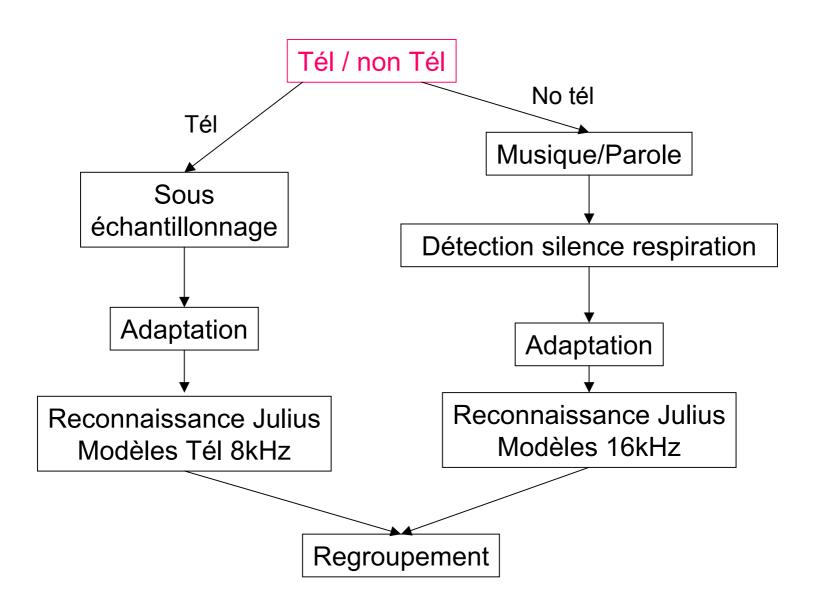
Automatic News Transcription System v1.0

LORIA
Equipe PAROLE


Personnels impliqués

Modèles acoustiques

- Christophe Cerisara (CR)
- Dominique Fohr (CR)
- Irina Illina (MC)
- Odile Mella (MC)

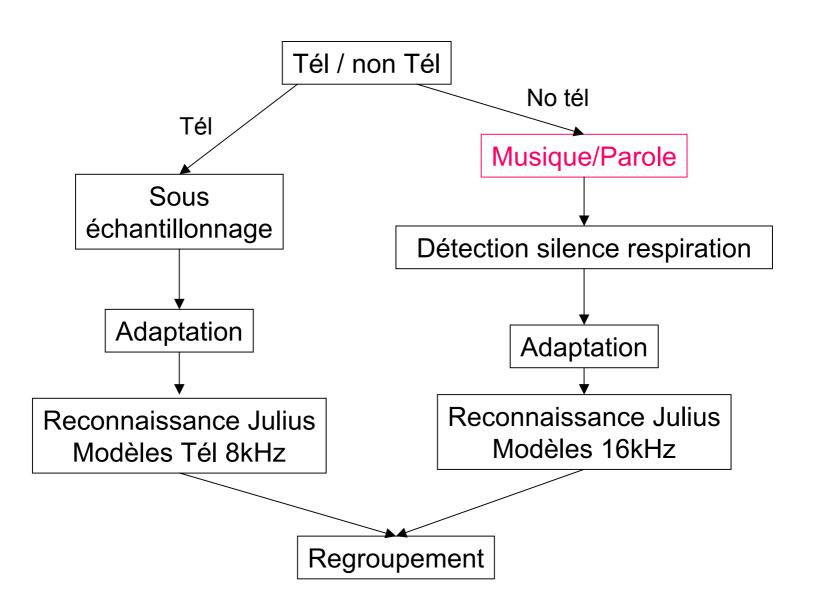
Modèles de langage

- Armelle Brun (MC)
- David langlois (MC)
- Kamel Smaili (Prof)

Segmentation Téléphone/non-téléphone

 Basée sur la différence d'énergie haute/basse fréquence

dif = energie[0...4000] - energie [4000...8000]

