the Noori Nasta’leeq style. 

The practical implementation of a character-based 
Nasta’leeq font for Arabic, Persian and Pakistani languages 
is a much more complex process than its theoretical 
analysis. A practical development of a Nasta’leeq font not 
only needs the Context-Sensitive Substitution Grammar, but 
it also requires other important and vital positioning 
information to correctly position glyphs and Noktas 
considering their contextual glyphs and Noktas, as shown in 
Figure 10. An implementation for Urdu and Punjabi has 
been produced by the first author in 2004 and is available as 
a freeware on the Web at www.puran.info3. Practical details 
cannot be discussed here due to shortage of space. We plan 
to discuss it in a future paper. Digital graphical 
representation in a computer is vital for under-resourced 
languages, so that native people can understand their native 
languages and can contribute to the development of 
computational linguistic resources for their languages. 

                                                           
3 www.puran.info 
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ABSTRACT

This paper summarizes our latest efforts toward a large vo-
cabulary speech recognition system for Vietnamese. We
describe the Vietnamese text and speech database which we
collected as part of our GlobalPhone corpus. Based on these
data we improve our initial Vietnamese recognition system
[1] by applying various state-of-the art techniques such as
semi-tied covariance and discriminative training. Further-
more, we achieve significant improvements by building two
systems based on different tone modeling approaches and
then apply system cross-adaptation and confusion networks
combination. The best Vietnamese speech recognition system
employs a 3-pass decoding strategy and achieves a syllable-
based error rate of 7.9% on read newspaper speech. In addi-
tion, we perform initial experiments on the Voice of Vietnam
(VOV) speech corpus [2] and achieve a syllable error rate of
16.5%.

Index Terms— Vietnamese speech recognition, data col-
lection, discriminative training, system combination

1. INTRODUCTION

The performance of speech and language processing tech-
nologies has improved dramatically and an increasing num-
ber of systems are being deployed in a large variety of appli-
cations. To date, most efforts were focused on a very small
number of languages spoken by a large number of speakers in
countries of great economic potential, and a population with
immediate information technology needs. With more than
6900 languages in the world and the need to support multi-
ple input and output languages, the most important challenge
today is to port or adapt speech processing systems to unsup-
ported languages rapidly and at reasonable costs. Despite the
fact that the Vietnamese language is spoken by more than 80
Million people and thus is listed among the top-25 languages,
there is a surprisingly small number of groups investigating
Vietnamese speech and language processing technologies and
applications, with notable exceptions like IOIT [2] and MICA
[3].

Last year we started to applying our Rapid Language
Adaptation Tools (RLAT) [4] to Vietnamese. In [1] we re-
ported on our development and optimization of a Vietnamese
large vocabulary speech recognition system and described

particular characteristics of the Vietnamese language, such as
the monosyllabic structure and tonality of the sound system.
Our best system achieved a syllable error rate (SyllER) of
12.6 % on the development and 11.7% on the evaluation set.
However, this initial system did not employ the full range
of state-of-the-art techniques, which have shown to be very
effective for high-resource languages. In this paper we apply
these techniques to our initial Vietnamese system and study
to what extend the reported performance improvements on
languages like English and Chinese apply to Vietnamese.
Among the state-of-the-art techniques we applied are semi-
tied covariances [5], discriminative training [6], system cross
adaptation, and confusion network combination [7].

The paper is organized as follows. In Section II we de-
scribe our Vietnamese resources, which consist of a audio
data and corresponding transcriptions in the newspaper do-
main, and a large text corpus harvested from the internet on
the same domain. Section III introduces our baseline recog-
nition system which was presented in [1]. In Section IV we
give a detailed description of the optimization steps and re-
port recognition results on the development and evaluation
set. The study is concluded in Section VI with a summary
and an outlook to future steps.

2. VIETNAMESE LANGUAGE PECULIARITIES

Vietnamese is a language with very interesting characteris-
tics, three of which are particularly challenging for automatic
speech recognition. The first peculiarity is the monosyllabic
nature of Vietnamese. For example the sentence ”Xin chao
Viet Nam“ (in English: hello Vietnam) contains 4 word units,
each consisting of a single syllable. This monosyllabic na-
ture poses two problems to speech recognition, i.e. due to
the shortness, the word units are acoustically confusable and
the short units limit the language model history. In [1] we
compensated the restricted language model history by con-
catenating monosyllabic words to multisyllabic words. After
concatenation, the example sentence from above looks like
”Xin chao Viet Nam“. The sentence has now 2 multisyllabic
words. Multisyllabic words achieve significant improvements
ranging from 10% to 20% relative, depending on the tone
modeling approaches.

The second peculiarity of the Vietnamese language is the
tonality of the sound system. Vietnamese has six different
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tones, which can discriminate the meaning of words. So, it
is advisable to use tone information in the acoustic model. In
[1] we extracted pitch information using the Cepstrum and
gained about 6% to 9% relative improvement depending on
the tone modeling approaches.

The third important characteristic of Vietnamese results
from the large amount of diphthongs and triphthongs in the
phoneme set. In total, Vietnamese has 22 consonants, 11
vowels, 21 diphthongs and 3 triphthongs. So, compared to
languages like English or French, the number of diphthongs
and triphthongs is pretty high. In addition to the large number,
some of these phonemes are very rare, and thus may lead to
poorly estimated acoustic models. While it is possible to col-
lapse the phone set by subsuming the rare phonemes under
their closest match, or by splitting the rare diphthongs and
triphthongs into their respective monophthongs parts, both
approaches have disadvantages. Collapsing the phoneme set
results in an increased confusability, and splitting up diph-
thongs and triphthongs overestimates the phoneme duration.
Therefore, we decided in our study to collect additional data
to cover rare diphthongs and triphthongs. As reported in [1]
we achieved about 8% relative improvement. These gains
suggest that for Vietnamese speech recognition care needs to
be taken to collect a corpus such that it covers all phonemes.

3. VIETNAMESE LANGUAGE RESOURCES

The development of a state-of-the-art speech recognition sys-
tem starts with collecting speech data and corresponding tran-
scriptions, as well as written text resources for vocabulary
selection and language modeling. Data collection is an ex-
tremely time and cost consuming task but its careful exce-
cution is crucial to the performance of the final system. We
applied our Rapid Language Adaptation Tools (RLAT) [4],
which allow us to collect massiv amounts of text data from
the web and to record speech data over the Internet using a
web-based recorder. In the following subsections we describe
the collected corpus for Vietnamese language that was col-
lected in 2009 as part of our GlobalPhone project [8].

3.1. Text Corpus

For the text corpus of Vietnamese words we used RLAT to
collect text from fifteen different websites, covering main
Vietnamese newspaper sources. RLAT enables the user to
crawl text from a given webpage with different link depths.
The websites were crawled with a link depth of 5 or 10, i.e.
we captured the content of the given webpage, then followed
all links of that page to crawl the content of the successor
pages (link level 2) and so forth until we reached the speci-
fied link depth. After collecting the Vietnamese text content
of all pages, the text was cleaned and normalized with four
different steps: (1) Remove all HTML-Tags and codes, (2)
Remove special characters and empty lines, (3) Delete lines

with less than 75% tonal words (identification of Vietnamese
language) and (4) Delete line which appear repeatedly. The
first twelve websites of Table 1 were used to build the lan-
guage model (see below). The text from the remaining three
websites was used to select prompts for recording speech data
for the development and evaluation set. In total we collected
roughly 40 Million Vietnamese word tokens (see 4 below).

Table 1. List of all 15 Vietnamese websites
Websites Link depth

www.tintuconline.vn 10
www.nhandan.org.vn 10

www.tuoitre.org.vn 10
www.tinmoi.com.vn 5

www.laodong.com.vn 5
www.tet.tintuconline.com.vn 5

www.anninhthudo.vn 5
www.thanhnien.com.vn 5

www.baomoi.com 5
www.ca.cand.com.vn 5

www.vnn.vn 5
www.tinthethao.com.vn 5
www.thethaovanhoa.vn 5

www.vnexpress.net 5
www.dantri.com 5

3.2. Speech Corpus

3.2.1. GlobalPhone Data

To collect Vietnamese speech data in a very short time, the au-
thor spent one month in Vietname and recruited friends and
relatives to donate their voice for research. The web-based
recording tool turned out to be difficult as many sites in Viet-
name did not provide Internet connection, so we used an of-
fline version of the same recording tools. In order to control
the quality of recordings and to avoid the amount of transcrip-
tion work, we collected Vietnamese speech data in Global-
Phone style [8], i.e. we asked native speakers of Vietnamese
to read prompted sentences of newspaper articles. The result-
ing corpus consists of 25 hours of speech data spoken by 140
native speakers, from the cities of Hanoi and Ho Chi Minh
City in Vietnam as well as 20 native speakers living in Karl-
sruhe, Germany. Each speaker read between 50 and 200 ut-
terances which were collected from the above listed 15 differ-
ent Vietnamese websites. In total the corpus contains 22.112
utterances spoken by 90 male and 70 female speakers. All
speech data was recorded with a headset microphone in clean
environmental conditions. The data is sampled at 16 kHz with
a resolution of 16 bits and stored at PCM encoding. The Viet-
namese portion of the GlobalPhone database is listed in Table
2.
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Table 2. Vietnamese GlobalPhone Speech corpus
Set #Speakers #Utterances Duration

Male Female
Training 78 62 19596 22h 15min

Development 6 4 1291 1h 40min
Evaluation 6 4 1225 1h 30min

Total 90 70 22112 25h 25min

3.2.2. Voice of Vietnam Data

The Voice of Vietnam (VOV) speech corpus was collected in
2005 by IOIT and kindly provided to us for research purposes
[2]. The VOV data is a collection of story reading, VOV mail-
bag, news report and colloqiums from the radio program ”The
Voice of Vietnam”. The database consists of are 22549 audio
files with transcriptions from 30 male and female broadcast-
ers and visitors. The number of distinct syllables with tone
is 4923 and the number of distinct syllables without tone is
2101 [2]. The VOV corpus covers all Vietnamese phonemes
and most Vietnamese syllables. The data is provided in wav
format, using a sampling rate of 16kHz and A/D conversion
precision of 16 bits. We splitted the VOV data in a training
and testing part. Table 3 shows the relevant information about
the VOV corpus for the training and the test set.

Table 3. The Voice of Vietnam Speech corpus
Set #Utterances Duration

Training 20990 19h 31min
Testing 1459 1h 18min

Total 22549 20h 49min

3.3. Language Model

Based on the crawled text corpus (see above), we built a
statistical n-gram language model using the SRI language
model toolkit [9]. We trained a 5-gram language model on
the cleaned and normalized text data from the 12 first web-
sites listed in Table 1. Table 4 gives the characteristics of the
language models calculated on the GlobalPhone development
set, evaluation set, and VOV test set.

3.4. Pronounciation Dictionary

Next to the speech and text data, the pronounciation dictio-
nary is a very important part of an automatic speech recogni-
tion system. The dictionary guides the decoder and ensures
proper training alignment. We used the RLAT tools to gener-
ate the dictionary. In RLAT an interactiv rule-based lexlearner
is implemented which enable the user to learn pronunciation
rules by providing initial letter-to-sound mappings and inter-
actively confirming or correcting pronunciation examples as
proposed by the lexlearner. We took the RLAT dictionary

Table 4. Performance of LM in development and evaluation
set

Criteria GP-Dev GP-Eval VOV-Test
# word tokens 39043284
# vocabulary 29967
OOV-Rate (%) 0 0.067 0.11
Perplexity 282 277 392
Coverage (%):
1-gram 100 99.94 99.89
2-gram 93.4 92.60 92.99
3-gram 60 54.02 54.84
4-gram 32.6 24.2 20.01
5-gram 21.3 12.1 5.8

and performed some manual corrections. More particularly,
we wanted to model the impact of dialectal variations by us-
ing pronunciation variants. The data were intentionally col-
lected in the North and South of Vietnam and many words
are spoken different between the Northern and Southern di-
alect. Table 5 shows some examples from our pronunciation
dictionary applying pronunciation variants.

Table 5. Pronunciation dictionary with different variants for
Northern and Southern dialect in Vietnamese

Words Pronunciation
xin chao {x i11 n ch ao2}
vo {v o36}
vo(1) {j o36}
ra {r a11}
ra(1) {d1 a11}

4. BASELINE RECOGNITION

To model the tonal structure of Vietnamese we explored two
different acoustic modeling schemes. In the so-called ”‘Ex-
plicite tone modeling”’ (ETM) scheme all tonal phonemes
(vowels, diphthongs, and triphthongs) are modeled with 6 dif-
ferent models, one per tone. For example, the vowel ’a’ is rep-
resented by the models ’a1’, ’a2’, ..., ’a6’, where the numerals
identify the tones. In the so-called ”‘Data-driven tone model-
ing”’ (DDTM) we used only one model for all tonal variants
of a phoneme, i.e. vowel ’a’ is represented by only one model
’a’. However, the information about the tone was added to
the dictionary in form of a tone tag. The Janus Recognition
Toolkit (JRTk) [10] allows using these tags as questions to
be asked in the context decision tree when building context
dependent acoustic models. This way, the data will decide
during model clustering if two tones have a similar impact on
the basic phoneme. If so, the two tonal variants of that basic
phoneme would share one common model. In case the tone is
distinctive (of that phoneme and/or its context), the question
about the tone may result in a decision tree split, such that dif-
ferent tonal variants of the same basic phonemes would end
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up being represented by different models. For context de-
pendent acoustic modeling we stopped the decision tree split-
ting process at 2500 quintphones for both schemes, the ex-
plicite and the data-driven tone modeling. Table 6 describes
the phoneme set and the relevant characteristics of the two
different tone modeling schemes as used in the experiments
reported below. While the number of basic model units is
quite different for the two modeling schemes, the number of
context dependent models was controlled to be the same for
both schemes for better comparison. After context clustering,
a merge&split training was applied, which selects the number
of Gaussians according to the amount of data. Please note
that the ”‘Explicite tone modeling”’ uses about 16% fewer
Gaussians than the ”‘Data-driven tone modeling”’. This is
a result from the fact that many tonal variants, particularly
diphthongs and triphthongs are very rare and are thus mod-
eled with a small number of Gaussians. The preprocessing

Table 6. Phoneme set and model size
Explicite Data-driven

tone modeling tone modeling
# Consonants 22 22

# Vowels 66 11
# Diphthongs 126 21
# Triphthongs 24 4∑

Phonemes 238 58
# CI Acoustic Models 715 175
# CD Acoustic Models 2500 2500

# Gaussians 111421 130263
(Merge-&-Split)

consists of feature extraction applying a Hamming window
of 16ms length with a window overlap of 10ms. Each feature
vector has 164 dimensions containing two main parts. The
first part has 143 dimensions which were extracted by stack-
ing 11 adjacent frames of 13 coefficient MFCC frames. The
second part describes the tone information. We computed the
Cepstrum with a window length of 40ms and detected the po-
sition of the maximum of all cepstral coefficients starting with
the 30th coefficient. Furthermore, we considered the position
of the three left and right neighbors, and their first and second
derivatives. This resulted in 21 additional coefficients (1 max-
imum, 3 left neighbors, 3 right neighbors plus the first and
second order derivatives). With an LDA transformation we
finally reduced this set to 42 dimensions. The acoustic model
uses a semi-continuous 3-state left-to-right HMM. The emis-
sion probabilities are modeled by Gaussian Mixtures with di-
agonal covariances. The language model and the pronuncia-
tion dictionary are based on bisyllable words. Table 7 shows
the Syllabic Error Rate (SyllER) performance of the resulting
baseline Vietnamese recognizer on the development set after
merge-and-split training and 6 iterations of Viterbi training.

Table 7. SyllER of the baseline system on development set
Systems GP Dev-Set

Explicite tone modeling 12.8%
Data-driven tone modeling 12.6%

5. SYSTEM OPTIMIZATION

In this section we describe the steps and techniques taken to
optimize the performance of the recognition system. As a first
step we applied semi-tied covariances [5] to make the system
more robust, for example if training data and test data were
recorded in different environments. Second, we ran discrimi-
native training [6] and describe the effect on our speech recog-
nizer. Third, we used cross-adaptation, one of the multi-pass
decoding strategies, to combine the advantages of the two dif-
ferent tone modeling approaches, which were implemented as
described above. Finally, to minimize the syllabic error rate
we used confusion network combination [7] which allows to
extract better hypothesis from a combination of two or more
systems.

5.1. Semi-tied Covariance Matrices

There is normally a simple choice made in form of the co-
variance matrix to be used with continuous-density HMMs.
Either a diagonal covariance matrix is used, with the under-
lying assumption that elements of the feature vector are inde-
pendent, or a full or block-diagonal matrix is used, where all
or some of the correlations are explicitly modeled. Unfortu-
nately, full or block-diagonal covariance matrices come with
a dramatic increase in the number of parameters per Gaus-
sian component, and thus limiting the number of components
which may be estimated robustly. Semi-tied covariance ma-
trices (STC) [5] are a form of covariance matrix which allows
a few full covariance matrices to be shared over many dis-
tributions, whereas each distribution contains its own diago-
nal covariance matrix. Furthermore, this technique fits well
within the standard maximum-likelihood criterion used for
HMM training. Table 8 shows the SyllER performance of the
Vietnamese recognizer on the development set after applying
semi-tied covariance matrices.

Table 8. SyllER after using Semi-tied Covariance Matrices
Systems Dev-Set

Explicite tone modeling 11.9%
Data-driven tone modeling 11.8%

After this step we retuned the language model weights
and word insertion penalties by rescoring the word lattices
on the development set. This gave another improvement of
about 4% relative in SyllER. Table 9 shows our results on the
development set.
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Table 9. SyllER after Language Model Retuning
Systems Dev-Set

Explicite tone modeling 11.7%
Data-driven tone modeling 11.4%

5.2. Discriminative training (DT)

Discriminative training is an essential technique that con-
sistently leads to significant improvements in speech recog-
nition accuracy. Maximum mutual information estimation
(MMIE) [11] and boosted MMIE [6] are common techniques
for discriminative training. We applied this technique to
our Vietnamese speech recognizer system. Starting with the
speaker-independent model using maximum likelihood esti-
mation, we decoded the complete set of training utterances in
order to generate word lattices.

