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ABSTRACT

This paper describes our ongoing work in domain unlim-
ited speech translation. We describe how we developed a
lecture translation system by moving from speech transla-
tion of European Parliament Plenary Sessions and seminar
talks to the open domain of lectures. We started with our
speech recognition (ASR) and statistical machine trans-
lation (SMT) 2006 evaluation systems developed within
the framework of TC-Star (Technology and Corpora for
Speech to Speech Translation) and CHIL (Computers in
the Human Interaction Loop). The paper presents the
speech translation performance of these systems on lec-
tures and gives an overview of our final real-time lecture
translation system.

1. INTRODUCTION

Growing international information structures and decreas-
ing travel costs could make the dissemination of knowl-
edge in this globalized world very easy – if only the lan-
guage barrier could be overcome. Lectures are a very ef-
fective method of knowledge dissemination. Such person-
alized talks are the prefered method since they allow the
speakers to tailor their presentation toward a specific au-
dience, and in return allow the listeners to get the most
relevant information through interaction with the speaker.
In addition, personal communication fosters the exchange
of ideas, allows for collaboration, and forms ties between
distant units, e.g. scientific laboratories or companies.
At the same time it is desirable to allow the presenters
of talks and lectures to speak in their native language,
since, no matter how proficient in a foreign language, one
will always feel more confident in the native tongue. To
overcome this obstacle human translators are currently the
only solution. Unfortunately, translation service are of-
ten prohibitively expensive such that many lectures are not
given at all as a result of the language barrier. The use of
modern machine translation techniques have the potential
to provide translation services at no costs to a wide audi-
ence, making it possible to overcome the language barrier
and bring the people closer together.
This paper describes our ongoing work in unlimited do-
main speech translation of lectures starting from systems
built within the framework of CHIL and TC-STAR.

CHIL [25], Computers in the Human Interaction Loop,
aims at making significant advances in the fields of
speaker localization and tracking, speech activity de-
tection and distant-talking automatic speech recognition.
Therefore, in addition to the near and far-field micro-
phone, seminars were also recorded by calibrated video
cameras. The long-term goal is the ability to recognize
speech in a real reverberant environment, without any con-
straint on the number or distribution of microphones in the
room nor on the number of sound sources active at the
same time.

TC-STAR [20], Technologies and Corpora for Speech-
to-Speech-Translation, is envisaged as a long-term effort
to advance research in all core technologies for Speech-
to-Speech Translation (SST) which is a combination of
Automatic Speech Recognition (ASR), Spoken Language
Translation (SLT) and Text to Speech (TTS). The objec-
tive of the project is to make a breakthrough in SST that
significantly reduces the gap between human and machine
translation performance. The focus hereby is on the devel-
opment of new algorithms and methods. So far the project
targets a selection of unconstrained conversational speech
domains – speeches and broadcast news – and three lan-
guages: European English, European Spanish, and Man-
darin Chinese.

The paper is organized as follows: The developmental
work started from our 2006 ASR and SMT evaluation
systems for European Parliament Plenary Session (EPPS,
TC-STAR) and the NIST Rich Transcription evaluation
RT-06S on seminars (CHIL). In Section 3, we first com-
pare the different ASR systems of both domains and show
how we merged these systems for lecture recognition. Fur-
thermore, we present first results of acoustic and language
model adaptation on the lecture domain. In Section 4, we
give statistical machine translation results on text and ASR
input for lectures of our 2006 SMT evaluation system for
EPPS. In addition, we explain in detail how we adapted
our EPPS SMT system towards the more conversational
style of lectures and present the corresponding machine
translation results. Section 5 provides an overview of our
real-time lecture translation system, Section 6 concludes
this paper.



2. DEVELOPMENT AND EVALUATION

DATA

For the automatic speech recognition and statistical ma-
chine translation experiments on lectures, we selected
three different lectures as development and evaluation
data. The three lectures were given in English by the same
non-native speaker on different topics. All lectures were
recorded with close talking microphones [3].

Dev: A 24min talk that was held to give a broad overview
of current research projects in our lab and is therefore
ideal as development set.

t035: A 35min talk held as a conference key-note, only
partly covered by the Dev talk, which gives us the
opportunity to evaluate how our system behaves on
an unseen domain.

t036+: A 31min talk on the same topic as t035, but held in
a different environmental setting and situation, which
allows us to evaluate the robustness of our system.

For the ASR experiments we used the seminar part of the
NIST RT-06S development data and the 2006 EPPS devel-
opment data as additional data sources.