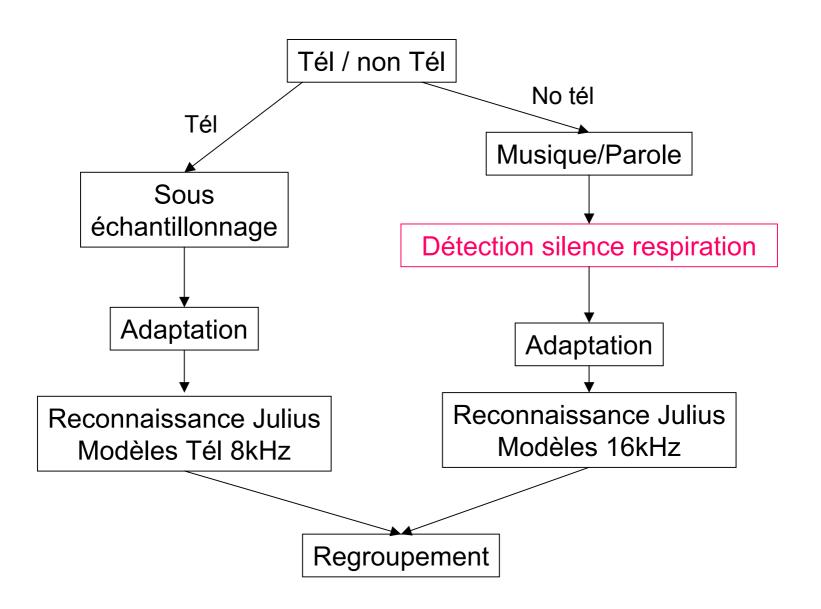

Lissage sur 1 seconde (fenêtre glissante)

$$- q(t) = \sum_{i=t-T}^{t} dif(i) - \sum_{i=t}^{t+T} dif(i)$$

- Détection de pics
 - Maximum
 - Vallées suffisantes

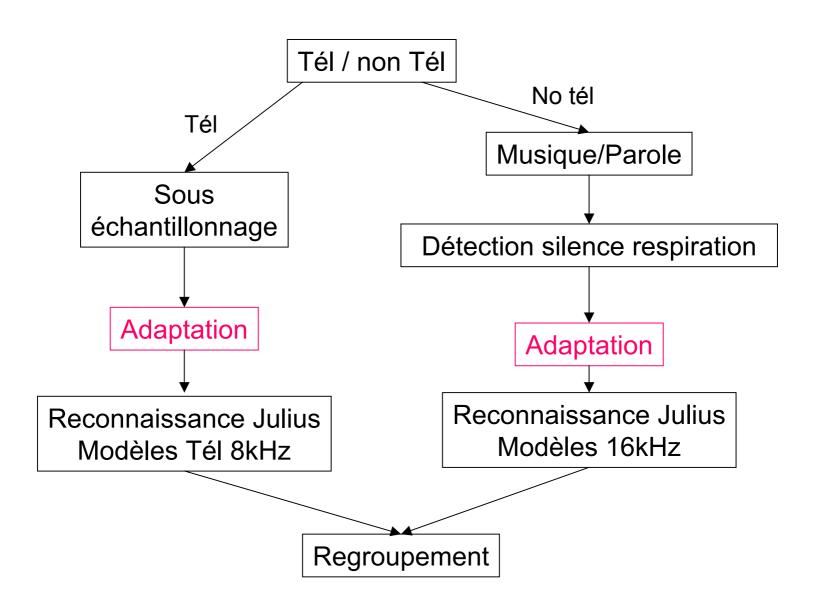
Segmentation Téléphone/non-téléphone

- Résultats
 - Sur un fichier RFI de 60 minutes
 - 225024 trames (16 ms)
 - 338 trames mal classées (0.15% soit 5s)
 - 258 trames notel classées en tel (4 s)
 - 80 trames tel classées en notel (1s)
 - Sur un fichier France-Inter de 14 minutes
 - 54953 trames
 - 237 trames mal classées (0.43% soit 3s)
 - 234 trames notel classées en tel (3s)
 - 3 trames tel classées en notel


Segmentation Parole/Musique

- 5 Modèles GMM à 16 gaussiennes
 - Parole studio
 - Parole téléphonique
 - Musique instrumentale
 - Chansons
 - Parole sur fond musical
- Apprentissage
 - Uniquement sur Train-Ester sauf CD audio pour musique et chanson
- Paramétrisation
 - 12 MFCC + Δ + $\Delta\Delta$

Résultats (taux d'erreur)