MMIE aims at maximizing the posterior probability of a
reference compared to the competing hypotheses in a word
lattice. The objective function of MMIE is:

FMMI(λ) =
∑R

r=1 log
Pλ(Xr|Msr )P (sr)∑
s Pλ(Xr|Ms)P (s)

where λ represents model parameters to be optimized; Xr

is the r-th training utterance; sr is the reference and Ms rep-
resents the corresponding HMM state sequence of sentence s.
Maximizing FMMI improves the posterior probability of the
reference in the lattice.
Intuitively, some paths may contain more error than other
parts in a word lattice. Boosted MMIE boosts the importance
of competitors that make large errors and aims to improve the
confusable parts. Table 10 shows our results on the devel-
opment set after applying the discriminative training. So far,
we do not have a good explanation why the gains are smaller
than expected.

Table 10. SyllER after applying discriminative training
Systems Dev-Set

Explicite tone modeling 11.56%
Data-driven tone modeling 11.15%

5.3. Multi-pass decoding: Cross Adaptation

State-of-the-art speech recognition systems commonly use
multi-pass decoding with an adaptation of the acoustic model
between passes. Adaptation aims at better fitting the system
to the speakers and/or acoustic environments found in the
test data. The two most popular adaptation methods, which
can be found in many systems, are Maxmum Likelihood Lin-
ear Regression MLLR, a model transformation and Feature
Space Adaptation FSA, a feature transformation. Adaptation
is performed in an unsupervised manner, so that the hypothe-

ses obtained from the previous decoding pass are taken as the
necessary reference for adaptation. Generally, the word error
rates of the hypotheses obtained from the adapted systems are
lower than without adaptation. This sequences of adaptation
and decoding make it possible to incrementally improve the
system, but not always lead to significant improvements. Of-
ten, after two or three stages of adapting a system on its own
output, no more gains can be obtained. This problem can be
solved by adapting a system on the output of a different sys-
tem, a process called cross-system adaption. In this paper we
developed distinct systems with two different approaches for
tone modeling. Therefore, it is possible to apply cross-system
adaptation. Furthermore, for each tone modeling approach
we had two different systems: a Speaker Independent (SI)
and a Speaker Adaptive (SA) using FSA and MLLR. So
we experimented with various possible system combination
to find the best performing decoding strategy. As first pass
we always apply the SI system. The second and third pass
systems are speaker adaptive system. Furthermore, the third
pass system could apply the discriminative training. Table 11
shows the results on the development set after applying the
various options of cross-system adaptation.

Table 11. SyllER after using Cross Adaptation
Systems Dev-Set

ETM x DDTM x ETM (S1) 8.7%
ETM x DDT x ETM+DT (S2) 8.4%

ETM x ETM x DDTM (S3) 8.6%
ETM x ETM x DDTM+DT (S4) 8.6%

DDTM x ETM x DDTM (S5) 8.7%
DDTM x ETM x DDTM+DT (S6) 8.6%

DDTM x DDTM x ETM (S7) 8.7%
DDTM x DDTM x ETM+DT (S8) 8.5%

5.4. Confusion Network Combination

After applying the cross adaptation techniques we got dif-
ferent word lattices which contain alternative hypotheses.
Consequently, we applied the confusion network combina-
tion technique [7] to combine these lattices and subsequently
extract the best hypothesis. We experimented with different
lattice combinations. The best combination gave 0.2% ab-
solute improvement. Table 12 shows the all results on the
development set after applying confusion network combina-
tion.

5.5. Decoding strategy

After the optimization steps on the development set we ob-
tained the best decoding strategy. Two parallel systems de-
code the audio data and write the word lattices. After that we
used confusion networks (CN) to combine these lattices and
extract the best hypothesis. The first system (S1) contains 3
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Table 12. SyllER after using Confusion Network Combina-
tion

Systems Dev-Set
S2 x S6 8.2%
S2 x S8 8.4%
S2 x S4 8.3%
S6 x S8 8.3%
S4 x S6 8.5%

S2 x S4 x S6 8.4%
S2 x S4 x S8 8.4%
S4 x S6 x S8 8.5%

S2 x S4 x S6 x S8 8.3%

passes: ETM-SI, DDTM-SA, and ETM-SA using DT. The
second system (S2) contains also 3 passes: DDTM-SI, ETM-
SA and DDTM-SA using DT. We tested our system on the
unseen evaluation set using this decoding strategy. Table 13
illustrates the results on the evaluation set.

Table 13. SyllER on the evaluation set using the best decod-
ing strategy

1.Pass 2.Pass 3.Pass CN
S1 11.4% 8.7% 8.1% 7.9%
S2 10.8% 8.8% 8.2% 7.9%

5.6. Experiments and Optimization on VOV Data

5.6.1. Experiments with VOV data

The VOV corpus was collected from the audio program
”Voice of Vietnam”. It has substantially different charac-
teristics compared to the GlobalPhone data. As a result the
VOV data provide us with a good test case to explore how
well our Vietnamese speech recognizer generates. The first
experiment applied the “Explicite-tone modeling system“
(ETM) to decode the VOV test set and gave 24.1% SyllER.
In the second experiment we trained the speech recognition
system on the VOV training data and tested on the VOV test
data. We used the ETM system to write the initial align-
ments for the complete VOV training set. We used these
initial alignments to train the system. For system training
we applied the same parameter settings as we used to train
our best GlobalPhone system. The performance on the VOV
test set slightly improves to 23.5% but gets drastically worse
on the GlobalPhone development set with 33.4% SyllER.
According to our analysis, we believe that the reason for the
degradation is that the VOV corpus contains only Northern
dialect data, while the GlobalPhone data set covers Northern
and Southern dialect. The breakdown for dialects shows that
the GlobalPhone part with Northern dialect achieved a per-
formance of 19.6% SyllER, while the Southern dialect part
significantly dropped in performance to 51.7% SyllER. So,
training on Northern-only VOV data significantly harms the

performance on the part of GlobalPhone spoken by South-
ern Vietnamese speakers. In our last experiment we trained
the acoustic model with a combination of GlobalPhone and
VOV training data. The results are given in Table 14 and
show improvements of about 25% relative on the VOV test
set, but 5% degradation on the GlobalPhone development
set. A subsequent error analyis of these results indicate that
the majority of errors stem from the following issues: (1)
large number of proper names, sometimes even a sequence of
several proper names, (2) interruptions, unfinished utterances
(3) Foreign proper names, most particular English, such as
Canada, Vovnews and Singapore. In the following section we
describe how the language model was trained to better handle
proper names and compensate for the above described issues.

Table 14. SyllER on the VOV test set and GP development
set using the speaker independent system

Training-Set VOV Test GP dev
GP Daten 24.1% 11.9%

VOV Daten 23.5% 33.4%
VOV+GP Daten 17.8% 12.5%

5.6.2. System Optimization on VOV data

In order to adapt our language model to the VOV test set, we
used the RLAT system to crawl the VOV mailbag from 22-
12-2008 to 22-12-2009 and built a 3-gram language model
”VOVmail“. Linear interpolation [9] was applied to combine
the background and VOVmail language model (LM). The best
mixture weight is 0.57 for the background LM and 0.43 for
the VOVmail language model. To solve the problem with
proper names, we randomly generated 1 million full names
and built a 3-gram language model called ”FullName“. A
Vietnamese proper name contains usually three parts: sur-
name, middle name, and firstname. In our work we used
the 20 most common surnames, the 35 most common middle
names, and 65 of the most common first names and combined
them randomly. After that we interpolated the three language
models and decoded the VOV test set. Table 15 compares the
performance of the baseline language model (background),
the interpolation with the VOVmail-based language model
(+VOVmails), and the interpolation with the VOVmail data
and the automatically generated corpus of full names. The
results show that the new language model shows significant
perplexity reduction on the VOV test data. Our currently best
system gives a SyllER of 16.5% on the VOV test set using the
interpolation of all three corpora. This is a gain of 7% relative
over the baseline language model.

6. CONCLUSION

In this paper we describes our latest improvements to our
Vietnamese speech recognition system for large vocabulary.
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Table 15. Optimizing LM on VOV dev set
Criteria Background +VOVmails +FullName
OOV-Rate (%) 0.11 0.04 0.04
Perplexity 392 250.4 245.9
Coverage (%):
1-gram 99.89 99.96 99.96
2-gram 92.99 94.2 94.26
3-gram 54.84 57.05 57.6
4-gram 20.01 20.01
5-gram 5.8 5.8 5.8

The speech corpus as a part of GlobalPhone was used with
25 hours audio data from 160 Vietnamese speakers reading
newspaper articles. Applying our Rapid Language Adapta-
tion Tools, we collected about 40 Mio words from 15 dif-
ferent websites for language model training and prompt se-
lection. We subsequently applied state-of-the-art techniques,
such as semi-tied covariance matrices, discriminative train-
ing, cross adaptation, and confusion network combination to
study the impact on Vietnamese speech recognition and to im-
prove our system. Starting from a baseline system with 12.6
% SyllER, we improved the system to 8.2% on the develop-
ment set, and reduced the error from 11.7% to 7.9% on the
evaluation set. The impact of the various optimization steps
and the best decoding strategy are summerized in Table 16
and Table 17. Future steps will include further improvements
of tone modeling, language modeling, and a more detailed
investigation of the effects of dialects.

Table 16. System Optimization
System Explicite Data-driven

(SI) tone modeling tone modeling
Baseline 12.8% 12.6%

Optimal Feature 11.9% 11.8%
LM Tuning 11.7% 11.4%

Discriminative Training 11.56% 11.15%

Table 17. SyllER on development set using the best decoding
strategy

Decoding-Pass S1 S2
1.Pass 11.7% 11.6%
2.Pass 9.0% 9.0%
3.Pass 8.4% 8.6%

Confusion Network 8.2% 8.2%
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ABSTRACT 

 

We report the ongoing results of an effort to embed a “light” 

ASR for a future smart-phone-based multimodal 

multilingual phrase-book which allows users to look for a 

sentence by simply pronouncing it. We compared a 

phoneme-based low level approach with a conventional 

word-based high level approach. The former approach has 

been found promising in terms of accuracy and performance 

in a restricted task-oriented domain suitable for handheld 

devices with low-resources. The experiments have been 

performed on both high- and under-resourced languages: 

French and Khmer. 

 

Index Terms— Phrasebook, ASR, embedded system 

 

1. INTRODUCTION 

 

With the increase of people movement, in the context of 

globalization and international exchange, it is essential for 

visitors to be able to speak and communicate with local 

people although they do not speak their language. With the 

trend toward ubiquitous computing, smartphones start to 

take place in everyday life of people. It is therefore 

interesting if we could use them as a survival linguistic kit 

enabling us to translate instantly our speech into a target 

language and this is what we will address in this paper.  

We present some results of an ongoing work in an effort to 

overcome problems related to the design and development 

of a multimodal phrasebook system running on smartphones. 

It allows user to choose a sentence from a collection of 

sentences by voice input. The selected sentence is then 

automatically translated into a target language. Allowed 

voice input to be directly computed on a smartphone raises 

some great challenges since they have limited resources 

(CPU, RAM, etc.) and the system has to be able to answer 

instantly for obvious usability reasons. Consequently, we 

investigate and experiment different approaches used in 

automatic speech recognition system (ASR): 1) high level 

(HL) and 2) low level (LL) which correspond respectively to 

1) conventional word-based ASR (approach using an n-gram 

word language model) and 2) phoneme-based approach 

(without any language model) in order to choose a suitable 

approach which can be further deployed on smartphones. 

In the next section, we describe different approaches used in 

ASR. Then, in Section 3 we will detail the experimentation 

protocol. Discussion of the obtained results and future work 

are presented in Section 4. Related work will be also briefly 

described in Section 5, with a conclusion in Section 6. 

 

2. SENTENCE SELECTION AND VOICE AIDED 

INPUT 

 

A phrase-book is a collection of ready-made sentences 

usually for a foreign language along with a translation and 

often in the form of questions and answers. Our aim is to 

embed a system of phrasebook with multimodality in 

smartphones. The sentences are organized according to a 

hierarchy of specific domains or situations such as 

transportation, restaurant, shopping, etc. The basic idea is 

to search and look for a sentence from that collection of 

sentences by simply pronouncing it. 

 

2.1. Existing methods 

 

Looking for a sentence may be done by the method which is 

commonly used in keyword spotting [1] which identifies 

keywords in utterance and in information retrieval in order 

to satisfy the users’ query. The idea can be extended into our 

context by using a fuzzy matching search which will return 

the closest found sentences. 

 

2.2. High level approach 

 

A conventional automatic speech recognition system relies 

on two models: an HMM acoustic model (AM) in which 

each state is a Gaussian mixture and an n-gram language 

model (LM). The most commonly used acoustic unit for 

sound modeling is a phoneme and a LM most commonly 

used is an n-gram (for instance 3-gram) of word units. Such 

a model requires a large amount of training data. Between 

the AM and a LM, a pronunciation dictionary is used to map 

a sequence of acoustic units into words present in the LM. 

At this high level, the hypothesis produced by the recognizer 
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is a sequence of words. The speech decoding is costly in 

computing time and memory consumption, which is not 

necessarily adapted for a portable system with low resource 

constraints, especially if we want to handle multiple 

languages using the same device. 

 

2.3. Low level approach 

 

Contrarily to the above approach, by using only an AM and 

a flat LM which is only made up of a phone loop grammar, 

we can have hypothesis as a sequence of phonemes. With 

this solution, we clearly see the absence of LM which puts a 

burden on a computing time during the decoding process for 

a HL approach. It also avoids the problems of out-of-

vocabulary (OOV) and vocabulary dependence which are 

faced by the word-level approach while it has been shown to 

maintain a good accuracy in certain cases [2]. 

 

3. EXPERIMENTATION PROTOCOL 

 

The experimentation has been done on two different 

languages: French and Khmer. The aim is to measure the 

precision of correctly identified sentences for a set of 

utterances given a collection of sentences in a specific 

domain for both HL and LL approaches. Formally, for a 

collection of N known sentences, let T be the total number of 

sentences to be retrieved and H be the number of sentences 

effectively retrieved. Hence, the precision P is calculated by 

P = H/T. 

In our experimentation for speech to text, we use 

Sphinx3.0.8 [4] ASR toolkit. The acoustic model is a 3-state 

HMM. The vector of parameters contains 13 MFCCs, as 

well as its first and second derivatives. 

 

3.1. French language 

 

The initial corpus was taken from a SurviTra CIFLI [3] 

project – a web service aimed at building resource and tools 

for survival language kit for French visitors to communicate 

with Indian helper when English is not an option. A sentence 

is either a completely fixed sentence or an instance of a 

sentence which has fixed parts and variable parts. We 

choose the domain of restaurants for our experimental work. 

The sentences are short, easy and simple; and they are useful 

for communication. Example: Puis-je réserver demain pour 

[$C_twoToTwelve] personnes? (Can I book a table for 

[$C_twoToTwelve] persons tomorrow). In this example, the 

variable $C_twoToTwelve can take an integer value between 

2 and 12. 329 complete test sentences were created and 

recorded at 16 kHz by using a normal headphone in an 

office-like environment by 12 native speakers – an average 

of 2 seconds per sentence, the longest is 4 seconds. The total 

of recorded sounds of all speakers is around 1h50. The 

sentences were then divided into two groups namely 

Fr.Test1 & Fr.Test2 to do different test scenarios. Fr.Test1 

contains all the odd sentences (165 sentences), while 

Fr.Test2 contains all the even sentences (164 sentences); the 

sentences from the latter (Fr.Test2) will be included in the 

training set used to train LM for the HL approach. The 

overall phrase-book corpus contains 1064 sentences 

including the 329 recorded sentences; thus the other phrase-

book sentences are here to bring confusion during the search 

process as depicted in Figure 1. The choice of this latter 

number of sentences is done to simulate the real phrasebook 

sentence retrieval. 

 

Acoustic model: For all experiments, the AM was trained 

by SphinxTrain [4] using the French BREF120
1
 which 

contains over 100h of 120 speakers of speech corpus. The 

model topology is 3 states left-to-right, 16 Gaussian 

mixtures. We use context-dependent acoustic models. 

 

HL Approach - LM training: we used different data to 

train our 3-gram LMs from (a) in-domain and (b) close-to-

domain vocabulary: 

• In-domain: the 164 sentences of Fr.Test2 whose 

vocabulary size is 219 words (consequently. 

Fr.Test2 can be considered as a “cheating” 

experiment for which the sentences to be 

recognized are included in the training data
2
) 

• Interpolation with a close-to-domain vocabulary: 

two LMs are extracted from existing data 

collections: PVE [5] and Nespole!
3
, and then 

interpolated to create a background LM. It is then 

interpolated with another LM trained from Fr.Test2 

to create the final LM of 3903 words. 

• A pronunciation dictionary of more than 62K 

words; each pronunciation was either present in our 

source lexicon, or automatically generated using 

LIA_PHON [6] when necessary. 

LL Approach – Flat LM: To get to the phoneme level a 

flat LM is used: it is simply made up of a list of all 

phonemes presented in the AM, all equiprobable (phone 

loop grammar). 

 

Figure 1. Overall process of voice input for phrase 

selection 

                                                 
1
 http://www.elda.fr/catalogue/en/speech/S0067.html 

2
 This is however a realistic scenario in the case of phrase-

books 
3
 http://nespole.itc.it/ 
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Multiple references: To increase the performance of 

sentence retrieval in the LL approach, we have taken the 

advantage of (a) similarities in pronunciations of French 

words and (b) the phoneme groups generated by recognition 

engine, which allow us to combine all pronunciation into a 

single confusion network. Table 1 shows an example of a 

first person plural future form of a verb “bouger - 

bougerons” (move) where we can have two similar 

pronunciations. 