3. SPEECH RECOGNITION

In this section we first compare the 2006 evaluation sys-
tems for European Parliament Plenary Sessions [19] and
CHIL seminars [4] and describe the development of a sin-
gle system, which performs almost as good as the evalu-
ation systems on both domains respectively. This is fol-
lowed by the presentation of the system’s performance on
the lecture domain. Lectures are an ideal showcase for
speaker and domain adaptation tasks, since the lecturer
and the topic might be known in advance [1]. Therefore,
we describe acoustic and language model adaptation re-
sults in the last part of this section. Different from the
work [3] we will in this paper take the 2006 EPPS evalua-
tion into consideration for the development of our lecture
recognition system.

All speech recognition experiments were done using the
Janus Recognition Toolkit (JRTk) featuring the Ibis de-
coder [17]. For language modeling, we used the SRI Lan-
guage Modeling Toolkit (SRILM) [18].

3.1. Data

For acoustic model training, we selected the following cor-
pora: ICSI and NIST meeting recordings [9, 12], TED
lectures [11], CHIL seminars [25], and European Parlia-
ment Plenary Sessions (EPPS) [8]. Because of the results
given in [4] we have neither used the ISL meeting corpus
nor the Hub4 Broadcast News corpus due to their channel
mismatch: both corpora were recorded with lapel micro-
phones. Table 1 gives an overview of the total amount of
speech in the different corpora. More information about
the respective corpora can be found in the cited literature.

ICSI NIST TED CHIL EPPS
speakers 463 77 52 67 1894
duration 72h 13h 13h 10h 80h

Table 1: Number of speakers and total amount of speech
data used for acoustic model training.

For language model training, some additional text data
was used on top of the 2006 evaluation systems’ [4, 19]
language model training data. Altogether, the following
corpora were available: Talks, text documents from TC-
STAR and CHIL, EPPS transcripts, EPPS final text edi-
tions, AMI meeting data, non-AMI meeting data (ISL,
ICSI, NIST), TED lectures, CHIL seminars, broadcast
news data, UN (United Nations) text data released by
ELDA, recent proceedings data (2002 - 2005), web data
from UWash (related to ISL, ICSI, and NIST meetings)
and web data collected for RT-06S (related to CHIL sem-
inars). Table 2 shows the amount of words available for
each corpus. More details can be found in [4, 19].

3.2. System Description

The acoustic models used in the experiments below were
all trained in the same fashion, resulting in a size of 16,000
distributions over 4,000 models, with a maximum of 64
Gaussians per model. These models were all based on the
same quint-phone context decision tree and phoneme set
that was used for the RT-06S evaluation system. Further-
more, the acoustic model training setup was taken from the
RT-06S system: (1) a first incremental growing of Gaus-
sians, (2) estimation of the global STC transform [7], fol-
lowed by (3) a second incremental growing of Gaussians.
To train the distributions for the semi-continuous system
and to compensate for the occasionally worse fixed-state
alignments, 2 iterations of Viterbi training were performed
(4), and finally, 4 additional iterations of SAT Viterbi
training by using constrained MLLR in the feature space
(FSA) [6] were applied for the SAT models (5). More de-
tails can be found in [4].

Different from [4] and [19] we used a less complicated
decoding setup. Instead of doing cross adaptation be-
tween systems trained with different phoneme sets and
front-ends, we simply used our standard phoneme set and
MFCC FFT front-end with a 42-dimensional feature space
after linear discriminant analysis (LDA) and a global STC
transform with utterance-based cepstral mean subtraction
(CMS).

3.3. Baseline Experiments and Comparisons

The goal was to build a single acoustic model for both
domains, EPPS and CHIL seminars and to finally use this
acoustic model on the lecture data. For this, we compared
different acoustic models trained on different subsets of
the acoustic training material described in 3.1. All subsets
contain the CHIL corpus, which is therefore not explicitly
mentioned in the table rows below.



talks docs eppsS eppsT nAMI AMI TED CHIL BN UN proc UWash wCHIL
words 93k 192k 750k 33M 1.1M 200k 98k 45k 131M 42M 23M 147M 146M
EPPS 35% 54% 9% 2%
CHIL 15% 8% 0.6% 25% 0.8% 24% 12% 15%
Dev 36% 1% 12% 3% 8% 9% 11% 19%

Table 2: Amount of language model training data in words together with their interpolation weights for the different
domains. ’Dev’ is the lecture development set as described in Section 2. Empty cells indicate that the data was not
useful for that domain.