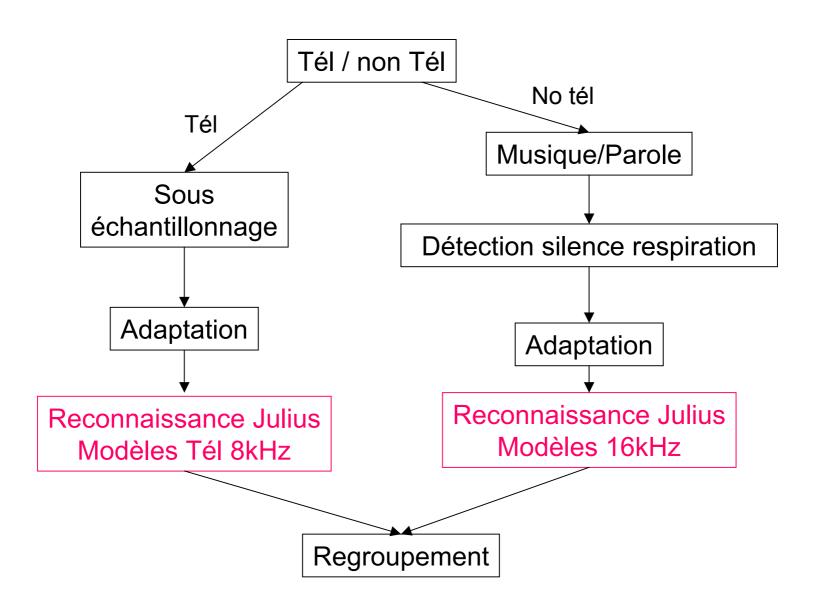

		Inter 8h-9h					Moy
SES	0.1%	0.5%	6.0%	4.6%	11.5%	23.8%	7.8%

• 23.8% principalement du à Parole reconnue comme Parole sur Musique

Détection silence respiration

- Reconnaissance phonétique (HTK)
 - 36 Modèles de phonèmes (3 états)
 - 1 Modèle de respiration
 - 2 Modèles de bruits
 - 1 Modèle de silence
- Coupure sur respirations et silences

Apprentissage des modèles acoustiques


- Modèles monophones 256 gaussiennes
 - -13 MFCC $+\Delta + \Delta\Delta$
 - MCR
- 36 modèles de phonèmes
 - -3 «é», 3 «o», 3 «eu»
- Parole téléphonique
 - Apprentissage sur SpeechDat1000 (80h)
- Parole non téléphonique
 - Apprentissage sur Train-Ester (7h)

Apprentissage des modèles acoustiques

- Résultats au niveau phonèmes notél
 - 256 gaussiennes par état
 - Accuracy phonétique 69.9%
 - Pas de grammaire
 - insertions=omissions
 - Uniquement sur des phrases non téléphoniques

Adaptation

- Reconnaissance phonétique avec HTK
- Adaptation MLLR
 - « En aveugle » : sur 3 segments
 - le précédent
 - l'actuel
 - le suivant
 - Une seule matrice de transformation
 - Matrice block diagonale (3)

Reconnaissance

- Moteur
 - Julius
 - 2 passes
 - Viterbi trame-synchrone, Bigramme
 - treillis de mots
 - Algorithme à pile, trigramme
- Modèles acoustiques non téléphoniques
 - monophones 256 gaussiennes
 - $-13 \text{ MFCC} + \Delta + \Delta\Delta$ et MCR
 - Apprentissage sur Train-Ester (7h)

Reconnaissance

- Lexique
 - 55000 mots
 - Mots les plus fréquents « Le Monde » 1992-2002
 - mots de Train-Ester apparus au moins 3 fois
- Modèle de langage
 - Bigramme et trigramme avec CMU Toolkit
 - 10 ans du Monde + 10x Train-Ester
 - 2.5 millions bigrammes
 - 5.8 millions trigrammes

Résultats (taux d'erreur)

Sur un PC 3.0 GHz Linux avec 1Go Ram

	Inter 7h-8h	Inter 8h-9h	Inter 20mn	Inter 20mn	RFI 9h30	RFI 11h30	Moy
20xTR	25.7%	31.7%	37.7%	35.2%	46.9%	41.8%	36.0%
1xTR	38.5%	39.6%	46.0%	41.1%	51.4%	51.9%	44.5%

Système temps réel

- Pas de détection respirations/silences
- Modèles phonétiques
 - 256 -> 128 gaussiennes pour notel
 - 256 -> 64 gaussiennes pour tel
- Modèles de langage
 - Bigrammes 2.5M -> 1.5M
 - Trigrammes: 5.8M -> 2.8M
- Pruning plus important pour Julius

Perspectives pour v2.0

- Triphones
- Modèles homme/femmes
- Segmentation en locuteurs
- Adapter au locuteur
- Amélioration lexique et modèles de langage avec les nouvelles données