Table 1. Example of two similar pronunciations of a first 

person plural future form of a verb “bouger” 

bougerons b u ʒ ə R O~ 

bougerons(2) b u ʒ - R O~ 

 

The two pronunciations are combined into a single 

confusion network with an introduction of an epsilon in a 

place of a dash. With this approach, we can lead to a 

pronunciation which does not exist in the original ones due 

to the presence of epsilon. 

 

Phrase retrieval: From the output of the recognition engine 

the edit-distance (Levenshtein distance) between the 

hypothesis and references is calculated. The candidate 

sentences are then returned based on their shortest edit-

distance. The search can be done at word level or at 

phoneme level. If a first sentence candidate matches the 

searched sentence, this will be considered as a hit. Otherwise 

we continue to select the next candidate that appears in a 2
nd

, 

3
rd

 positions so on and so forth. We do not optimize the 

runtime of this retrieval mechanism and its computational 

cost depends on the complexity of the references. 

 

Experimental results: In our experiments, we conducted 

different test scenarios for two test data Fr.Test1 and 

Fr.Test2, but only three important results are shown here. 

The precision is calculated in a window of 6 first candidates; 

since only these results could be shown on the small-size 

screen of smartphones for the ergonomic reason for the 

future phrase-book application. In Figure 2, the first two HL 

approaches are used as our baselines for comparisons. The 

lowest curve represents a HL approach, in which we used an 

in-domain small-size LM (trained on the transcriptions of 

Fr.Test2 only). This shows that among 50% of the cases, a 

correct sentence appears at the first position of the retrieved 

candidates. The precision augments when the selection 

window increases. The curve above the lowest curve also 

represents a HL approach but with a larger-sized 

interpolated LM (described earlier). It shows a slightly 

better result. The top curve is a LL approach with flat LM in 

which multiple references for each sentence are used to 

calculate the edit-distance. They are made of similarities of 

phonemes and phoneme groups. It clearly suggests that this 

method shows the best results among all. It gains a 

significant precision over the two HL approaches. This can 

be explained by some missed recognized words in 

hypothesis for HL approach but not at the low level 

approach, the fuzzy matching (similarities) between 

phonemes proves to be more effective. 

In the test data Fr.Test2 (Figure 3), it is not surprising to see 

that precisions of the HL approaches are significantly better 

than the ones of LL approaches, since LM contains the 

transcription Fr.Test2. But interestingly, the LL approach 

also yields a good precision. And they are well correlated to 

the results of the Fr.Test1 experiment, the precision 

increases when the list of candidates grows. 

 

The experiment results are promising for the low-level 

approach with the usage of multiple references. We will 

discuss their performances at the end of this section. 

 

3.2. Khmer language 

 

We replicated the same experiment on the Khmer language 

as we did for French. Khmer is the official language of 

Cambodia and it is still an under-resourced language. 

We started by collecting a test corpus. The sentences were 

obtained from invented sentences corresponding to 

restaurant situations. We got a corpus of 268 sentences. All 

sentences were then checked and verified by native speakers. 

These sentences were recorded with a normal headphone in 

the same condition as French by a total of 13 speakers. Each 

sentence has an average duration of 2 seconds and we 

obtained a total of 1h40 of recording signal for all speakers. 

The overall phrase-book corpus contains 1033 sentences 

including the 268 recorded sentences plus other sentences 

added to bring confusion during the search process and they 

have been contributed by a group of Cambodian speakers. 

 

 

Figure 2. Precision of correctly retrieved phrases Fr.Test1 

 

Figure 3. Precision of correctly retrieved phrases Fr.Test2 
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Figure 4. Precision of correctly retrieved phrases for Khmer 

and French for single pronunciation reference 

Due to the limitation of Khmer language resources available 

for LM training, we were able to experiment only on the 

low-level (LL) approach, as far as a quick development of 

Khmer voice input is concerned. If the order of magnitude of 

the results is similar to the French LL case, we would 

conclude that our LL approach is useful in the case of low-

resourced language where no LM data is available. 

 

Acoustic Model: We use the same tools to train Khmer AM 

using a Khmer Broadcast News type containing 6h30 sounds 

of speech by 8 speakers (3 females) [7]. The topology is the 

same as that of the French model, except it has only 8 

Gaussian mixtures per state. We use a context-dependent 

acoustic model. To train the model, we use a dictionary 

which is based on the SEALANG
4
 project.  

For the sentence references, it is not yet possible to use 

multiple references, due to the limitation of our 

pronunciation dictionary. The sentence retrieval process is 

done exactly as the one described above for French. 

 

Experimental results: In Figure 4, we obtained a good 

precision for Khmer comparable to that of the LL approach 

for French, where the reference contains only a single 

pronunciation of each word
5
. The curve tends to increase as 

the list of candidate sentences is augmented. It is therefore 

interesting to notice that even a fairly small acoustic model 

can give rise to a fairly good precision despite the different 

nature of training speech data and the nature of test data. 

 

3.3. HL vers. LL complexity and performance 

 

Each experiment was executed 40 times consecutively on 

our Linux server Quad-core in normal load-balancing to 

measure their decoding time. In Table 2, it shows the 

execution time expressed in Real Time Ratio (RTR) of each 

approach for each language and the size of LM. For French, 

the decoding time of the HL large-sized LM approach is 

slightly above the half of the duration of the original signal 

in average. The 2
nd

 column corresponds to the time required 

to decode each utterance for a small-sized LM, it is less  

                                                 
4
 http://sealang.net/khmer/dictionary.htm 

5
 We used a single pronunciation for French in order to 

perform a fair comparison between French and Khmer 

Table 2. Decoding runtime in Real Time Ratio (RTR) 

 HL large-sized 

LM (423K) RTR 

HL small-sized 

LM (15K) RTR 

LL 

RTR 

FR.Test1 0.58 0.47 0.45 

FR.Test2 0.55 0.44 0.42 

KH   0.06 

 

compared to the large-sized approach; hence the size of LM 

matters. The last column is a LL approach runtime; it is also 

slightly better comparing to the two previous ones. Despite 

no clearly significant gain over decoding time among these 

approaches, the LL approach is still more advantageous in 

terms of memory consumption because no LM is required. 

For the Khmer language, the decoding time is very rapid, 

less than its signal duration. This is due to the small size of 

its acoustic model. 

 

4. DISCUSSIONS AND FUTURE WORKS 

 

The results of experiments suggest that the LL approach is 

more efficient and fast enough. It shows a great potential 

that can be further adapted and optimized for smartphones. 

More tuning (beam width etc.) is needed in order to reduce 

the decoding time. The small-sized acoustic model for 

Khmer also proves to be very efficient in our context of 

under-resourced languages (and no language model data 

available) and the small-size in-domain language model can 

also be considered in terms of accuracy. We need also to 

consider the time required to retrieve sentences; this will 

affect the overall performance and it is a trade-off between 

the accuracy and performance. 

For the future works, it is also interesting to consider other 

possibilities of using a single multilingual acoustic model 

which can be applied on several closely related languages to 

Khmer such as Thai, Laos and Vietnamese. If it yields 

similar or better results, it can lead to the use of a generic 

model that can cover a group of languages sharing 

acoustically similar characteristics. Another important factor 

to mention is the size of acoustic model which also has an 

impact on the performance of the system considering the 

future applications embedded on small hand-held devices. 

 

5. RELATED WORK 

 

In the literature, we can find some similar work which tried 

to address the problem of speech-to-speech translation on 

portable devices, which is different from our case – we focus 

on the realization of a multimodal multilingual phrasebook 

running on smartphones but not on speech translation. 

Among those systems, we can categorize them into two 

groups: (1) the systems using a portable device as a terminal, 

where the recognition is done on the server side: Med-SLT 

[8], Google Mobile App [9] and (2) systems with onboard 

speech recognition (MASTOR [10], Speechalator [11]). 
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6. CONCLUSION 

 

We have presented in this paper a high and a low level 

approach used in ASR. The low level approach is promising 

despite more optimization and adaptation needed in order to 

embed this technology into our future phrasebook systems 

running on smartphones. 
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ABSTRACT 
 
In speech technology, we found several challenges in 
automatic speech transcription system for multilingual 
conferences or meetings. Firstly, the dialog occurs between 
native and non-native speakers. Secondly, the non-native 
speakers come from different parts of the world (e.g., 
English spoken by native French speakers or English spoken 
by native Vietnamese speakers, etc.). Thirdly, no data or a 
limited amount of data is available to bootstrap the acoustic 
modeling. This paper presents some autonomous online and 
offline acoustic model adaptation approaches, which 
required no additional data in the adaptation process, to deal 
with above challenges as well as to improve the 
performance of the phone recognizers used for automatic 
transcription purpose. Experiments show that our adaptation 
approach (online interpolation with MLLR based on PR-
VSM) can provide about 4% absolute gain in Phone 
Accuracy Rate (PAR) compared to the multilingual baseline 
system and it is even better than the performance of the 
supervised monolingual systems. 
 
Index Terms— ASR, multilingual acoustic modeling, 
language label voting, PR-VSM, MLLR. 
 
 

1. INTRODUCTION 
 
With maturing speech technology and the need of global 
communication, automatic transcription of multilingual 
conference speech is becoming a topic of interest. In 
multilingual meeting transcription, we find many interesting 
challenges: 1) How can we improve the system performance 
while both native and non-native utterances are involved? 2) 
Non-native speaker with different speaking styles and 
accents is another concern. For example, English spoken by 
French speakers is different from English spoken by 
Vietnamese speakers. According to [1], speakers borrow 
acoustic features from their native languages in their non-
native speech. 3) It is difficult to find enough data with the 
same nature of multilingual meeting to bootstrap the 

acoustic modeling. So in this case, what kind of adaptation 
should we use to improve the system performance? 

In this paper, we investigate on multilingual acoustic 
model (Mult-AM) adaptation for multilingual meeting 
transcription in which 3 languages are involved: English 
(EN), French (FR) and Vietnamese (VN). We focus our 
Mult-AM adaptation in an autonomous fashion. Here, 
“autonomous” means that the acoustic model is 
automatically readapted itself before the final decoding for 
an utterance or a group of utterances. Two reasons for using 
the autonomous adaptation process are: 1) no external data 
is available for adaptation; 2) the adaptation is made 
automatically during the decoding process based on what we 
call a language observer. The goal of the language observer 
is to assign a likelihood to each language candidate and to 
use this information during the adaptation process. To the 
best of our knowledge, the observer-based approach that we 
propose has not been studied yet for acoustic model 
adaptation in multilingual ASR. In the adaptation process, 
three online and two offline adaptation acoustic modeling 
approaches are studied. Online adaptation means that only 
the current utterance is available for the current adaptation 
process. On the other hand, offline adaptation can use both 
current utterance and all the data in the document history for 
the current utterance considered. 

This paper is organized as follows. In Section 2 we 
present the multilingual meeting corpus setup from which 
we extract the test data. The baseline systems, the 
autonomous adaptation process, the language observer and 
the acoustic model adaptation are detailed in Section 3, 4, 5 
and 6 respectively. In Section 7 we provide some 
experimental results and conclude in Section 8. 
 

2. MULTILINGUAL MEETING CORPUS SETUP 
 
We extract the test data from the "MICA meeting speech 
corpus" that was recorded at the meeting room of MICA1 
research center. This corpus contains around 3h30mn of 
                                                 
1 www.mica.edu.vn 
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transcribed speech in 4 languages EN (English), FR 
(French), VN (Vietnamese) and KH (Khmer: Cambodia’s 
language). This multilingual meeting corpus involves the 
speech from 9 speakers (3 French, 3 Vietnamese and 3 
Cambodian). In the corpus dialog, we discover that each 
speaker can use their native or non-native languages to 
communicate according to whom they speak with. Table 1 
presents the distribution of the languages spoken by 
speakers with different native languages. 
 
 Lang-KH Lang-VN Lang-FR Lang-EN 
Spk-KH 570 452 1822 3452 
Spk-VN 0 1147 577 255 
Spk-FR 0 0 2797 1370 
Table 1. Duration coverage matrix (in second) of languages 
spoken by different native speakers. 
  
In Table 1, we notice that non-native speech represents 64% 
of total speech in the corpus. Moreover, a speaker generally 
keeps speaking a language unless another speaker starts a 
new language in the dialog. It means that, in MICA meeting 
speech corpus, language switching probably occurs when 
the active speaker in the dialog changes. So we segmented 
(manually) the speech data based on speaker turns so that 
each speech segment contains one language only (native or 
non-native but no code-switching).  
 In this paper, we extract only the native and non-native 
speech data of EN, FR and VN from MICA speech corpus 
and we select only the utterances longer than 3 seconds for 
our experiments. Table 2 presents the quantity of testing 
data that will be used in the experiments. 
 
Language Native/Non-native speech Test Data 
EN EN_fr 715 

EN_vn 56 
FR FR_fr 251 

FR_vn 279 
VN VN_vn 219 

TOTAL 1520 
Table 2. Quantity of testing data (value in seconds) used in 
our experiments. 
 
Note that, in the content of Table 2, the term in capital 
letters denotes the language spoken by the speakers in the 
speech segments and the term in small letters denotes the 
dominant language of these speakers (for example, EN_fr 
means English spoken by native French speakers). 
 So finally, we have a test data set of around 26 minutes 
where the non-native speech represents 69% of total test 
speech. 
 

3. BASELINE SYSTEM 
 
All recognition experiments described in this paper use the 
Sphinx3 decoder [2]. Our baseline system is a multilingual 

acoustic-phonetic recognizer (Mult-PR) of the three 
languages (EN, FR, and VN). The multilingual acoustic 
modeling (Mult-AM) is created by combining the existing 
acoustic models of EN, FR and VN trained respectively on  
WSJ corpus [3], BREF120 corpus [4], and 
VNSpeechCorpus [5]. The combination of acoustic models 
is simply made based on the ML-sep combination method 
[6]. It means that there is no data to share across language 
among the three monolingual acoustic models. Moreover, 
our Mult-AM is a context independent acoustic model that 
contains 124 acoustic units: EN (40 phonemes), FR (43 
phonemes) and VN (41 phonemes). Each acoustic unit is 
represented by a HMM of 3 states with 16 Gaussian 
components per state. In this article, we focus definitely on 
the acoustic model adaptation to improve the performance 
of acoustic-phonetic speech transcription system. So, for 
multilingual language modeling and lexical modeling we 
simply create respectively a flat LM of phones (phone loop 
grammar) and a phone list, for the 124 phonemes.  
 
 
 
 
 
Fig. 1.  An example of baseline system output. 
 
In Fig.1, each phoneme, in the baseline system output, is 
presented in SAMPA format proposed by John Wells [10] 
and is appended with the label of language that the phoneme 
belongs to. With this output observation, we believe that we 
can attempt to identify the spoken language as well as the 
native language of the speaker in the test utterance. Our 
autonomous adaptation concept also starts from this initial 
observation. 
 

4. AUTONOMOUS ADAPTATION PROCESS 
 
In Fig.2, U1,…,Un are the speech utterances extracted from 
MICA multilingual meeting corpus mentioned in Section 2 
(each utterance contains only one spoken language). The 
language observation module (language observer) provides 
the language information of each utterance by generating the 
likelihood of every language based on the first pass 
hypothesis of the utterance. Then the adaptation process is 
made by using the language information (language scores) 
generated by previous module (language observation). 
Finally, the second pass decoding uses the adapted acoustic 
model to decode the utterance. 
 So, the language observation is the key module in the 
autonomous acoustic model adaptation process. 
 
 
 

Multilingual acoustic-
phonetic recognizer 

/ow_EN/ /k_VN/ 
/ey_EN/ /s_EN/  
/EE_FR/ /b_VN/  
/j_FR/ /in_FR/ Ok, c’est bien ! 
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Fig. 2.  Autonomous Mult-AM adaptation process. 
  

5. LANGUAGE OBSERVATION 
 
It is important to emphasize the fact that language 
observation is more than just a spoken language 
identification module. Similar to spoken language 
identification, language observation assigns a set of 
language likelihood scores for each test speech segment. All 
the language likelihood scores will be further considered 
during the acoustic model adaptation process. In our 
previous work [13], we believe that language observer gives 
not only the information about the spoken language in the 
speech segment but also the native language of the speaker. 
For example, if the language observer gives: P(EN) = 0.5, 
P(FR) = 0.4 and P(VN) = 0.1; then the speech segment may 
be in English spoken by a French speaker (or vice-versa). 
 We propose here a simple language observer approach 
called Language Label Voting (LLV) and compare its 
language classification performance with a phonotactic 
language recognition approach called Phone Recognizer 
followed by Vector Space Modeling (PR-VSM) [7][8]. 
 
5.1. Language Label Voting (LLV) 
 
Our language label voting provides language likelihood 
scores for an utterance based on the estimate of phoneme 
sequence in the first-pass decoding (Fig.2) by the following 
formula: 
 

( )
( ) i

i

n L
P L

N
=  

where P is the language likelihood score, Li is one of the 
three languages (EN, FR or VN), n is the number of 
phonemes labeled by language Li found in the phoneme 
sequence which is the result of the first-pass decoding and N 
is the total number of phonemes found in that phoneme 
sequence.  
 For example, if "h_EN e_EN l_FR o_EN" (“_EN” and 
“_FR” denote the language that the phoneme belong to) is 
the phoneme sequence estimated in the first-pass decoding 

when decoding a speech utterance "hello". With the formula 
(1), LLV produces the language classification as the 
following: P(EN)=3/4, P(FR)=1/4 and P(VN)=0. 
 