We used a three pass decoding setup. As in [4], the first
pass uses incremental speaker based vocal tract length
normalization (VTLN) and constrained MLLR estimation
and is decoded with the semi continuous models (4) us-
ing tight search beams. The second pass uses the same
semi continuous acoustic models as pass one, but before
decoding, MLLR [13] adaptation together with an estima-
tion of fixed VTLN and constrained MLLR parameters is
performed. For this, the confidence weighted hypotheses
of the previous pass are being used. For the third pass,
the FSA-SAT acoustic models (5) are used together with
the same adaptation scheme applied in pass two. After
that, confusion network combination (CNC) [14] is being
performed, using the lattices of the third pass only. We
used exactly the same decoding dictionaries and language
models as for the EPPS and RT-06S evaluation systems.

CHIL Seminars For the CHIL seminars we used the
same language models and dictionaries as described in [4].
The language model was trained on AMI and non-AMI
meetings, TED, some CHIL data, BN, proceedings and
web data related to meetings and CHIL lectures. The inter-
polation weights, which were tuned on held-out CHIL data
are shown in Table 2. The language model has a perplex-
ity of 130 on the RT-06S development data, while 16%
4-grams, 41% 3-grams, 39% 2-grams, and 4% 1-grams
were used. The dictionary consists of about 59k pronun-
ciation variants defined over a vocabulary of 52k. It has
an out-of-vocabulary (OOV) rate of 0.65 on the RT-06S
development data.

As can be seen in table 3 for the above described differ-
ent system passes, acoustic models trained on EPPS alone
or additionally including TED (TED+EPPS) is significant
worse than the other two systems. The performance of the
two other systems is nearly identical, which means that
adding the EPPS data to the acoustic model training data
used in RT-06 (ICSI+NIST+TED) does not hurt (but also
does not improve the overall results).

CHIL 1st 2nd 3rd cnc
EPPS 40.3 –.- –.- –.-

TED+EPPS 38.7 –.- –.- –.-
ICSI+NIST+TED+EPPS 34.1 27.5 26.2 25.5

ICSI+NIST+TED 34.0 27.1 26.0 25.5

Table 3: Results on the RT06 development data. The
CHIL data was used in all systems for AM training.

European Parliament Plenary Sessions For the Euro-
pean Parliament Plenary Sessions we used the language
models and dictionaries as described in [19]. The lan-
guage model was trained on EPPS transcriptions and final
text editions, BN, and UN and achieved a perplexity of 93
on the 2006 EPPS development data, with 29% 4-grams,
36% 3-grams, 32% 2-grams, and 4% 1-grams. The inter-
polation weights were tuned on the 2005 EPPS develop-
ment data and are shown in Table 2. The dictionary for
EPPS consists of 45k pronunciations over a vocabulary of
40k and has an OOV-Rate of 0.43 on the 2006 EPPS de-
velopment data.

As can be seen in Table 4 the system trained without EPPS
(ICSI+NIST+TED) performs worst. Furthermore, com-
pared to the acoustic model used for the 2006 EPPS evalu-
ation (MS23), the acoustic model training setup developed
for RT-06S is significantly better (MS23 vs. EPPS rows).
An additional gain can be seen by adding TED, which is
a corpus containing European English as well. By adding
the meeting data, the system improves not further, instead
it ranks between the EPPS and TED+EPPS systems. Nev-
ertheless, after doing confusion network combination, it
gives the same results compared to the TED+EPPS sys-
tem.

1st 2nd 3rd cnc
MS23 22.6 –.- –.- –.-
EPPS 20.8 15.4 14.7 14.5

TED+EPPS 20.1 14.8 14.3 14.1
ICSI+NIST+TED+EPPS 20.6 15.1 14.6 14.1

ICSI+NIST+TED 29.1 –.- –.- –.-

Table 4: Results on the 2006 EPPS development data.
The CHIL data was used in all systems for AM training,
except for MS23. MS23 specifies the 2006 EPPS evalua-
tion setup.

Compared to the CHIL seminars, the EPPS results are
much better. The reason for that lies in the huge amount
of acoustic and language model in-domain training data
available for EPPS, while only a very small amount of
in-domain data is available for CHIL. Furthermore, the
language used in the European Parliament is more formal
and therefore less spontaneous. This leads also to a bet-
ter OOV-rate and language model perplexity with a higher
n-gram coverage for larger n.