5.2. Phone Recognizer following by Vector Space 
Modeling (PR-VSM) 
 
As an alternative to our simple LLV approach, a phonotactic 
language recognition approach called Phone Recognizer 
followed by Vector Space Modeling (PR-VSM) [7][8] was 
also used. The multilingual acoustic-phonetic recognizer 
(baseline system) is used as the phone recognition frontend 
in the PR-VSM system. Each vector space model (VSM) 
representing a language is trained using 2 hours (per 
language) of the following corpora: WSJ (EN), BREF120 
(FR) and VNSpeechCorpus (VN). 
 

6. MULTI-LINGUAL ACOUSTIC MODEL 
(MULT-AM) ADAPTATION 

 
We recall that the objective of the autonomous adaptation is 
to automatically readapt the acoustic model based on the 
language observer without using any external data. So, in 
the Mult-AM adaptation module, we study 3 online 
adaptation approaches and compare their performances with 
2 offline adaptation approaches. We compared two online 
autonomous acoustic model adaptation approaches (INTER 
and INTER-MLLR), which are using the language observer 
not only as a language identification system, with a 
conventional online unsupervised acoustic model adaptation 
approach: MLLR (Section 6.1.1). Moreover, our objective 
to study autonomous online and offline adaptation is to 
compare the performance of the online adaptation based on 
language observer (INTER and INTER-MLLR) with the 
offline adaptation based on language identification (PM-
MLLR and SLI-MLLR). 
 
6.1. Online acoustic model adaptation 
 
6.1.1. Maximum likelihood linear regression (MLLR) 
MLLR is simple and known to be robust for unsupervised 
adaptation as well as effective for small amount of 
adaptation data [9]. The first pass hypothesis of the current 
decoding utterance is used to generate the transformation 
matrices so that it can produce a new adapted mean of the 
original acoustic modeling. In this paper all MLLR 
adaptations are based on a global mean-only transformation. 
 
6.1.2. Acoustic model interpolation (INTER) 
Because the acoustic model interpolation is useful for non-
native ASR and non-native speech often exists in 
multilingual meeting data (see Section 2), we also 
investigate adaptation using non-native speaker cross-
lingual acoustic model merging and interpolation (hybrid-

(1)
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interpolation) [1], which is one of the most useful adaptation 
techniques in non-native ASR to readapt the acoustic model 
before decoding each speech segment. In this case, the 
acoustic model of the most likely language generated by 
language observation is considered as the target AM and the 
language likelihoods are used as the interpolation weights. 
Because we have two source models and only one target 
model, we propose to do the hybrid interpolation in two 
times successively where 2 acoustic models (the target AM 
and one of the source AMs) are interpolated at each time. 
Finally the adapted multilingual acoustic model is made by 
combining the two interpolated acoustic models based on 
the LM-sep combination method [6] as explained in Section 
3. 
 In each hybrid interpolation process, when the Euclidean 
distance between a Gaussian in certain state of the target 
model (referred to as target Gaussian) and the associated 
Gaussian in certain state of the source model (referred to as 
source Gaussian), is below a threshold, their means, 
variances and mixture weights will be interpolated 
(Equation 2). Otherwise, merging is performed: for the 
source Gaussians that are far from their associated target 
Gaussians (Equation 3) or for those target Gaussians without 
any associated source Gaussian (Equation 4). In merging 
cases, their mixture weights will be reduced by the 
interpolation weight. The distance threshold can be 
calculated for example by measuring the average distance 
among the Gaussians, and then multiplying it with a 
constant. We finally formulate the hybrid interpolation of 
two acoustic models as follows: 
 

, , , ,(1 ( )). ( ). , ,n ew sn i tg sn i sc sn sc sng P L g P L g g= − + ≠ ∅  

, ,( , )tg sn sc snd g g d is t≤        (2) 

, , , , ,, ( ) . , ,n ew sn sc sn n ew sn i sc sn sc sng g P L gω ω= = ≠ ∅  

 , ,( , )tg sn sc snd g g dist>        (3) 

, , , , ,, (1 ( )). ,new sn tg sn new sn i tg sn sc sng g P L gω ω= = − = ∅    (4) 
where gnew,sn represents the interpolated/ merged Gaussian, 
gtg,sn is the target Gaussian, and gsc,sn is the source Gaussian. 
P(Li) is the interpolation weight (one of the source language 
likelihoods (Equation 1)), ω is the mixture weight for the 
Gaussian. d(.) is a distance function and dist is a threshold 
distance. 
 We also study the acoustic model interpolation followed 
by MLLR (INTER-MLLR) by simply applying the MLLR 
adaptation to the adapted mult-AM based on the above 
hybrid interpolation approach. 
 
6.2. Offline acoustic model adaptation 
 
6.2.1. Same language identification MLLR (SLI-MLLR) 
The adaptation process is made in 3 successive steps: 1) for 
all utterances already decoded, we group the utterances 

according to the language identification tag provided by the 
language observation module (totally 3 groups: EN, FR and 
VN; 2) we use the speech segments and the first-pass 
decoding hypothesis of each language group for estimating 
its MLLR transform; 3) finally, we decode the current 
utterance by using the adapted Mult-AM. 
 
6.2.2. Phone mapping MLLR (PM-MLLR) 
The only difference between PM-MLLR and SLI-MLLR is 
that, PM-MLLR maps every phoneme from different 
languages in the estimated phone sequence to the similar 
phoneme of the most likely language identified by the 
language observation module. So we need to create 6 
phoneme substitution tables to map between three languages 
(EN, FR and VN). Because the phoneme substitution result 
based on statistical phoneme confusion matrix [11] is from 
around 20% to 30% of wrong classification, we create the 
phoneme substitution tables based on the IPA chart and other 
studies [12]. For phonemes without their mapping in the IPA 
chart, phoneme confusion matrix results are used. 
 For example, if the first-pass decoding hypothesis of an 
utterance is "h_EN e_EN l_FR o_EN", the language 
information of that utterance provided by language observer 
is English, so the FR-to-EN phone substitution is called. It 
means that PM-MLLR maps the phone /l_FR/ to the similar 
phone in English /l_EN/.  After the mapping process, PM-
MLLR performs the same 3-step adaptation process as in 
SLI-MLLR. 
  

7. EXPERIMENTAL RESULTS 
 
7.1. Baseline multilingual system Vs. monolingual phone 
recognizers 
 
Table 3 compares the Phone Accuracy Rate (PAR) between 
the baseline system and the other three monolingual phone 
recognizers (Mono-PR) applied on the right corresponding 
language. The comparison is made by using the testing data 
mentioned in Table 2 (assuming a perfect spoken language 
identification result is available in the case of monolingual 
phone recognizers). In all the experiments of this paper, the 
language label of the phone outputs is removed before 
evaluating the system performance. The language label of 
the phonemes is used only in the language observation 
module. 
 
Native/Non-native speech Baseline Mono-PR 
EN_fr 39.8 44.1 
EN_vn 38.5 40.7 
FR 41.8 48.7 
FR_vn 40.8 44 
VN 43.3 50.3 
AVERAGE 40.84 44.56 
Table 3. Baseline Vs. Mono-PR based on PAR [%]. 
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It is important to recall that the test data contains 69% (as 
shown in Table 2) of non-native speech which explains why 
lower PARs are achieved in the monolingual phone 
recognizers as well as the baseline system. Moreover, the 
overall difference in PAR between Mult-PR (baseline 
system) and Mono-PR is not too big (< 4%). 
 
7.2. Language observation: LLV versus PR-VSM 
 
Native/Non-native speech LLV PR-VSM 
EN_fr 94.34 89.68 
EN_vn 66.67 61.9 
FR 89.28 96.43 
FR_vn 0 17.39 
VN 58.62 50.28 
AVERAGE 68.83 69.18 
Table 4. LLV Vs. PR-VSM based on the spoken language 
identification accuracy [%]. 
 
As shown in Table 4, the performance of PR-VSM and LLV 
approaches are very comparable in term of spoken language 
identification. Moreover, English spoken by French speaker 
outperforms significantly English spoken by Vietnamese. 
On the other hand, the identification performance of French 
spoken by Vietnamese is poorer compared to other 
languages because the involved speakers have poor 
pronunciation knowledge of French language. So we could 
probably conclude that the identification of language is 
based not only on the spoken language but also on the 
speaker origin as well as on the speaker knowledge of the 
spoken language. 
  
7.3. Acoustic model adaptation: Online Vs. Offline 
 
Non-native/ 
native speech Baseline 

ONLINE OFFLINE

MLLR INTER INTER- 
MLLR 

SLI- 
MLLR

PM- 
MLLR

EN_fr 39.8 39.6 45.7 45.7 41.8 42.7 
EN_vn 38.5 38.2 43.9 43.7 35.2 41.65 
FR 41.8 43.1 40.7 41.3 43.4 44.3 
FR_vn 40.8 41.3 38.3 39.6 39.5 41.2 
VN 43.3 43.5 42.85 43.15 41.1 37.3 
AVERAGE 40.84 41.2 44.22 44.68 41.96 42.38 
Table 5.a. PAR [%] of various adaptation techniques (using 
PR-VSM observer) 
 
Non-native/ 
native speech Baseline 

ONLINE OFFLINE

MLLR INTER 
INTER- 
MLLR 

SLI- 
MLLR 

PM- 
MLLR 

EN_fr 39.8 39.6 47.1 47.6 42.1 44.8 
EN_vn 38.5 38.2 46.3 46.3 39.5 39.4 
FR 41.8 43.1 40.6 41.3 44.8 45.7 
FR_vn 40.8 41.3 44.95 44.95 43.15 43.7 
VN 43.3 43.5 42.1 43.1 44.9 46.3 
AVERAGE 40.84 41.2 45.76 45.96 44.2 44.94 
Table 5.b. PAR [%] of various adaptation techniques 
(oracle case of language observer) 

Table 5.a presents the system performance by using the PR-
VSM approach as the language observation module. 
  On the other hand, Table 5.b presents the system 
performance by using perfect language identification (oracle 
case). In the oracle case, the interpolation is always made 
based on the language likelihood generated by the PR-VSM 
observer except that the target language is not the most 
likely language identified by the language observation 
module For example, if the utterance is English language 
but PR-VSM produces the language classification as 
P(FR)=0.5, P(EN)=0.4 and P(VN)=0.1; in the oracle case, 
English is the target language (not French language) while 
the others are considered as source languages. Finally the 
interpolation is made by using the source language 
likelihood (P(FR) and P(VN)) as the source language 
weights in the acoustic model adaptation process (Equation 
2). 
 With the adaptation performance presented in Table 5.a 
and 5.b, we can make the following comments: 
 - The system performance depends on the performance 
accuracy of the language observer. For instance, in Table 
5.a, most of the adapted acoustic models for the non-native 
French spoken by Vietnamese degrade the system 
performance comparing to the baseline. But in the oracle 
case of language observation (Table 5.b), all the systems 
that use the adapted acoustic models for the non-native 
speech FR_vn outperform significantly the baseline system; 
 - Meanwhile, online interpolation-based adaptation 
improves significantly the system performance with non-
native speech utterances but degrades the performance with 
native speech; this result shows, however, that the concept 
of autonomous adaptation, has a strong potential for 
decoding non-native speech of unpredictable origin. 
 - INTER-MLLR adaptation with PR-VSM based 
language observation (Table 5.a) provides better average 
performance than the monolingual system, in which perfect 
spoken language identification is considered on all 
utterances before decoding. This confirms that for non-
native speech, making a hard decision on the language of 
the utterance, in order to choose the corresponding acoustic 
model, is not the best approach. Alternatively, the method 
we proposed suggests that soft decisions based on language 
observer outputs are useful for online multilingual acoustic 
model adaptation. 
 

8. CONCLUSION 
 
In this paper, we explored an autonomous approach for 
acoustic model adaptation in the context of meeting 
transcription. The advantage of this approach is that it 
automatically adapts the multilingual acoustic models 
without using any external data. Moreover, our adaptation 
approach (Interpolation followed by MLLR based on PR-
VSM) can provide more than 4% absolute improvement of 
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the PAR compared to the baseline system and it is even 
better than the performance obtained by supervised 
monolingual systems. 
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ABSTRACT 
 

This paper presents analysis and modeling of geminate 
duration in Amharic Text-to-Speech (AmhTTS) synthesis 
system. AmhTTS is a parametric and rule-based system that 
employs a cepstral method. The system uses a source filter 
model for speech production and a Log Magnitude 
Approximation (LMA) filter as the vocal tract filter. 
Fundamental speech units of the system are syllables. 
Gemination in Amharic is one of the distinctive features of 
the language which plays a crucial role for the naturalness of 
synthesized speech sound. Therefore, in our study we 
mainly consider geminates and models the duration in 
AmhTTS system. The effectiveness of the durational model 
employed in our system was evaluated using 200 words (of 
which 40% of words containing one or more geminated 
syllables and 75% of the words containing sixth order 
syllables) and 5 sentences (with one or more words with 
geminated syllables) and we found promising results. The 
listening test results showed that accurate estimation of 
geminates duration is crucial for intelligibility and natural 
sounding of AmhTTS system. Our modeling greatly 
improved the intelligibility and naturalness of the system. 
 

Index Terms— Amharic, geminates, speech synthesis, 
duration, cepstrum. 
 

1. INTRODUCTION 
 
Text-to-Speech (TTS) synthesis is a process which 
artificially produces synthetic speech for various 
applications. In TTS synthesis, naturalness is the main goal 
and it can be achieved mainly by incorporating prosodic 
features which include duration of segments, intonation 
patterns and stress. Particularly modeling the segmental 
duration based on the context is crucial. The goal of our 
research is also to predict and model the duration, mainly 
the duration of geminates, in Amharic Text-to-Speech 
synthesis system so as to improve the naturalness.  
 

 

In TTS systems, accurate estimation of segmental 
duration is one of the most important factors that determine 
the naturalness of synthesized speech. So far, many 
researches have been conducted in this area and interesting 
results are obtained for various languages [1-3]. However, 
until now the task of duration modeling is still challenging 
mainly because the features considered for modeling 
duration are limited to those features that can be 
automatically derived from the input text only. Moreover, it 
is highly language dependent. For instance, in Amharic 
language geminates are unpredictable and cannot be driven 
from input text and this makes the automatic duration 
modeling in Amharic TTS system challenging. In our study 
we located the geminates by looking up Amharic-English 
dictionary which shows geminates by doubling Latin letters. 
For example, the word ገና is transcribed as /genna/ where 
the doubling shows the consonant /ና/ is geminated. 

Amharic is the official language of Ethiopia. In 
Amharic language duration of geminates plays critical role 
for naturalness of synthetic speech. Unlike English language 
in which the rhythm of the speech is mainly characterized 
by stress (loudness), rhythm in Amharic is mainly marked 
by longer and shorter syllables depending on gemination of 
consonants, and by certain features of phrasing [4]. 
Gemination plays a key role in distinguishing words from 
one another, in the grammar of verbs and for proper 
pronunciation (naturalness) of speech.   

However, so far, no research has been conducted on the 
acoustic of Amharic geminates.  In general, Amharic is one 
of the least supported and least researched languages in the 
world. Although, recently, the development of different 
natural language processing (NLP) tools for analyzing 
Amharic text has begun, it is often very far comparing with 
other languages [5]. Particularly, researches conducted on 
the language technologies, such as speech synthesis is very 
limited. To our knowledge, so far there is only one 
published work [6], and one commercially available system 
[7] in the area of speech synthesis but no attempts have been 
made in analysis and modeling of prosody of Amharic in 
general and particularly in the area of modeling duration of 
geminates.  
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This paper reports the preliminary results of analysis 
and modeling of geminates in Amharic TTS system which is 
the first published work. The study is part of our ongoing 
work on prosody modeling (mainly on automatic prediction 
of geminates duration) for Amharic TTS synthesis system.  

     
  2. AMHARIC LANGUAGE’S OVERVIEW 

 
Amharic (አማርኛ), the official language of Ethiopia is the 
Semitic language with the greatest number of speakers after 
Arabic and it has its own non-Latin based syllabic script 
called “Fidel” or “Abugida”. The orthographic 
representation of the language is organized into orders 
(derivatives) as shown in Fig.1. Six of them are CV (C is a 
consonant, V is a vowel) combinations while the sixth 
orders are consonants only. In total there are 32 consonants, 
7 vowels with 7x32= 224 syllables and 28 phonemes. The 
phonemes are reduced to 28 (see the APENDIX) because of 
the redundant graphemes that represent the same sound.  
 

   Figure 1:  Amharic orthographic representation (7 orders) 
    

Amharic has its own characterizing phonetic, 
phonological and morphological properties. Some of the 
striking features of Amharic phonology that gives the 
language its characteristic sound when one hears it spoken 
are the following: A weak indeterminate stress; the presence 
of glottalic, palatal, and labialized consonants; the frequent 
gemination of consonants; the frequency of central vowels; 
and the use of an automatic helping vowel [4].  

Among these, in our study [8] we found geminates to be 
very critical for naturalness of synthesized speech. 
Gemination in Amharic is one of the most distinctive 
characteristics of the cadence of the speech, and also caries 
a very heavy semantic and syntactic functional weight [9]. 
The rhythm of speech in Amharic is mainly marked by 
longer and shorter syllables depending on gemination of 
consonants.  Amharic is one of the typical examples of the 
world languages for having many consonants except 
consonant /h/ as geminate. A study of a survey of 45 
languages with geminates also reported Amharic as one of 
the few languages having fricatives, liquids, and glides 
geminates which are less likely to occur as geminate in most 
languages [10]. In Amharic there are few comparative 
words which differ only by presence or absence of geminate 
consonants (see Table 1) and there are also many non-
comparative words with one or more geminate consonants. 

 

Table 1:  Minimal pair of words with singleton vs. geminate 
consonants 

Am Eng meaning Am Eng meaning 
 
ገና 

/gena/  (still/yet)  
ከፋ 

/kefa/    (place name) 
/ge’na/ (christmas) /ke’fa/ ( w o r s e ) 

 
ለጋ 

/lega/   (fresh)  
ስፊ 

/sefii/   (tailor) 
/le’ga/ (hit) /se’fii/ (wide) 

 
ዋና 

/wana/  (swimming 
ሽፍታ 

/sxixfixta/  (rebel) 
/wa’na/ (main/core) /sxix’fixta/  (rash) 

    Am: Amharic orthography Eng: English transcription 
 

Gemination in Amharic is either lexical or 
morphological. As a lexical feature, it cannot be predicted. 
For instance, ገና may be read as /gena/ meaning 'still/yet', or 
/genna/ meaning 'christmas' as shown in Table-1. Native 
speakers easily perceive the difference of such words from 
context, but in speech synthesis it is very difficult to identify 
such words from the input text. As a morphological feature 
gemination is more predictable in the verb than in the noun 
[9]. However, the complex morphology of the languages 
makes the prediction very challenging. And so far no 
research has been conducted in this issue. In general, the 
lack of the orthography of Amharic to show geminates is the 
main problem in speech synthesis. In our study we 
employed a manual gemination insertion mechanism using 
apostrophe (’) marks as shown in Table 1, and modeled the 
duration of geminates. In our system the gemination and 
other marks are defined externally and can be easily 
changed. 

 
3. THRESHOLD DURATION OF CONSONANTS 

BETWEEN SINGLETON AND GEMINATE     
  

It has been shown that the durational difference between 
singletons and geminates varies widely from language to 
language.  

From phonological point of view, it has been shown 
that Amharic gemination (doubling of consonants) occurs 
when the consonants production takes longer time than the 
non-geminated (‘single’) consonants [4, 9, and 12]. 
However, the actual prolongation of geminates for different 
groups of consonants (stops, fricatives, nasals etc.) has not 
been determined and no research has been conducted from 
acoustical point of view. Therefore, in order to properly 
model duration of geminates, it is very important to study 
threshold duration between singletons and geminates of 
different consonant groups.  

In this section, we discuss the results of an experiment 
performed to determine the threshold duration of consonants 
between the singletons and geminate consonants.   
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3.1. Stimuli 
Using six pair of comparative words shown in Table 1, we 
performed two experiments to determine the threshold 
duration between singleton and geminates of voiced and 
unvoiced consonants. Three words with voiced stops /g/, /n/, 
and three with unvoiced fricative consonant /f/ were used. 
We considered only pair of words with continuant (voiced 
and unvoiced) consonants because we could not find 
comparative words with non-continuant (voiceless stops and 
glottallized) consonants.  

For both experiments, we prepared 16 types of data for 
each word, among which, twelve were synthesized by 
repeating the parameters of the singletons in unstressed 
words as shown in Table 2. And two were analysis-synthesis 
words with singleton and geminate consonants and two 
original speech words were also added for comparison 
purpose. In the synthesized words, the parameters of the 
singleton consonant of unstressed word is repeated one 
frame per data. The conditions of repetition are shown in 
Table 2. The duration of each data from DATA(c) - 
DATA(n) has increased by an interval of 10ms. These are: 
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and 120 [ms] 
plus the duration of singleton consonants in unstressed 
words. 

Table 2: Duration settings of the files tested for 
determining the threshold duration 

Stimulus Duration Setting (ms) 
DATA (c) 10 
DATA (d) 20 
DATA (e) 30 
DATA (f) 40 
DATA (g) 50 
DATA (h) 60 
DATA (i) 70 
DATA (j) 80 
DATA (k) 90 
DATA (l) 100 

DATA (m) 110 
DATA (n) 120 

 
3.2. Procedure of the listening test 
 
Three native speakers, two male and one female ranged in 
age from 25-40, performed the listening test in a sound 
proof room using a head phone. All listeners have normal 
hearing ability and they are not aware of the difference 
between stress and geminates. Each sound was played once 
to each listener randomly in 2-s interval and the listener 
listened to the sound and select what he/she perceived 
among the list of three pairs of words using a listening test 
program. Each listener performed the listening test ten times 
and each word data was presented 3x10=30 times.  
 
 

3.3. Results and discussion 
 
Upon completion of experiments, we tried to determine the 
threshold duration between singletons and geminate 
consonants in unstressed and stressed words respectively. 
The graphs in Fig.2 and 3 show the average identification 
perception and response time for voiced and unvoiced 
consonants. Each point represents a mean of responses over 
the three listeners. The filled squares and diamond show the 
percentage of /Stressed/ or /unstressed/ responses to each of 
the twelve stimuli in the interval with duration. The filled 
triangles represent the corresponding latency of 
identification response to each stimulus. 

Examination of both figures indicates that the 
identification is quite consistent. In both graphs listeners 
partitioned the stimulus into two groups (stressed or  
unstressed). The categorical boundary or crossover point in 
identification is about 45 ms for voiced words and 55 ms for 
unvoiced words. Inspection of the response time (RTs) for 
identification shows that listeners are slowest for stimuli 4 
in the case of voiced words and slowest for stimuli 5 in the 
case of unvoiced words, and fastest for the other stimuli, 
which are within phonetic categories.  We observed that the 
perception of durational is categorical between stressed and 
unstressed words. Listeners regularly perceived the different 
stimuli as being instances of either of the two words 
(stressed or unstressed). In both figures, we can see that the 
more the duration increase to the right, the more the words 
perceived as stressed. Fig.2 shows that the average threshold 
duration of consonants for voiced stops is 50ms, and Fig.3 
shows that the average threshold duration of consonants for 
unvoiced fricatives is 70ms.  

 

 
Figure 2: Average identification perception for the 

interval duration increase with average response time during 
identification for unvoiced consonants 
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Figure 3: Average identification perception for the 
interval duration increase with average response time during 

identification for voiced consonants 
 

 
4. AMHARIC TTS SYSTEM 

 
In TTS systems, the process of converting written text into 
speech contains a number of steps. In general, TTS system 
contains two components: the Natural Language Processing 
(NLP) and the Digital Signal Processing (DSP). Similarly 
AmhTTS has two components. AmhTTS is a parametric and 
rule-based system that employs a Cepstral method and uses 
a Log Magnitude Approximation (LMA) filter. The system 
is designed based on the general speech synthesis system 
[11]. The input is Amharic text, and the output is synthetic 
speech. The text analysis subsystem converts Amharic text 
into a sequence of mapped characters, and then this 
sequence is used to get information for synthesis. The 
speech synthesis subsystem generates speech from pre-
stored parameters under the control of systems rules. The 
database contains data for rules and syllable parameters with 
suitable formats. Fig. 4 shows the design of Amharic speech 
synthesis system. 
 
4.1. Text Analysis 
The text analysis subsystem extracts the linguistic and 
prosodic information from the input text. The program 
iterates through the input text and extracts the gemination 
and other marks (work interval and end marks) and then 
converts into a sequence of syllables using the 
syllabification rule. The letter-to-sound conversion has 
simple one-to-one mapping between orthography and 
phonetic transcription. As defined by Baye [12] and others, 
Amharic can be considered as a phonetic language with 
relatively simple relationship between orthography and 
phonology. 

 

 
 
 
 
 
 
 
 

Figure 4. Amharic Speech Synthesis System 
4.2. Speech Analysis and Synthesis systems 
As a speech database, 196 Amharic syllables are collected 
and their sounds are prepared by recording on digital audio 
tape (DAT) at a 48 kHz sampling rate and 16-bit resolution. 
After that, they are down-sampled to 10 kHz for analyzing. 
All speech units are recorded in isolation with a natural 
reading. We used syllables as a basic unit because syllables 
are better in modeling the co-articulation effects than 
smaller units. Moreover the writing system is also syllabic. 

Then, the recorded speech sounds were analyzed by the 
analysis system. The analysis system adopts short-time 
cepstral analysis with frame length 25.6 ms and frame 
shifting time of 10 ms. A time-domain Hamming window 
with a length of 25.6 ms is used in analysis. The cepstrum is 
defined as the inverse Fourier transform of the short-time 
logarithm amplitude spectrum. Cepstral analysis has the 
advantage that it could separate the spectral envelope part 
and the excitation part. The resulting parameters of speech 
unit include the number of frames and, for each frame, 
voiced/unvoiced (V/UV) decision, pitch period and cepstral 
coefficients c[m], 0 £ m £ 29. The speech database contains 
these parameters as shown in fig.4.  

Finally, the speech synthesis subsystem generates 
speech from pre-stored parameters under the control of the 
prosodic rules. For speech synthesis, the general source-
filter model is used as a speech production model as shown 
in fig.5. The database contains data for rules and syllable 
parameters with suitable formats. Each syllable’s parameters 
have a size of 2–6 KB. To make the system more generic, 
we use external definitions of interval marks and a character 
table code. The synthetic sound is produced using Log 
Magnitude Approximation (LMA) filter as the system filter, 
for which cepstral coefficients are used to characterize the 
speech sound.  

The LMA filter presents the vocal tract characteristics 
that are estimated in 30 lower-order quefrency elements. 
The LMA filter is a pole-zero filter that is able to efficiently 
represent the vocal tract features for all speech sounds. The 
LMA filter is controlled by cepstrum parameters as vocal 
tract parameters, and it is driven by fundamental period 
impulse series for voiced sounds and by white noise for 
unvoiced sounds. The fundamental frequency (F0) of the 
speech is controlled by the impulse series of the 
fundamental period. The gain of the filter or the power of 
synthesized speech is set by the 0th order cepstral 
coefficient, c [0].  
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Figure. 5: Diagram of Speech Synthesis Model 

 
 
4.3. Prosody Modeling  
 
Prosody is a vital component in text-to-speech systems and 
preparation of appropriate prosodic control method is very 
important for the naturalness of synthesized speech of any 
language. In Amharic language segments duration is the 
most important and useful component in prosody control. It 
is shown that, unlike English language in which the rhythm 
of the speech is mainly characterized by stress (loudness), 
rhythm in Amharic is mainly marked by longer and shorter 
syllables depending on gemination of consonants, and by 
certain features of phrasing [4]. Therefore it is very 
important to model the geminates duration in AmhTTS 
system. In this paper we propose a new prosodic control 
method for synthesizing a high quality speech. 

The task of the prosodic generation component of our 
system is to reliably predict and model the duration of 
geminates, sixth order syllables, and intonation contour. Our 
system uses a compact rule-based prosodic generation 
method in four phases: 

 
 - Syllables connection rules, 

- Duration modeling, 
 - Sixth order syllables rules and, 
              - Intonation rule.  
 

5. DURATION MODELING 
 
The following section discusses the proposed duration 
modeling we employed in our system.   

The duration modeling is programmed in the system 
and generates geminates from singletons by lengthening the 
duration of consonant part of the syllables following the 
gemination mark (’).  
     In general, we modeled the durations of:  

· Syllable durations, 
· Pause durations 

o between words, 
o between sentences and, 
o between intermediate phrases 

· Geminates duration 

5.1. Geminates duration  
 
Two types of durational model were prepared for two 
groups of consonants, continuant (voiced and unvoiced) and 
non-continuant (stops and ejective/glottalized) consonants. 
If a gemination mark (’) is followed by syllable with voiced 
or unvoiced consonant, the last three frames of the cepstral 
parameters (c[0]) of vowel is adjusted linearly and then 120 
ms of frame 1, 2 and 3 of second syllable is added. Then the 
second syllable is connected after frame 4. Totally 90 ms of 
cepstral parameters is added. Otherwise, if, a gemination 
mark (’) is followed by syllable with glottal or non-glottal 
consonant then, the last three frames of the cepstral 
parameters (c[0]) of vowel is adjusted linearly and then 100 
ms of silence is added. Finally, and the second syllable is 
directly connected.  

The following figures fig.7 and fig.9 show sample 
words synthesized by applying the durational model and, 
Fig.6 and Fig.8 show the waveform of original words just 
for comparison purpose only. The synthesized words are 
comparative words which differ only by presence or absence 
of gemination. In fig 6, the synthesized word /sxixfta/ 
ሽፍታ meaning ‘rebel’, the sixth order singleton consonant 
/f/ is unvoweled and short. However, in fig. 8, the word 
/sxix’fixta/ ሽፍታ meaning ‘rash’, the consonant /f/ is 
voweled and longer /’fix/ because it is geminated. Note that 
the sixth order syllables always need vowels to be 
pronounced as geminates.   

 

 
Figure 6: Waveform & duration of original word 

ሽፍታ/sxixfta/, meaning ‘rebel’ 

 

 
Figure 7: Waveform & duration of synthesized        
            word ሽፍታ/sxixfta/, meaning ‘rebel’ 

 
Figure 8: Waveform & duration of original word ሽፍታ 

/sxix’fixta/, meaning ‘rash’ 

/f/ 
 

/sx        ix/ 
 

/t    a/ 
 

/sx        ix/ /’f       ix/ /t    a/ 

/sx        ix/ /t    a/ /f/ 
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Figure 9: Waveform & duration of synthesized word ሽፍታ 

/sxix’fixta/, meaning ‘rash’ 

5.2. Silence Generation  
 
The duration of the closure portion of a stop sounds plays an 
important role in the quality of synthesis. For stops, because 
units are picked from different contexts and partly because 
of faulty labeling of silence, concatenating them results in a 
duration of silence that may not be appropriate for the target 
context. More importantly, this duration is the one that 
distinguishes gemination and non-gemination (i.e., long and 
short consonants). Hence, inappropriate duration of silence 
will lead to stops sounding unnatural, or a geminate being 
perceived as a non-geminate (and vice versa).  

For example, on synthesizing Amharic word /a’keke/, 
silence duration for the geminated syllable /ke/ (middle) was 
59 msec and sounded like /akeke/, and not natural. However, 
on changing the silence duration to 100 msec it sounded 
natural. Fig. 10 show the stop duration in /a’keke/ where the 
first syllable /’ke/ is with geminate consonant/k/ and the last 
syllable /ke/ is with singleton consonant /k/. 
 

 
Figure 10: Synthesized word አክክ /a’keke/, meaning 

‘scratch’ showing significance of silence duration for stop 
consonants 

In our system, the duration rule generates the 
appropriate silence. As discussed above, when a gemination 
mark (’) is followed by syllable with stop consonants the 
last three frames of the cepstral parameters (c[0]) of vowel 
is adjusted linearly and then 100 ms of silence is added and 
the final syllable will be connected directly. Fig.7 shows a 
sample work synthesized by applying silence generation 
rule.      

6. EVALUATION AND DISCUSSION 
 

The effectiveness of the duration modeling employed in our 
system was evaluated using word and sentence listening 
tests. The word listening test was performed to evaluate the 
intelligibility and the sentence listening test was used to 
evaluate the naturalness of the system.  
 
 
 

6.1. Recordings 
 
The recording was done in a soundproof room, with a digital 
audio tape (DAT) recorder with sampling rate of of 48 kHz. 
Then from DAT the recorded data were transferred to a PC 
via a digital audio interface (A/D, D/A) converter. All 
recording was done by male native speaker who is not 
included in the listening tests. 
 
6.2. Speech Materials 
 
The stimuli for the first listening test consisted of 200 words 
which were selected from Amharic-English dictionary. The 
selected words are commonly and frequently used words in 
the day-to-day activities. Among the 200 words we selected, 
80 words (40% of words) contain one or more geminated 
syllables and 75% of the words contain sixth order syllables. 
Using these words, two types of synthesized speech data 
were prepared: Analysis/synthesis sounds and rule-based 
synthesized sounds using AmhTTS system. The original 
speech sounds were also added in the test for comparison 
purpose.  

For the second listening test we selected five sentences 
which contain words with either geminated syllables or sixth 
order syllables or both from Amharic grammar book [12]. 
Then, we prepared three kinds of speech data: original 
sentences, analysis/synthesis sentences, and synthesized 
sentences by our system by applying prosodic rules. In total 
we prepared 15 sounds. 

 
6.3. Methods 
 
Both listening tests were conducted by four Ethiopian adults 
who are native speakers of the language (2 female and 2 
male). For both listening tests we prepared listening test 
programs and a brief introduction was given before the 
listening test.  

In the first listening test, each sound was played once in 
4 second interval and the listeners wrote the corresponding 
Amharic scripts to the word they heard on the given answer 
sheet.  

In the second listening test, for each listener, we played 
all 15 sentences together and randomly. Each subject listens 
to 15 sentences and gives his/her judgment score using the 
listening test program by giving a measure of quality as 
follows: (5 – Excellent, 4 - Good, 3 - Fair, 2 - Poor, 1 – Bad). 
They evaluated the system by considering the naturalness 
aspect. Each listener did the listening test fifteen times and 
we took the last ten results considering the first five tests as 
training. 

 
6.4. Results and Discussion 
 
After collecting all listeners’ response, we calculated the 
average values and we found the following results.  

/’f         ix/ /sx     ix/ /t    a/ 

100mse
c 

59msec 

/a/ /’ke/ /ke/ 
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In the first listening test, the average correct-rate for 
original and analysis-synthesis sounds were 100% and that 
of rule-based synthesized sounds was 98%. We found the 
synthesized words to be very intelligible. 

 In the second listening test the average mean opinion 
score (MOS) for synthesized sentences were 3.2 and that of 
original and analysis/synthesis sentences were 5.0 and 4.7 
respectively. The result showed that the durational control 
method employed in our system is effective and produced 
fairly good prosody. However, the durational modeling only 
may not be enough to properly generate natural sound. 
Appropriate syllable connections rules and proper intonation 
modeling are also important. Therefore studying typical 
intonation contour by modeling word level prosody and 
improving syllables connection rules by using quality 
speech units is necessary for synthesizing high quality 
speech.  

We also synthesized a paragraph shown in fig.11 which 
is taken from study [7] and asked the listeners to compare it 
with “Eruxelf Amatets”1 speech synthesizer [7] which is a 
commercial synthesis system. All the listeners preferred the 
speech synthesized by our system and clearly able to 
understand what it says. However, the speech synthesized 
by Eruxelf Amatets2 is not intelligible as our system and 
lacks naturalness. Especially the prosody of Eruxelf Amatets 
is worse and our system is by far better.  
 