3.4. Lecture Domain

Based on the perplexities and OOV-rates on Dev shown
in Table 5 we selected the language model and dictionary
built for the CHIL seminars for our baseline experiments.
Not surprisingly, this selection holds also for the evalua-
tion talks. The EPPS language model and vocabulary is,
due to the large amount of in-domain data, too specific.
The OOV-rates of the RT-06S (CHIL) vocabulary and for
t036+ are surprisingly low – the only explanation for that
is this talk is not very specific.

Dev t035 t036+
PPL OOV PPL OOV PPL OOV

CHIL 173 0.22 117 0.27 186 0.09
EPPS 205 1.29 230 1.83 229 1.72

Table 5: Perplexities (PPL) and OOV-rates of the CHIL
and EPPS language models and vocabularies.

As can be seen in Table 6, the acoustic model trained on
all data performs significantly better than the other mod-
els. For this reason we selected this model for our further
experiments. The baseline results on the lecture evaluation
talks are shown in Table 7. With the training setup de-
veloped for RT-06S we significantly improved our results
compared to the acoustic models developed in [3] (MS11
column in Table 7). Furthermore, it can be seen that the
system performs quite well on unseen domains (t035) and
different environments (t036+).

Model Adaptation Experiments The baseline experi-
ments were performed with unsupervised adaptation. As
mentioned above, for lectures, speaker and topic are of-
ten known in advance. Therefore, the lecture domain is
ideal for applying supervised acoustic and language model
adaptation. As will be shown, this allows us to reduce
the decoding setup from three to only one single decoding
pass without any loss in performance and is the first step
towards a real-time lecture translation system.

For acoustic model adaptation an additional amount of
around 7 hours of speech for the same speaker was avail-
able. For the adaptation experiments subsets of this
data with different lengths were used to compute VTLN
and constrained MLLR (FSA) parameters and to perform
model based MLLR adaptation. The results can be seen in
Table 8. While the adaptation works quite well on the eval-
uation talks – the 7hrs results are similar to those achieved
after CNC with the baseline systems – the results on the

1st 2nd 3rd cnc
EPPS 23.9 –.- –.- –.-

TED+EPPS 23.4 –.- –.- –.-
ICSI+NIST+TED+EPPS 21.4 16.2 15.0 15.5

ICSI+NIST+TED 24.3 –.- –.- –.-

Table 6: Baseline results on Dev with the CHIL dictio-
nary and language model. The CHIL data was used in all
systems for acoustic model training.

1st 2nd 3rd cnc MS11
t035 17.3 12.6 12.1 12.2 12.7

t036+ 16.7 12.0 11.6 11.5 12.4

Table 7: Baseline results on the evaluation talks t035 and
t036+. The MS11 column contains the final (CNC) results
with the acoustic model trained in [3].

0.5hrs 1.5hrs 3.5hrs 7hrs sup
Dev 20.9 20.0 19.5 18.9 12.0
t035 14.2 13.1 12.6 12.1 10.1

t036+ 13.3 12.3 11.5 10.7 9.3

Table 8: Acoustic model adaptation results with differ-
ent amounts of adaptation data. In the column ’sup’, su-
pervised adaptation was performed on the particular talk
itself.

Dev talk are significantly worse. This is due to a large
channel mismatch between the adaptation material and the
Dev talk. To confirm this, we adapted on the particular talk
itself and achieved reasonable results for all talks (see col-
umn ’sup’ in Table 8). It can also be seen, that doubling
the adaptation data results in a relative gain of about 0.5%
in WER.

For language model adaptation we did an initial experi-
ment by tuning the interpolation weights and selecting the
different corpora with respect to the lecture domain. The
interpolation weights, tuned on some held-out data and the
selected corpora can be seen in Table 2. Thereby the per-
plexity on the Dev talk could only be reduced slightly from
173 to 168. Nevertheless we saw significant gains in WER
on all lectures, which are reported in Table 9.

4. STATISTICAL MACHINE TRANSLATION

In this section, we describe the statistical machine transla-
tion (SMT) component in our lecture translator that was
used to translate the lectures in section 2 from English
to Spanish and German. The underlying phrase-based
SMT system was originally developed within TC-STAR
for translating speeches from the European Parliament
Plenary Sessions (EPPS). In these experiments, we used
loose coupling, passing the first-best hypothesis from the
recognizer to the translation component. Translation re-
sults are reported using the well known evaluation metrics
BLEU [16] and NIST [15]. All MT scores were calculated
using case-insensitive scoring and one reference transla-
tion per test set.

unadapted adapted PPL
Dev 18.9 16.1 168
t035 12.1 10.5 165

t036+ 10.7 9.1 193

Table 9: Language model adaptation results on top of the
acoustic model adaptation on 7hrs of speech. Perplexities
should be compared with Table 5.