ምአራፍ 6 ነጻነት 
በዛብህ፣ወላጆቹን፣ከድቶ፣ማንኩሳን፣አንደለቀቀ፣ዋሸራ፣ወደም
ትባል፣አገር፣ሄዶ፣ ቅኔ፣ቤት፣ገባ።በዋሸራም፣አንድ፣ዓመት 
እንደቆየ፣ቅኔ፣ተቀኝቶ፣ዝማሬ፣መዋሲት፣ለማካሄድ፣ወደ፣ዙር፣
አምባ፣ሄደ።ዙር፣አምባ፣ሁለት፣ዓመት፣ያክል፣ቆይቶ፣ዝማሬ፣
መዋሲትና፣ጽህፈት፣አወቀ።በመጨረሻ፣ደብረወርቅ፣አምትባ
ል፣አገር፣አዲስ፣የመጽሃፍ፣መምህር፣ከጎንደር፣መምጣታችው
ን፣ስለስማ፣ወደዚያ፣ሄዶ፣መጽሓፍ፣ለመቀጸል፣ወሰነ።    

Figure 11: Paragraph taken from [7] 

 
7. ISSUES TO BE ADDRESSED 

 
Segmented units occurring just before geminates will be left 
with some co-articulation due to the effect of geminate. 
Therefore, there is a need to handle such co-articulation 
related issues in syllable based synthesis.  
 

8. CONCLUSION 
 

In this paper, we presented a preliminary result on the 
durational modeling of geminates for AmhTTS system. We 
demonstrate how intelligibility of words can be improved by 
correct duration modeling of geminates. Our durational 

                                                 
1  Eruxelf Amatets is an Amharic speech synthesis program 
desgined based on the Festival Speech Synthesis System. It uses 
the Ked voice available in Festival to read out Amharic documents.  

modeling of geminates greatly improved the quality of 
synthesized speech. However, the system still lacks 
naturalness and for better durational modeling, it needs 
automatic gemination assignment and modeling 
mechanisms. 

 Therefore, as a future work, we are planning to 
improve the duration model using the data obtained from the 
annotated speech corpus, properly model the co-articulation 
effect of geminates and to study the typical intonation 
contour. We are also planning to integrate a morphological 
analyzer for automatic gemination assignment and machine 
learning techniques for generating appropriate prosodic 
parameters. 
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Appendix 1: Amharic consonants with their features shown using IPA, transcription we used and script in 
Amharic. 

 
Manner 
of 
Articulati
on 

 Place of Articulation 
 Labials Alveolar Palatals  Velars Labio-

Velar 
Glottal 

Stops 

Voiceless P [p] ፕ t [t] ት   k [k] ክ kx ኳ ax[?] አ 
Voiced b [b] ብ d [d] ድ   g [g] ግ gx ጓ   
Glottalized p  

[p’] 
ጵ tx [t’] ጥ   q [q] ቅ qx  

ቛ 
  

Fricatives 

Voiceless f  [f] ፍ S [s] ስ sx [ò] ሽ     h [h] ህ 
Voiced V 

[v] 
ቭ z [z] ዝ zx[z’] ዥ       

Glottalized   xx [s’] ጽ       hx ኋ 
Africative

s 
 
 

Nasals 

Voiceless     c [tò] ቸ       
Voiced     j [g’] ጅ       
Glottalized     cx c’] ጭ       
Voiced m 

[m] 
ም n [n] ን nx [n’] ኝ       

Liquids Voiced 
  l [l] ል         
  r [r] ር         

Glides w 
[w] 

ው   y [j] ይ       
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ABSTRACT 

 

This paper presents an unsupervised method in application 

of extracting parallel sentence pairs from a comparable 

corpus. A translation system is used to mine the comparable 

corpus and to withdraw the parallel sentence pairs. An 

iteration process is implemented not only to increase the 

number of extracted parallel sentence pairs but also to 

improve the quality of translation system. A comparison 

between this unsupervised method and a semi-supervised 

method is also presented. The unsupervised extracting 

method was tested in a hard condition: the parallel corpus 

did not exist and the comparable corpus contained up to 

50% of non parallel sentence pairs. However, the result 

shows that the unsupervised method can be really applied 

in the case of lacking parallel data.  

 

Index Terms— unsupervised method, extract parallel 
sentence pairs, comparable corpus. 

 
1. INTRODUCTION 

 

Over the past fifty years of development [1], machine 

translation (MT) has obtained good results when applied to 

several pairs of languages such as English-French, English-

Italia, etc. Many approaches for MT have been proposed, 

such as: rule-based (direct translation, interlingua-based, 

transfer-based), corpus-based (statistical, example-based) as 

well as hybrid approaches. However, research on SMT for 

low-resourced languages always faces the challenge of 

getting enough data to support any particular approach.  

Statistical machine translation tries to generate 

translations using statistical methods based on large 

parallel bilingual corpora for source and target languages. 

These corpora are used to build a statistical translation 

model for source/target languages and a statistical language 

model for target language. The two models and a search 

module are then used to decode the best translation [2], [3]. 

Thus, a large parallel bilingual text corpus is a prerequisite. 

Such a corpus is not always available, especially for low-

resourced languages.  

The most common methods to build parallel corpora 

consist in automatic methods which collect parallel 

sentence pairs from the Web [4], [5], or alignment methods 

which extract parallel documents/sentences from two 

monolingual corpora [6], [7], [8]. Beside these “traditional” 

methods, there is also the method of extracting parallel 

sentence pairs from a comparable corpus. For instance, 

Sadaf and Schwenk present a semi-supervised extracting 

method [9]. This kind of method requires an initial parallel 

corpus (see more in section 2.1). We assume that in the 

case of a low-resourced language pair, even a small parallel 

corpus might not be available to start developing a SMT 

system. So, does a fully unsupervised method, starting with 

a noisy comparable corpus, is able to solve the problem of 

lacking parallel data? 

This paper presents a fully unsupervised extracting 

method, in comparison with a semi-supervised extracting 

method. The first results show that the unsupervised 

method can be really applied in the case of lacking parallel 

data. The rest of the paper is organized as follows.  Section 

2 describes the two methods of extracting parallel sentence 

pairs from a comparable corpus: semi-supervised method 

versus fully unsupervised method. Section 3 gives our 

experiments and our results on testing the unsupervised 

method. The next section presents an application of this 

method for a real low-resourced language pair: 

Vietnamese-French. The last section concludes and gives 

some perspectives.     

 

2. SEMI-SUPERVISED V/S UNSUPERVISED 
LEARNING 

 

2.1 Semi-supervised learning method 
 
Using a comparable corpus to extract parallel data has been 

presented in some previous works. D.S. Munteanu and D. 

Marcu present a method for extracting parallel sub-

sentential fragments from comparable bilingual corpora 

[10].  

Each source language document is translated into target 

language, using a bilingual lexicon/dictionary. The target 

language document which matches this translation is 

130



extracted from a collection of target language documents. 

Parallel sentence pairs are then filtered and parallel sub-

sentential fragments are extracted from this document pair 

(see more in [10]). 

  S. Abdul-Rauf and H. Schwenk also present a method 

for extracting parallel data from a comparable corpus. To 

mine a comparable French-English corpus, for example, a 

statistical machine translation system is used to translate 

the French side to English. These translated texts are then 

compared with the English side, using the evaluation 

metric TER, and the parallel sentence pairs are filtered out. 

A post-processing is then applied to smooth the results. 

This technique is similar to that of [10], but a proper 

statistical machine translation system is used instead of the 

bilingual dictionary, and an evaluation metric is used to 

decide the degree of parallelism between two sentences. 

All these methods are presented as effective methods to 

extracting parallel fragments/sentences from a comparable 

corpus.  

 

2.2. Unsupervised learning method 
 
The two above mentioned methods can be considered as 

semi-supervised methods, which need an initial parallel 

corpus to build the extracting system. We assume that in 

the case of low-resourced languages, this parallel corpus, 

even small, may be not available. So, we try to propose a 

fully unsupervised method, here, where the starting point is 

a simple noisy comparable corpus containing a significant 

amount of non parallel sentences. One of the challenges of 

this work is to see if such a different starting point (noisy 

comparable corpus, versus truly parallel corpus) can lead to 

the design of an acceptable SMT system.  

Firstly, a baseline statistical machine translation system 

S0 is built based on a comparable corpus (C2) (in semi-

supervised method, the system S0 is built from a parallel 

corpus (C1)). Of course the quality of S0 is not high. We 

propose to use this system to mine another comparable 

corpus (D), and also to improve the quality of the 

translation system.  

Secondly, the source side of the corpus D (in our case 

the source language is French) is translated by the system 

S0. The translated output is then compared with the target 

side (English in our case) of the corpus D. The evaluation 

metric is calculated for each sentence pairs. The pairs are 

considered as parallel sentence pairs if the evaluation 

metric is larger than a threshold.  

In our research, several evaluation metrics are used to 

determine which one is the most suitable. The scores are 

estimated at sentence level. Four common evaluation 

metrics are used: BLEU [11], NIST [12], TER [13] and a 

modified PER* (see in section 3.3).  

The extracted sentence pairs are then combined with the 

baseline system S0 in several ways to create a new 

translation system. An iteration process is performed which 

re-translates the French side by this new translation system, 

re-calculates the evaluation metric and then re-filters the 

parallel sentence pairs. We hope that each iteration not only 

increases the number of extracted parallel sentence pairs 

but also improves the quality of the translation system.  

 

 
 

 
Figure 1: Semi-supervised v/s unsupervised methods 
 

Again, to reuse the extracted parallel data in translation 

system, different combinations can be proposed: 

- W1: The translation system at step i is retrained on a 

training corpus consisting of C2 and Ei-1 (the extracted data 

from the last iteration); E0 being the data extracted when 

translation system is trained on C2 only (S0). 

- W2: The translation system at step i is retrained on 

training corpus consisting of C2 and E0+E1+…+Ei-1 (the 

extracted data from the previous iterations). 

- W3: At iteration i, a new separate phrase-table is built 

based on the extracted data Ei-1. The translation system 

decodes using both phrase-table of S0 and this new one 

(log-linear model) without weighting them.  

- W4: The same combination as W3, but the phrase-

table S0 and the new one are weighted, e.g. 1:2. 

The section 3 presents our experiments on this 

unsupervised method.  

 

3. PRELIMINARY EXPERIMENTS FOR FRENCH-
ENGLISH SMT 

 

In this section, we present experiments on unsupervised 

method, in comparison with those on semi-supervised 

method. Two systems were built, one based on semi-

supervised method (Sys1), another based on unsupervised 

method (Sys2).  

 

3.1. Data preparation 
 
We chose French-English languages for these preliminary 

experiments. Data was chosen from the Europarl corpus 

Comparable corpus: C2 

Comparable 

data: D SMT0 
Translate 

+ filter by 

evaluation 

metric 

~ Parallel 

data 

Unsupervised 

Parallel corpus: C1 

Comparable 

data: D SMT0 
Translate 

+ filter by 

evaluation 

metric 

Parallel 

data 

Semi-supervised 
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[6], version 3. The correct parallel sentence pairs were 

extracted directly from the Europarl corpus and a 

comparable corpus was simulated by introducing a 

significant amount of wrong sentence pairs in the data 

(about 50%).  

To make it comparable with the real case treated in 

section 4 (low-resourced language pair), the size of the 

experimental data was chosen small. The corpus C1 

contains only 50K correct parallel sentence pairs. The 

corpus C2 contains 25K correct parallel sentence pairs 

(withdrawn from C1) and 25K wrong sentence pairs. The 

corpus D, the input data for extracting process, was built 

from 10K correct parallel sentence pairs and 10K wrong 

sentence pairs, which were different from sentence pairs of 

C1 and C2. The correct and the wrong sentence pairs were 

marked to calculate the precision and the recall later. 

 

3.2. System construction 
 
Both systems Sys1 and Sys2 were constructed using the 

Moses toolkit [14]. This toolkit contains all of components 

needed to train the translation model. It also contains tools 

for tuning these models using minimum error rate training 

and for evaluating the translation result using the BLEU 

score.  

The English language model was built from English part 

of the entire Europarl corpus. The baseline translation 

models were built from corpus C1 and C2.  

 

3.3. Starting with parallel or comparable corpus? 
 
One question that we want to answer first is whether the 

translation system based on a comparable corpus can be 

used to filter the input data like the translation system 

based on parallel corpus does. To examine this problem, the 

French side of corpus D was translated by Sys1 and Sys2. 

Then, the translated outputs were compared with the 

English side of the corpus D. Four evaluation scores were 

used in this comparison: BLEU, NIST, TER and PER*. 

Our modified position-independent word error rate (PER*) 

is calculated based on the similarity, while the PER [15] 

measures the difference, of words occurring in hypotheses 

and reference.  

 
Then the distributions of evaluation scores for correct 

parallel sentence pairs and wrong sentence pairs were 

calculated and presented in figure 2.  

From these distributions, we can make the following 

comments: first, the distributions of scores have the same 

shape between Sys1 and Sys2. Especially, the distributions 

of scores for the wrong pairs were nearly identical in both 

systems. So, a comparable corpus can replace a parallel 

corpus for constructing an initial translation system. 

Remember that the initial comparable corpus here contains 

up to 50% non-parallel sentence pairs. Therefore, this kind 

of unsupervised method can be really applied in the case of 

lacking parallel data. Another important result is that the 

PER*, a simple and easily calculated score, can be 

considered as the best score to filter the correct parallel 

sentence pairs and filter out the wrong ones. Table 1 

presents the precision and recall of filtering parallel 

sentence pairs from two systems.  

 

 
Figure 2: Score distributions for Sys1, Sys2 
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Sys1 – semi-supervised method 

Filtered by Found Correct Precision Recall F1-score 

Bleu=0.1 6908 6892 99.76 68.92 81.52 

Nist=0.4 8350 8347 99.96 83.47 90.97 

Per*=0.3 10342 9785 94.61 97.85 96.20 

Per*=0.4 9390 9333 99.39 93.33 96.27 

Sys2 – unsupervised method 

Filtered by Found Correct Precision Recall F1-score 

Bleu=0.1 6233 6218 99.75 62.18 76.61 

Nist=0.4 7110 7108 99.97 71.08 83.08 

Per*=0.3 10110 9468 93.65 94.68 94.16 

Per*=0.4 8682 8629 99.38 86.29 92.37 

Table 1: Precision and recall of filtering parallel 
sentence pairs (given 10K correct pairs) 

 

3.4. The iterations of the unsupervised method 
 
Section 3.3 has shown that an unsupervised method can be 

also used to filter the parallel sentence pairs from a 

comparable corpus. However the result of filtering in Sys2 

is lower than that in Sys1 (for example, the number of 

correct extracted sentence pairs is reduced (table1)). So, we 

propose, in this section, an iterative process in order to 

improve the quality of the translation system, and then to 

increase the number of correctly extracted sentence pairs.  
 

3.4.1. The number of correct extracted sentence pairs 
The extracted sentence pairs were combined with the 

baseline system in four ways (as mentioned in section 2.2). 

The iteration experiment was carried out with Sys2. In 

order to receive the maximum number of correct extracted 

sentence pairs, for all iterations we chose the evaluation 

score PER* and the threshold=0.3, which gave the 

maximum recall=94.68% in the baseline system.  

 

 
Figure 3: Number of correctly extracted sentence pairs 

after 6 iterations for four different combinations 
 

Figure 3 presents the number of correctly extracted 

sentence pairs after 6 iterations for four different 

combinations: W1, W2, W3 and W4.  The number of 

correct extracted pairs was increased in all cases; however 

the combination W2 brought the largest number of correct 

extracted sentence pairs.  

 

3.4.2. The precision and the recall of filtering process 
The precision and the recall of these four combinations are 

presented in figure 4. Because the filtering process focused 

on extracting the largest number of correct extracted 

sentence pairs, the precision was decreased. However, using 

the combination W2, the recall after 6 iterations (97.77) 

nearly reached the recall of Sys1 (97.85) (PER*=0.3). 

  

 
Figure 4: Precision and recall of filtering using different 

combinations 
 

3.4.3. Translation system evaluation 
The quality of the translation systems was also evaluated. A 

test set containing 400 French-English parallel sentence 

pairs was extracted from Europarl corpus. Each French 

sentence had only one English reference. The quality was 

reported in BLEU and TER. Figure 5 gives the evaluation 

scores for the systems after each iteration.  

 

 
Figure 5: Translation system evaluations 
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The translation system evaluation revealed an important 

result. The quality of the translation system can increase 

quickly during some first iterations, then increase slowly 

and then it can be decreased after several iterations. It can 

be explained that for the first iterations, the new parallel 

sentence pairs are included into the translation model, so it 

increase the translation quality. However, for the next 

iterations, the precision of the extracting process was 

decreased, more wrong sentence pairs were added to the 

system, so the translation model got worse and the quality 

of translation system was reduced.  

After about 3 iterations, the Bleu score can increase 

about 2 points. Note that there is no tuning for the 

statistical models (no development data set was used).  

 

4. APPLICATION FOR FRENCH-VIETNAMESE 
LANGUAGE PAIR 

 
Vietnamese is the 14th widely-used language in the world; 

however research on MT for Vietnamese is rare. The 

earliest MT system for Vietnamese is the system from the 

Logos Corporation, developed as an English-Vietnamese 

system for translating aircraft manuals during the 1970s 

[1]. Until now, in Vietnam, there are only four research 

groups working on MT [16]. However the results are still 

modest.  

We focus on building a French-Vietnamese statistical 

machine translation (SMT) system. The training corpus 

was created by mining a bilingual news corpus from the 

Web. The mining process was presented in [17]. In [17], 

the parameters of mining process were adjusted to obtain 

parallel sentence pairs. But, in this research, to test the 

unsupervised method, we adjust the parameters to obtain 

comparable sentence pairs corresponding to a comparable 

corpus similar to that of previous section (including wrong 

parallel sentence pairs).  