4.1. Phrase Alignment

To find a translation for a source phrasef̃ = f1...fl we re-
strict the general word alignment: Words inside the source
phrase align to words inside the target phrase, and words
outside the source phrase align to words outside the target
phrase. This constrained alignment probability is calcu-
lated using the well-known IBM1 word alignment model,
but the summation of the target words is restricted to the
appropriate regions in the target sentence. Also, the posi-
tion alignment probabilities are adjusted accordingly [23].
Optimization is over the target side boundariesi1 andi2.

pi1,i2(f |e) =

j1−1∏

j=1

∑

i/∈(i1..i2)

1

I − k
p(fj |ei)

×

j2∏

j=j1

i2∑

i=i1

1

k
p(fj |ei)

×
J∏

j=j2+1

∑

i/∈(i1..i2)

1

I − k
p(fj|ei)

(1)

Similar to pi1,i2(f |e) we can calculatepi1,i2(e|f), now
summing over the source words and multiplying along the
target words.

To find the optimal target phrase we interpolate the log
probabilities and take the pair(i1, i2) that gives the highest
probability. The interpolation factorc can be estimated on
a development test set.

The scores calculated in the phrase alignment are align-
ment scores for the entire sentence. As phrase translation
probabilities we use the second term in Eqn. 1.

4.2. Decoder

The beam search decoder combines all model scores to
find the best translation. In these experiments, the differ-
ent models used were: (1) The translation model, i.e. the
word-to-word and phrase-to-phrase translations extracted
from the bilingual corpus according to the new alignment
method described in this paper. (2) A trigram language
model. The SRI language model toolkit was used to train
the models [18]. (3) A word reordering model, which as-
signs higher costs to longer distance reordering. We use
the jump probabilitiesp(j|j′) of the HMM word align-
ment model [24] wherej is the current position in the
source sentence andj′ is the previous position. (4) Sim-
ple word and phrase count models. The former is essen-
tially used to compensate for the tendency of the language
model to prefer shorter translations, while the latter can be
used to give preference to longer phrases. For each model
a scaling factor can be used to modify the contribution of
this model to the overall score.

The decoding process is organized into two stages: First,
the word-to-word and phrase-to-phrase translations and,
if available, other specific information like named entity
translation tables are inserted into a translation lattice. In

the second step, we find the best combinations of these
partial translations, such that every word in the source
sentence is covered exactly once. This amounts to doing
a best path search through the translation lattice, which
is extended to allow for word reordering: Decoding pro-
ceeds essentially along the source sentence. At each step,
however, the next word or phrase to be translated may be
selected from all words laying or phrases starting within a
given look-ahead window from the current position [22].

4.3. Training Data

For training the baseline translation systems, the parallel
EPPS corpus was used. For English-Spanish, a version
was created by RWTH Aachen within TC-STAR [8]. The
English-to-German models were trained on the EPPS data
as provided by Philipp Koehn [10].

In addition, a small number of lectures similar in style to
our development and evaluation data was collected, tran-
scribed, and translated into Spanish and German. Al-
together, parallel lecture corpora of about 12,000 words
were available in each language.

4.4. Model Adaptation

Adapting the MT component of our EPPS translation sys-
tem towards the more conversational style of lectures was
accomplished by a higher weighting of the available lec-
ture data in two different ways. First, for computing the
translation models, the small lecture corpora were multi-
plied several times and added to the original EPPS training
data. This yielded a small increase in MT scores.

Secondly, for (target) language model computation, a
small tri-gram LM was computed on t035 and then inter-
polated with the original EPPS language model, whereas
the interpolation weight was chosen in order to minimize
the perplexity on the development set. In this manner the
perplexity on the Dev talk could be reduced from 645 to
394 for German and from 543 to 403 for Spanish. To fur-
ther adapt the target language models, we collected Span-
ish and German web data with the help of tools provided
by the University of Washington [21]. A small amount
of the used search queries were hand written, however,
most search queries were automatically created by using
the most frequent tri-grams found in the Dev talk. Approx-
imately1/4 of all development set tri-grams were used for
this. The German and Spanish web corpora collected in
this manner consisted of 175M words and 120M words,
respectively. The web corpora were again added to the ex-
isting LMs by interpolation, which yielded a perplexity of
200 for German and 134 for Spanish. The corresponding
perplexities on the t036+ talks are 617 and 227, respec-
tively.