 The initial translation system was built from a 

comparable training corpus C2 of 30.000 French-

Vietnamese sentence pairs. The corpus D contains 21.000 

French-Vietnamese sentence pairs. In these corpora, we do 

not know how many correct parallel sentences are included. 

The unsupervised method was applied. There is no tuning 

process for the statistical models. The number of extracted 

sentence pairs after several iterations was reported in figure 

6. 

The quality of the translation systems was also evaluated 

on a test set of 400 manually extracted French-Vietnamese 

parallel sentence pairs [17]. Each French sentence has only 

one Vietnamese reference. The evaluation scores were 

reported in figure 7. 

The unsupervised method was applied in a real low-

resourced language pair: French-Vietnamese. The result 

shows that this method can be really applied in the case of 

lacking parallel data. The quality of the translation system 

increased during several iterations. We intend to apply this 

method on a large scale of mining the real comparable data 

stream extracted from the web. 
 

 
Figure 6: Number of extracted sentence pairs after each 

iteration in FR-VN translation system 
 

 

 
Figure 7: FR-VN translation system evaluations 

 

5. RELATED WORKS 
 

Beside several researches on the semi-supervised method 

mentioned in previous sections ([9], [10]), there are also 

researches involving our work. In [18], Zhao and Vogel 

propose a maximum likelihood criterion which combines 

sentence length models and a statistical translation lexicon 

model extracted from an already existing aligned parallel 

corpus. An iterative process is applied to retrain the 

translation lexicon model by using the extracted data. 

Sarikaya et al. present a semi-supervised method with 

iterations and the initial translation system is based on 

parallel corpus [19]. The method is also presented as an 

efficient method in filtering the parallel sentence pairs from 

a comparable corpus. In this research, authors use a 
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different evaluation metric (Bleu), and use the type of 

combination like our W2 type. However, their research does 

not provide a full explanation about how they choose 

evaluation metric, or combination method, and further 

more, the problem of decreasing the quality of translation 

system after several iterations is not mentioned. 

 

6. CONCLUSION AND PERSPECTIVES 
 

This paper presents an unsupervised method for extracting 

parallel sentence pairs from a comparable corpus. An initial 

translation system was built based on a comparable corpus, 

instead of a parallel corpus. The initial translation system 

was then used to translate another comparable corpus, to 

withdraw the parallel sentence pairs. An iteration process 

was implemented to increase the number of extracted 

parallel sentence pairs and to improve the quality of 

translation system. The method was tested in a hard 

condition: the parallel corpus does not exist and the 

comparable corpus contains up to 50% of non parallel 

sentence pairs. However, the result shows that this method 

can be really applied, especially in the case of lacking 

parallel data. Several ways of using this method was also 

presented, with different evaluation metrics and different 

ways of combining the extracted data with the initial 

translation system. An interesting result is that the quality 

of the translation system can be improved during the first 

iterations, but it becomes worse later because of adding the 

noisy data into the statistical models.  

The next work of this research focuses on how to 

decrease this undesired problem. After some first iterations, 

the filtering may be altered to respect the precision, instead 

of the recall. Additionally the new way of reuse extracted 

parallel sentence pairs will be researched.   
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ABSTRACT 

 

The bursts and voiced formant transitions are well known as 

separate cues to the place of articulation of initial stop 

consonant. The Vietnamese presents three final voiceless 

stop consonants /p, t, k/ without bursts. It is an opportunity 

to study these final stop consonants and to compare their 

characteristics with those of the corresponding initial stop 

consonants. This paper analyses these final consonants in 

terms of the vowel-consonant (VC) transition duration, the 

starting formant transition values and the slopes of the VC 

transition. Measurements have shown that in the same 

vocalic contexts (the same preceding vowel contexts), the 

three final stop consonants /p, t, k/ are always clearly 

different by at least one of the three slopes of F1, F2 and F3. 

In perception tests, synthesized consonant C in the context 

/a/-C are recognized as /p/, or /t/, or /k/ when the slopes of 

the /a/-C transition of F2 and F3 are varied. It means that 

slopes of the VC transition is an important parameter that 

allows Vietnamese distinguishing three final voiceless stop 

consonant /p, t, k/ in Vietnamese language. 

 

Index Terms— Final stop consonant, Vietnamese 

 

1. INTRODUCTION 

 

The problem of perceptual constancy of initial stop 

consonants with the following vowels in a consonant - vowel 

or/and consonant - vowel - consonant (CV/CVC) context 

were studied for a long time ago. In 1954, Liberman showed 

the role of the transitions of second and third formant in the 

perception tests of consonants in which the second formant 

transition F2 is more important than the third formant one 

[1]. In 1957, Lisker in the researches of perception signs of 

the initial consonants /w, j, r, l/ concluded that the third 

formant transition F3 is a good parameter to distinguish two 

initial consonants /r/ and /l/ [2]. In 1958, Harris also 

presented that the third formant transition is a good 

parameters for discriminating two consonants /d/ and /g/ [3]. 

However, Cole in [4] suggested that the stop consonants 

pronounced before different vowels may be recognized in 

terms of a context independent acoustic cue, namely, the 

bursts produced at the release of initial stop occlusion. 

Recently, Dorman in [5] noted that bursts and transitions 

complement each other in the sense that when one cue is 

weak, the other is usually strong.  

In Vietnamese, linguists [6, 7] have demonstrated the 

existence of six final stop consonants /p, t, k, m, n, ŋ/. 
However, as opposed to the initial consonants, the three final 

voiceless stop consonants /p, t, k/ are produced without 

bursts at the end. We do the hypothesis that the directions 

and the rates of the formant transitions at the end of the 

vowel allow distinctiveness. In this paper, these 

characteristics are studied in the vocalic contexts of all 

Vietnamese vowels. On the other side, the results of our 

analysis were validated by the perception tests. 

 

2. STRUCTURE OF VIETNAMESE SYLLABLE 

 

According to studies of linguists, a Vietnamese syllable in 

its complete form has three parts: initial part, final part and 

tone. The final part can be divided into three smaller 

components, i.e. medial part, nucleus part and ending part. 

So the full form of a syllable has five components: initial 

part, medial part, nucleus part, ending part and tone (Fig.1). 

The nucleus part and tone always exist obligatory in a 

syllable, but the others are optional. 

 

 Tone 

Initial part 
Final part 

Medial Nucleus Ending 
Figure 1. Structure of Vietnamese syllable [8] 

 

The centre of the Vietnamese syllable, the nucleus part, 

is always a vowel or diphthong. Vietnamese presents twelve 
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vowels /a, ɛ, e, i, u, o, ɔ, ɤ, ɯ, ă, ɔ,̆ ɤ̆/ [6, 7, 9, 10]. The 

ending part can be one of the six final consonants /p, t, k, m, 
n, ŋ/ or the two final semi-vowels /w, j/. In this paper, we 

present the results obtained with the three final voiceless 

stop consonants /p, t, k/. 

 

3. FINAL STOP CONSONANT ANALYSIS 

 

In order to study the final voiceless stop consonants, a 

Vietnamese corpus was built from the speech of four male 

native Vietnamese speakers with mean age of 29. All 

speakers were born and live in the North of Vietnam, and 

they speak the standard (Hanoi) dialect. Each subject was 

asked to pronounce a series of VC2/C1VC2 syllables (five 

repetitions each) in a Vietnamese carrier phrase meaning 

“say VC2/C1VC2 softly” where C1 was the initial consonant 

/b/, C2 was one of the three final stop consonants /p/, /t/, /k/ 

and V was one of twelve Vietnamese vowels /a/, /ɛ/, /e/, /i/, 
/u/, /o/, /ɔ/, /ɤ/, /ɯ/, /ă/, /ɔ/̆, and /ɤ̆/. Note that the short 

vowel /ɔ/̆ is never combined with the two voiceless final 

consonants /p/ and /t/ (as a consequence, they do not exist in 

Vietnamese). Vietnamese language is a tonal language with 

six tones: plat tone (tone A1), falling tone (tone A2), rising 

tone (ton B1 on sonorant-final syllables and tone D1 on 

obstruent final syllables) drop tone (tone B2 on sonorant-

final syllables and tone D2 on obstruent final syllables), 

curve tone (ton C1), and broken tone (ton C2) [11, 12]. In 

order to reduce the influence of tone, it would have been 

preferable to study Vietnamese syllables in a flat 

monotonous tone context (tone A1). However, closed 

syllables ending with /p, t, k/ in Vietnamese may only bear 

the rising or drop tone (tone D1 or tone D2). As a result, we 

chose the rising tone configuration which is easily 

pronounced in Vietnamese. So, the three final voiceless stop 

consonants /p, t, k/ were combined with twelve Vietnamese 

vowels, yielding 1360 tokens (1 final consonant /k/ x 12 

vowels x 2 contexts VC2/C1VC2 x 5 repetitions x 4 

speakers, and 2 final consonants /p, t/ x 11 vowels x 2 

contexts VC2/C1VC2 x 5 repetitions x 4 speakers). There 

are 860 tokens which are actual lexical items, and 500 

tokens are not. 

Nguyen in his study on the production and perception of 

nine Vietnamese vowels /a, ɛ, i, u, ɔ, ɤ, ă, ɔ,̆ ɤ̆/ showed that 

the effect of final voiceless stop consonants /p, t, k/ on the 

vowel duration in both contexts (VC2 and C1VC2) has not 

been considered. So, we measured the following parameters: 

formant transition durations, starting formant transition 

values and formant transition slopes. All the measurements 

were obtained using the WinSnoori
1
 software program. 

                                                 
1
 http://www.loria.fr/~laprie/WinSnoori/ 

Fig. 2 represents the formant transition duration of the 

three final stop consonants /p, t, k/ in twelve preceding 

vowel contexts (the mean value is calculated for all 

productions of the four subjects). In the (C1)VC2 context, 

the vowel /ɔ/̆ is never combined with the two final 

consonants /p, t/ (these combinations do not exist in 

Vietnamese). It is easy to realize that in the same vocalic 

context, the formant transition durations of the three final 

consonants /p, t, k/ remain constant. Thus, the formant 

transition duration VC2 cannot bring any distinctive 

characteristic to the final voiceless stop consonants. 

 

 
Figure 2. Formant transition duration of VC2 in the (C1)VC2 

productions (the vowel /ɔ/̆ is never combined with the two final 

consonants /p, t/) 

 

 

 
Figure 3. Starting formant transition values of the final consonants 

/p, t, k/ in different preceding vowel contexts: F1-F2 in (a), F2-F3 

in (b) 
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Table I. F1, F2, F3 formant transition slopes (Hz/ms) (mean value 

and standard deviation (s.d)) in (C1)VC2 productions (the vowel 

/ɔ/̆ is never combined with the two final consonants /p, t/) 

Vowel 
/p/ /t/ /k/ 

F1 F2 F3 F1 F2 F3 F1 F2 F3 

/a/ -38 -96 -39 -69 7 38 -82 -23 -15 

s.d 24 31 26 32 28 45 50 7 41 

/ă/ -48 -72 -10 -47 -4 69 -39 -34 5 

s.d 40 17 34 34 27 36 37 29 43 

/ɤ/ -30 -132 -16 -17 148 -7 -31 1 26 

s.d 16 22 19 10 16 8 39 24 43 

/ɤ̆/ -47 -121 12 -33 52 33 -67 -51 46 

s.d 19 31 13 15 22 54 33 42 15 

/ɔ/ -41 -27 -42 -33 53 -55 -53 -27 -36 

s.d 10 12 26 7 35 84 29 27 49 

/ɔ/̆       -21 -75 -9 

s.d       26 46 33 

/i/ -5 -123 -223 -6 -81 -38 -48 79 41 

s.d 7 20 74 7 26 62 17 31 41 

/u/ -11 -4 -20 -7 134 -44 -31 -65 34 

s.d 13 40 43 22 44 35 8 5 36 

/o/ -30 -6 14 -1 142 -109 -76 -102 27 

s.d 20 18 29 7 6 80 8 24 9 

/e/ -26 -201 -43 -22 -46 19 -84 217 11 

s.d 14 40 37 3 14 26 8 83 28 

/ɯ/ -14 -70 -21 -17 98 36 -28 -5 13 

s.d 11 42 47 15 54 58 11 5 4 

/ɛ/ -24 -175 -88 -24 -51 -26 -33 -126 -62 

s.d 6 32 46 19 6 34 46 68 116 

 

In the (C1)VC2 context, the starting transition values of 

F1, F2, and F3 were defined as the first point where each 

formant begins its transition from the vowel V to the final 

consonant C2. Fig. 3 illustrates the starting formant 

transition values of the final stop consonant in different 

preceding vowel contexts (the mean value is calculated for 

all productions of four subjects). Once again, one can 

observe that in the same context of a preceding vowel, the 

starting transition values of F1, F2 and F3 of the final stop 

consonants /p, t, k/ are not clearly distinctive. 

In fact, the places of articulation of these consonants are 

naturally different and the starting transition values of F1, 

F2, and F3 are more or less close, it is therefore necessary 

that the slopes are different. To test this hypothesis, we 

calculate the formant transition slopes VC2 in the same 

context of the preceding vowel V. 

Table I represents the formant transition slopes of each 

final stop consonant /p/, /t/, and /k/ in the twelve preceding 

vowel contexts. Fig. 4 illustrates the comparison of the three 

final consonants /p, t, k/ in the same context of the three 

preceding vowels /a, i, u/. It is interesting to note that: (1) 

depending on the vowel context (/a/, or /i/, or /u/), three final 

consonants /p, t, k/ can be distinguished by at least one of 

formant transition slope F1 and/or F2 and/or F3; (2) in the 

context of three preceding vowels /a/, /i/, and /u/, the 

formant transition slope of F2 is always a good parameter to 

 

 

 
Figure 4. Comparison of the formant transition slopes F1, F2, F3 

of the three final consonants /p, t, k/ in the same context of a 

preceding vowel: /a/ in (a), /i/ in (b), and /u/ in (c). The slope and 

standard deviation were calculated for all productions (C1)VC2 of 

four speakers 

 

differentiate the three final consonants /p, t, k/. Nevertheless, 

to verify and estimate if the formant transition slopes VC 

allows distinguishing the three final consonants /p, t, k/, we 

need to perform statistical tests. 

A statistical test (one-way ANOVA test) of the formant 

transition slopes comparing the three final stop consonants 

/p, t, k/ in the same context of a preceding vowel is 

presented in Table II. In each statistical test (for each 

preceding vowel and for each formant F1, F2, F3), the 

formant transition slopes of the three final stop consonants 

/p, t, k/ were compared. The significant thresholds of 0.05, 

0.01, 0.005, and 0.001 were also used to compare with the 

p-value (significance value) of statistical test. If p-value of 

one test is smaller than the significant threshold, the 

hypothesis of the differentiation of these consonants by the 

corresponding formant in that test is true. From Table II, it is 

interesting to note that: (1) in all preceding vowel contexts, 

the three final stop consonants /p, t, k/ are always 
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distinguished by at least one of the three slopes of F1, F2, F3 

(p-values is always smaller than one of significant 

thresholds), and (2) the F2 slope is a strong significant 

parameter that always makes possible the discrimination of 

these three final stop consonants (p-value of F2 slope is 

always smaller than the significant threshold of 0.001). It 

seems that statistically, we can conclude that the formant 

transition slopes play an important role to distinguish the 

three final occlusive consonants /p, t, k/. In other words, 

these three final consonants with bursts articulated with a 

preceding vowel, change the end of the vowel. The formant 

transition slopes VC (F1, F3 and especially F2) are 

characteristics that could allow Vietnamese to recognize 

these consonants. Although there are three cases (/ɤ/, /ɔ/, 
/ɯ/ context) where the F3 formant transition slope does not 

play a significant role, in general, most of our results agree 

with the results obtained in studies of Liberman on the F2 

formant transition [1], and in studies of Harris on the F3 

formant transition [3]. However, to confirm this suggestion, 

we continue with the perception tests to estimate the role of 

the formant transition slopes in the discrimination of the 

final consonants /p, t, k/. 

 

4. FINAL STOP CONSONANT PERCEPTION 

 

For the perception tests, a VC syllable is synthesized in 

which V is the vowel /a/ (with duration of 120 ms). The VC 

transition duration is 20 ms. The final consonant C is 

synthesized without burst at the end and with a variation of 

formant transition slopes as following : (1) the offset value 

of the first formant (F1offset) is constant (250 Hz) (see Fig. 