The effects of translation model and language model adap-
tation, as well as the results of the final system, combining
both adaptation steps, are shown in tables 10 and 11 for
English-to-Spanish and English-to-German, respectively.



system NIST Bleu
baseline (EPPS) 4.71 (5.61) 15.41 (20.54)
TM-adaptation 4.78 (5.67) 16.05 (21.43)
LM-adaptation 5.10 (5.99) 17.58 (22.90)
final system 5.22 (6.11) 18.57 (24.00)

Table 10: English-Spanish lecture translation system on
t036+. Translation results on manual transcripts are shown
in brackets.

system NIST Bleu
baseline (EPPS) 4.00 (4.71) 09.32 (12.53)
TM-adaptation 4.29 (5.06) 11.01 (14.95)
LM-adaptation 4.37 (5.12) 11.67 (14.96)
final system 4.67 (5.47) 13.22 (17.25)

Table 11: English-German lecture translation system on
t036+. Translation results on manual transcripts are shown
in brackets.

The significantly lower MT scores for the English-to-
German translation direction are mostly due to long dis-
tance dependencies and compound words which are in-
herent to the German language.

In absolute terms, the translation performance on this dif-
ficult task is still quite poor when compared with tasks
for which large amounts of training data similar in style
is available, such as the TC-STAR EPPS task. Neverthe-
less, small amounts of lecture data were sufficient to sig-
nificantly improve performance, especially when ampli-
fied by using language model adaptation with similar web
data.

5. THE REAL-TIME LECTURE

TRANSLATION SYSTEM

For our current version of a real-time lecture translation
system, which simultaneously translates lectures given in
English into Spanish and German, we integrated the above
described speech recognition and machine translation sys-
tems together with a sentence segmentation component
and a speech synthesis into a client-server framework sim-
ilar to the one described in [5].

To reach real-time end-to-end performance, we had to
tune the above described single pass speech recognizer to
run faster than real-time, by further restricting the beam
search, which resulted in an increase in WER to about
13% on the evaluation talks. The other system compo-
nents did not need further tuning.

To keep the latency of the system as short as possible,
the speech recognizer already starts to decode, while the
speaker is talking and continously returns partial back
traces with first best hypotheses. Since the machine trans-
lation awaits complete sentences as input, we merged the
partial hypotheses together, and resegmented them to sen-
tence like segments. This means, that different from other
speech transcription systems no speech segmentation was

performed before processing it by the speech recognizer,
instead it was done afterwards, to have the ability to tune
the segmentation boundaries with respect to optimal ma-
chine translation performance. Currently, the segmenta-
tion is done at silence regions only, whereby additional
thresholds are defined to produce segments with a length
of about five to ten words. Thereby, the latency of the sys-
tem could be limited to a maximum of about five seconds.
We plan for more sophisticated segmentation algorithms
in the future.

An overview of the real-time lecture translation system is
given in Figure 1. As can be seen, the system can deliver
the output in different ways:

Subtitles: Simultaneous translations can be projected to
the wall as subtitles. This is suitable if the number of
output languages is small.

Heads-Up Display Goggles: When there is not enough
space on a wall or canvas, heads-up display goggles
can be worn to see the simultaneous translation as
subtitles. Furthermore, other participants are not dis-
turbed by the subtitles.

Targeted Audio Another solution for providing the si-
multaneous translation without disturbing others is
the so-called targeted audio device [2]. The targeted
audio device is a beam-steered loudspeaker, consist-
ing of several small ultrasound loudspeakers. It out-
puts audio in a beam with a width of about 1-2 me-
ters. People sitting within the beam are able to hear
everything, people outside the beam do not. In fu-
ture applications, several such targeted audio devices
could be assigned in various languages to accommo-
date each participant in the lecture room.

6. CONCLUSION

In this paper, we presented our work in taking first steps
towards building open domain speech translation systems.
We have successfully developed an ASR system for lec-
tures by merging the evaluation systems for European Par-
liament Plenary Sessions and CHIL seminars. Further-
more, we combined the resulting system with the trans-
lation system used in TC-STAR to translate lectures on a
new domain from English to Spanish and German.

The ASR system performance exceeds our expectations,
demonstrating the feasibility of designing open domain
recognition systems. For translation, lectures still pose
a significant challenge. Nevertheless, small amounts of
lecture data were sufficient to significantly improve per-
formance, especially when amplified by using language
model adaptation with similar web data.
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Figure 1: The lecture transcription system.
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