5); (2) the offset values of the evolution of the two formants 

F2 and F3 vary as shown on the formant plan F2 / F3 (see 

the yellow points in Fig. 6) : F2offset value varies from 500 

Hz to 2300 Hz, and that of F3offset varies from 1500 Hz to 

3300 Hz. In the perception tests, there are forty-three VC 

syllables synthesized with different formant transition slopes 

of F2 and F3. Ten listeners (five men and five women) listen 

five times the syllables presented in random order and they 

choose what the final consonant is recognized : /p/, or /t/, or 

/k/, or NAK (NAK (not acknowledgment) is selected for the 

case where the sound synthesized is not recognized, or it is 

not /p/, or /t/, or /k/). Table III shows the main results of the 

 

 

 

 

 
Figure 5. Perception tests of the final stop voiceless consonants /p, 

t, k/. A Vietnamese syllable VC is synthesized where V is the 

vowel /a/, the final consonant C is synthesized without burst and 

with a variation of F2, F3 formant transition slope: the controlled 

formants in (a), the synthesized signal and the first three formants 

measured in (b) 

 

perception tests. The average correct recognition rates are 

calculated for ten listeners. It is interesting to note that by 

varying the F2 and F3 formant transition slopes: (1) listeners 

can distinguish the three final consonants /p, t, k/; the best 

score of the final consonant /p/, /t/ and /k/ are 88%, 92% and 

80%, respectively; (2) in the plan of F2 / F3, we can find out 

three distinct regions corresponding to the three final 

consonants /p, t, k/ where each one is well recognized; (3) 

the two final consonants /p/ and /t/ are perceived more easily 

than the final consonant /k/ (the average score of the 

consonant /p/ and /t/ is high and the region of these two 

consonants in the plan F2 / F3 is greater than the one of /k/; 

(4) generally, in the VC context (V is the vowel /a/), the 

final consonant C is recognized with the best score as /p/ if 

F2offset = 1100 Hz, and F3offset = 1500 Hz; as /t/ if 

F2offset = 1700 Hz, and F3offset = 3000 Hz; and as /k/ if 

Formants 
Preceding vowel context 

/a/ /ɤ/ /ɔ/ /ă/ /ɤ̆/ /i/ /u/ /o/ /e/ /ɯ/ /ɛ/ 

F1 
F-stat 1.4 1.8 1.13 0.55 13.63 51.67 7.18 37.2 43.37 2.22 2.49 

p-value ns ns ns ns **** **** *** **** **** ns ns 

F2 
F-stat 21.49 156.8 29.99 16.92 47.35 78.07 84 313.82 89.14 57.22 20.62 

p-value **** **** **** **** **** **** **** **** **** **** **** 

F3 
F-stat 6.75 1.73 0.25 5.94 4.16 45.04 8.49 18.53 5.18 2.68 6.17 

p-value *** ns ns *** * **** **** **** *** ns *** 

Table II. ANOVA tests (p-value and F-statistic) of the formant transition slopes in comparing the three final consonants 

/p, t, k/ in the same context of a preceding vowel. * = test is significant at 0.05, ** = test is significant at 0.01, *** = test is 

significant at 0.005, **** = test is significant at 0.001, and ns = not significant 
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both values of F2offset and F3offset are close, 200 Hz and 

2100 Hz, respectively. 

 

 
Figure 6. Distribution of the F2, F3 offset values in the plan of F2 / 

F3 in the perception tests of the three final consonants /p, t, k/: the 

yellow points are the offset values of the evolution of these two 

formants (F2offset and F3offset), the blue line and red line are the 

border values of the evolution of F2offset and F3offset, 

respectively 
 

5. CONCLUSIONS AND PERSPECTIVES 

 

Our results have shown that, for the three final voiceless stop 

consonants /p, t, k/, the static characteristics (formant 

transition durations and starting formant transition values of 

F1, F2, and F3) are more or less close. However, in all 

(C1)VC2 contexts, the dynamic characteristics (formant 

transition slopes) can be considered as good parameters to 

differentiate the three final voiceless stop consonants /p, t, 

k/. At the statistic level, the results of analyze have 

confirmed that in the same vowel context, three final stops 

/p, t, k/ are always discriminated by at least one of three 

slopes of F1, or F2, or F3, and the F2 formant transition 

slope is a particularly significant parameter which always 

makes the discrimination of these three final consonants. In 

the perception tests, the results showed that by varying the 

formant transition slope of F2 and F3, most listeners can 

recognize the final consonant C in the sequence synthesized 

VC as one of three stops /p, t, k/, and in the F2 / F3 plan, 

three regions corresponding to the three final stop 

consonants /p, t, k/ are distinct. Then, we confirm the 

assertion of Dorman that if the weight perceptual of bursts is 

weak, the one of  transition is very important [5]. For three 

Vietnamese final stop consonants /p, t, k/ realized without 

burst at the end of occlusion, the formant transition slope of 

F2 and F3 is the only discriminating sign. 

On the other hand, Carré [13] pointed out that in V1V2 

production, the transition rates of F1 and F2 are necessary 

and sufficient to represent V2 at the very beginning of the 

transition and throughout the transition, there is sufficient 

information to detect V2. In (C1)VC2 production, our 

results also showed that the formant transition slopes from 

different preceding vowels to the same final stop consonant 

are distinguishable. So the formant transition slopes in the 

identification of the vowel in CV contexts could also be 

important. Since the formant transition duration remains 

constant (as in V1V2 production, Carré [13], and in VC, CV 

combinations, Kent [14]), the corresponding formant 

trajectories in the acoustic space can be described in term of 

formant transition rates. Therefore, the time domain could 

play an important role in the identification of vowels. Such a 

representation leads to new interpretations of co-articulation, 

normalization, invariance and vowel reduction. 

 
Table III. Main results of the perception tests for the F2, F3 

formant transition slope in the VC context. The average correct 

recognition rates are calculated for ten listeners 

F2offset F3offset /p/ /t/ /k/

800 1500 80% 8% 12%

800 1800 80% 10% 10%

800 2100 78% 12% 6%

800 2400 76% 18% 4%

800 2700 74% 20% 6%

1100 1500 88% 2% 10%

1100 1800 68% 12% 16%

1100 2100 78% 8% 10%

1100 2400 70% 10% 14%

1100 2700 74% 14% 10%

1100 3000 62% 28% 8%

1400 3000 16% 70% 14%

1400 3300 16% 72% 8%

1700 2400 10% 68% 22%

1700 2700 8% 78% 12%

1700 3000 2% 92% 6%

1700 3300 4% 78% 18%

2000 2100 0% 20% 80%

2000 2400 0% 36% 62%

2000 2700 0% 90% 10%

2000 3000 0% 84% 16%

2000 3300 2% 80% 14%

2300 2400 0% 26% 70%

Offset value (Hz) Correct recognition rate
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ABSTRACT 

 

This paper introduces a language identification approach 

using syllable structure information. We also review and 

compare other approaches. Most of these approaches use 

linguistic information for language identification. The 

information used for language identification is Malay 

affixation information, English vocabulary list, alphabet n-

gram, grapheme n-gram. The approach using syllable 

structure information has the highest accuracy at 93.73% 

compared to other approaches. Based on the accuracy result 

of comparison, by using syllable structure 1.91% accuracy 

had increased for language identification compare with the 

second higher result in this paper. Syllable structure 

information is able to gain a better result for language 

identification. 

 

Index Terms— Language identification, code 

switching, syllable structure information, Malay, English  

 

1. INTRODUCTION 

 

Language identification is an approach to identify the 

languages used in a text or speech. In this study, we deal 

with the problem of language identification primary in text. 

Language identification is important in many areas of 

natural language processing. In automatic speech 

recognition and speech synthesis, language identification is 

used for identifying the languages of the words before they 

are converted to their respective pronunciations. In the field 

of machine translation, the languages need to be determined 

before the text can be automatic translated. Language 

identification is also a part of the document categorization 

system, where it classifies text documents based on the 

language categories.  

Early language identification approaches are only 

capable of identifying one language given a sentence or 

document, for instance using n-grams or the statistics of 

short words frequency to determine the language of the 

words [1], [2], [3]. The approach may fail when there are 

few languages in the text.  

Malaysia is a multilingual society where most people 

are capable of speaking more than one language. Code 

switching is a common phenomenon in Malaysian 

conversation where more than one language is used at the 

same time. In Malay conversation for example, speakers 

often switch between Malay and English. There are many 

reasons why languages are switched from one to another. 

The most common is to overcome the inability to express 

one‟s opinion in the target language. It can also be social 

where code switching is used to show the social position of 

the group. Besides speech, code switching also occurs in 

writing. 

Abu Bakar explained that one of the reasons is the 

education system different between fifteenth century and 

twentieth century that causes people to mix up English and 

Malay [4]. Code-switching can occur in Malay speech 

where single word or string of words are imported from 

English, and assimilated through a range of phonological 

and morphological processes [4]  

This paper examines a few language identification 

approaches. We also propose an improvement to the 

Malay and English language identification which uses 

syllable information. Section 2 gives an introduction and 

overview of Malay language. Section 3 discusses five 

language identification approaches, while the experiment 

and results are described in section 4. Section 5 present the 

conclusion and future works. 

 

2. MALAY 
 

Malay is the national language of Malaysia, Indonesia and 

Brunei. It is also widely spoken in southern Thailand and 

Singapore. There are many varieties or dialects of Malay. In 

this paper, we focus only on the standard Malay used in 

Malaysia. Malay like other languages is also very much 

influenced by English. A lot of English words have been 

absorbed into Malay especially in the field of science and 

technology [5].  However, most people are still more 

comfortable to combine Malay and English in writing or 

speech. 

Malay is an agglutinative language. One of the features 

of agglutinative language is the ability of the base word to 

combine with the prefix, suffix or circumfix to form a new 

word with different meaning [6]. Prefix is added in front of 

the word, while suffix is appended at the end of the word. 
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Ranaivo-Malacon states that only five native prefixes (ber-, 

per-, ter-, me-, pe-) may create deletion, insertion and 

assimilation contact with the base word [6].  

Table 1 shows some example of Malay prefix, suffix 

and circumfix.   

 

 

 

 

 

 

 

 

Figure 1: A Malay word structure. 

 
Prefix „ber‟, „di‟ , „juru‟, „ke‟, „pem‟, „meng‟, „peng‟, 

„per‟, „ter‟, „mem‟, „men‟, „pen‟, „me‟, „pe‟, „be‟, 

„se‟, „te‟ 

Suffix „nya‟, „kan‟, „an‟, „i‟, „kah‟, „lah‟, „tah‟ 

Circumfix „ber…an‟, „per…an‟, „ter…kan‟, „mem…kan‟, 

„pem…an‟, „pen…an‟, 'pe…an‟, „ke…an‟, „se…an‟, 

„te…kan‟, „di…kan‟, „ber…kan‟, „me…i‟, 

„men…i‟, „meng…i‟, „menge…kan‟, „penge…an‟, 

„peng…an‟ 

 

Table 1: Sample for prefix, suffix and circumfix. 

 

A grapheme is “a minimal unit of a writing system” or 

“a unit of a writing system consisting of all the written 

symbols or sequences of written symbols that are used to 

represent a single phoneme” [7]. Table 2 shows the Malay 

grapheme and their respective phoneme class [5]. It consists 

of a maximum of two characters.   

 
Class Graphemes 

Vowel „a‟, „e‟, „i‟, „o‟, „u‟ 

Diphthong „ai‟, „au‟, „oi‟ 

Plosive  „p‟,  „b‟, „t‟, „d‟, „k‟, „q‟, „g‟ 

Fricative  „f‟, „v‟, „s‟, „z‟, „sy‟, „sh‟, „kh‟, „gh‟, „h‟ 

Affricate  „c‟, „j‟ 

Vibrante  „r‟ 

Lateral  „l‟ 

Lateral  „l‟ 

Nasale  „m‟, „n‟, „ny‟, „ng‟ 

Glide  „w‟, „y‟ 

 

Table 2: Graphemes 

 

Malay syllable structures are shown in Table 3. Most of 

the words have two or three syllables. Original Malay words 

have a simple syllable structure, whereas many of the words 

with two or more consonants that form the coda of a syllable 

are borrowed from English [5]. 

 
Syllable  Word  Description  

V  i.kan  V.CVC  

VC in.tan VC.CVC 

CV  sa.tu  CV.CV  

CVC  ban.tu  CVC.CV  

CCV  dwibahasa  CCV.CV.CV.CV  

CCVC  prak.tik  CCVC.CVC  

CCCV  stra.tegi  CCCV.CVCV  

CCCVC  struk.tur  CCCVC.CVC  

 

Table 3: Malay syllable structures [4]. 

 

3. APPROACHES TO LANGUAGE 

IDENTIFICATION 

 

This paper discusses five language identification 

approaches. Most of the approaches discussed make use of 

linguistic information for language identification. The 

information used for language identification is affixation, 

English vocabulary list, alphabet n-gram, grapheme n-gram 

and syllable structure.  

 

3.1. Affixation information 

 

Malay words can be formed by adding affixation to the base 

word. By verifying whether the base word belongs to a 

known base list, we can know whether a word is Malay. 

This will involve the stripping of the affixation, and then 

checking the base word in the base word list. However, this 

approach is not capable of determining whether a word is 

English. Thus, we assume a given word is either Malay or 

English. 

 

3.2. English vocabulary list 

 

English vocabulary list can simply be used to determine 

whether a word is English. If we find the word in the list, 

then we assume it is an English word, if it is not found in 

the list then we assume it is a Malay word. 

 

3.3. Alphabet n-gram 

 

We can also model the orthography of the words using 

alphabet n-gram, and then calculate the probability of an 

unknown word in different languages [8]. The language 

with the highest probability is assumed to belong to that 

language. . 

       Before the orthography model of different languages 

can be trained, we must prepare a set of words with their 

language identified.  The words are then segmented to 

sequence of alphabet based on a particular n-gram order. 

The segmentation of the word is from left to right. For 

example bigram alphabet segmentation for the Malay word 

“BAIK” would be {“_B”, “BA”, “AI”, “IK”, “K_”}. The 

probability of the alphabet sequence is then calculated for 

each language. 

During the test, given a word with the sequence of 

alphabet A = A1, A2, A3,….An. We want to find the most 

probable language L, given the alphabet sequence: 

 

Prefix Base Suffix 

Circumfix 
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)|()(maxarg

)(

)|()(
maxarg

)|(maxargˆ

LAPLP

AP

LAPLP

ALPL







 

 

We assume P(L) is the same for all languages. Thus, the 

probability of the sequence of alphabet, P(A|L) (bigram) is 

calculated as below. 

For indentifying Malay or English word, we will need 

to calculate the probability of the alphabet sequence for 

English and Malay, and subsequently selecting the one with 

the highest probability as the most probable language. 





n

i

iinEnglish AAPEnglishAAAP
1

121 )|()|,...,,(  






n

i

iinMalay AAPMalayAAAP

1

121 )|()|,...,,(  

If the bigram is not found, a small value (1
-10

) is 

assigned. The most probable language will be selected. 

 

3.4. Grapheme n-gram 

 

The calculation for this approach is the same as the 

previous approach. The only difference is the segmentation, 

where words are segmented to grapheme units instead of 

alphabets. During the test, given a word with the sequence 

of grapheme G = G1, G2, G3,….Gn. We want to find the 

most probable language L, given the grapheme sequence:  

)|()(maxarg

)(

)|()(
maxarg

)|(maxargˆ

LGPLP

GP

LGPLP

GLPL







 

 

We assume P(L) is the same for all languages. The 

most probable language will be selected. 

 

3.5. Syllable structure 

 

Before a word is converted to syllable structure, the 

word is first   converted to grapheme sequence (refer to 

Table 2). The grapheme sequence is then segmented to 

syllables by determining the largest syllable that can be 

formed from right to left [5]. Figure 2 shows the syllables 

forming after converted the word to grapheme.. 

syllable_sequence 

 

syllable_sequence   syllable 

 

syllable 

  syllable_sequence             

                                       

                       syllable 

 

Figure 2: Left-branching structure of syllable sequence. 

 

For example with the previous example, the word 

“KEBAIKAN” will be segmented to {“_KE”, “KEBAI”, 

“BAIKAN”, “KAN_”} [8]. 

The calculation for this approach is same as before. 

Given the sequence of syllable S = S1, S2, S3,….Sn. We want 

to find the most probable language L, given the syllable 

sequence:  

)|()(maxarg

)(

)|()(
maxarg

)|(maxargˆ

LSPLP

SP

LSPLP

SLPL







 

 

For indentifying Malay or English word, calculate the 

probability of the sequence of the grapheme in the word, 

given it is English or Malay.  

 

4. EXPERIMENT 

 

For examining language identification using affixation 

information, base word vocabulary list contains around 

three thousand number of base words. As for the language 

identification using English vocabulary list, the word list 

was extracted from Carnegie Mellon University (CMU) 

pronunciation dictionary [10]. The English vocabulary list 

contains twenty thousand English words. 

The approach using alphabet n-gram, grapheme n-gram 

and syllable n-gram used a separate training and testing 

word list. Bigram was used for the testing. If the bigram 

sequence is zero, a small value (1
-10

) was applied.  In the 

training, twenty thousand vocabularies were selected 

randomly. As for the testing, ten thousand vocabularies 

were selected.  From the total of ten thousand vocabularies 

selected for training, 3584 is English and 6416 is Malay. 

The vocabularies selected for training and testing are 

different and unique. 

 
 Affi- 

xation 

Info. 

English 
Vocab. 

List 

Alphabet 
Bigram 

Grapheme 
Bigram 

Syllable 
Struc. 

Malay 
Words 

4000 8774 6443 6482 6542 

English 

Words 

5940 1226 3557 3518 3499 

Malay 
and 

English 

- - 0 0 41 

 

Table 4: Result for each approach. 

 
 Affi- 

xation 

Info. 

English 

Vocab. 

List 

Alphabet 

Bigram 

Grapheme 

Bigram 

Syllable 

Struc. 

Malay as 

Malay 

4051 6356 5994 6040 6167 

English as 

Malay 

9 2418 449 442 375 

English as 

English 

3575 1166 3135 3142 3244 
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Malay as 

English 

2365 60 422 376 255 

Accuracy 

% 

76.26 75.22 91.29 91.82 93.73 

 

Table 5: Analyze and accuracy for each approach. 

 

Based on the result, language identification approach 

using Malay affixation information and English vocabulary 

list have the lowest accuracy compared with other three 

approaches. The reasons for the high error rates are not 

unexpected because these approaches depend on the number 

of Malay base words and English words. 

There is some gain in accuracy of 0.5% from alphabet 

bigram to grapheme bigram approach. This is because the 

difference between alphabet and grapheme is not much. 

Using syllable structure for language identification gives the 

highest accuracy at 93.73%. 

It is interesting to note that Table 4 shows that with the 

syllable information, it identified 41 words with the same 

probability.  This occurred for those words that can be 

Malay or English word. The other possibility is because the 

number of syllables for the word is short and these words 

have the same value probability.  

 

5. CONCLUSION & FUTURE WORKS 
 

This paper proposed language identification using syllable 

structure to identify Malay and English word. Experiment 

results shows the proposed method is able achieve a 93.73% 

accuracy on 10,000 testing vocabularies. The result is better 

than other similar approaches using alphabet information 

and grapheme information. For future work, we will 

incorporate the syllable structure information with word 

sequence information. By combining syllable n-gram and 

word n-gram, the accuracy of the language identification 

system will be increased further.  
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