
Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LS
26

1

Steps towards end-to-end neural speaker diarization

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’Université Paris-Sud

Ecole doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Orsay, le 26/09/2019, par

RUIQING YIN

Composition du Jury :

Anne VILNAT
Professeur, Université Paris Sud Présidente

Sylvain MEIGNIER
Professeur, Le Mans Université Rapporteur

Najim DEHAK
Assistant Professor, Johns Hopkins University, Rapporteur

Jean-François BONASTRE
Professeur, Université d’Avignon Examinateur

Ricard MARXER
Maı̂tre de conférences, Université de Toulon Examinateur

Claude BARRAS
Maı̂tre de conférences, Université Paris Sud Directeur de thèse

Hervé BREDIN
Chargé de Recherche CNRS, LIMSI Co-encadrant de thèse

Acknowledgements

Firstly, I would like to thank my thesis advisors Hervé Bredin and

Claude Barras, for giving me the opportunity to do the internship

and the thesis in LIMSI. Working with Hervé during my thesis is an

invaluable experience. He can always give some handy advice when I

met a problem or had a question about my research, writing, or cod-

ing. I am also grateful to Claude for his insights and encouragement

on my work. I appreciate all their contributions of time and ideas to

make my Ph.D. experience productive.

I would like to thank Jose Patino, Héctor Delgado, Nicholas Evans in

EURECOM and Pavel Korshunov, Sébastien Marcel, Alain Komaty

in Idiap. We worked together on low-latency speaker spotting and

Albayzin Challenge. I am grateful for the collaboration and their

good advice.

I would like to thank my thesis committee members. I am grateful to

Sylvain Meignier, Najim Dehak, Ricard Marxer, for their time, inter-

est, and helpful comments. I would also like to thank Anne Vilnat,

Jean-François Bonastre, for their time and insightful questions.

My time at LIMSI was made enjoyable, mostly due to the many friends

and colleagues there. Thanks to Zheng Zhang, Sibo Cheng Ye Hong,

Benjamin Maurice, François Buet, Léo Galmant, Aman Zaid Berhe,

Yuming Zhai. Thanks to Laurence Rostaing, Sophie Pageau-Maurice

for their assistance in administrative procedure and thank all other

members in LIMSI,

I gratefully acknowledge the ANR ODESSA (ANR-15-CE39-0010)

project for funding my Ph.D. work.

Finally, I would also like to express my gratitude to my family for

their moral support and warm encouragement.

Abstract

Speaker diarization is the task of determining “who speaks when” in

an audio stream that usually contains an unknown amount of speech

from an unknown number of speakers. Speaker diarization systems

are usually built as the combination of four main stages. First, non-

speech regions such as silence, music, and noise are removed by Voice

Activity Detection (VAD). Next, speech regions are split into speaker-

homogeneous segments by Speaker Change Detection (SCD), later

grouped according to the identity of the speaker thanks to unsuper-

vised clustering approaches. Finally, speech turn boundaries and la-

bels are (optionally) refined with a re-segmentation stage. In this

thesis, we propose to address these four stages with neural network

approaches.

We first formulate both the initial segmentation (voice activity de-

tection and speaker change detection) and the final re-segmentation

as a set of sequence labeling problems and then address them with

Bidirectional Long Short-Term Memory (Bi-LSTM) networks.

In the speech turn clustering stage, we propose to use affinity propaga-

tion on top of neural speaker embeddings. Experiments on a broad-

cast TV dataset show that affinity propagation clustering is more

suitable than hierarchical agglomerative clustering when applied to

neural speaker embeddings. The LSTM-based segmentation and affin-

ity propagation clustering are also combined and jointly optimized to

form a speaker diarization pipeline. Compared to the pipeline with

independently optimized modules, the new pipeline brings a signifi-

cant improvement. In addition, we propose to improve the similarity

matrix by bidirectional LSTM and then apply spectral clustering on

top of the improved similarity matrix. The proposed system achieves

state-of-the-art performance in the CALLHOME telephone conversa-

tion dataset.

Finally, we formulate sequential clustering as a supervised sequence

labeling task and address it with stacked RNNs. To better understand

its behavior, the analysis is based on a proposed encoder-decoder ar-

chitecture. Our proposed systems bring a significant improvement

compared with traditional clustering methods on toy examples.

Résumé

La tâche de segmentation et de regroupement en locuteurs (speaker

diarization) consiste à identifier “ qui parle quand ” dans un flux au-

dio. Plus précisément, il s’agit d’un processus non supervisé qui a

pour objectif d’identifier les différents locuteurs d’un flux audio et

de déterminer quel locuteur est actif à chaque instant. Le plus sou-

vent, le nombre de locuteurs ou leurs identités ne sont pas connus à

l’avance ; l’objectif est donc d’attribuer à chaque locuteur un identi-

fiant anonyme unique. C’est une technologie clef dans des domaines

comme la recherche d’information par le contenu, la biométrie vocale

ou l’analyse des comportements sociaux. Les systèmes de segmenta-

tion et de regroupement en locuteurs sont généralement construits en

combinant quatre étapes principales. Premièrement, les régions ne

contenant pas de parole telles que les silences, la musique et le bruit

sont supprimées par la détection d’activité vocale (voice activity de-

tection). Ensuite, les régions de parole sont divisées en segments

homogènes en locuteur par détection des changements de locuteurs

(speaker change detection), puis regroupées en fonction de l’identité

du locuteur (clustering). Enfin, les frontières des tours de parole et

leurs étiquettes sont affinées avec une étape de re-segmentation. Dans

cette thèse, nous proposons d’aborder ces quatre étapes avec des ap-

proches fondées sur les réseaux de neurones.

Nous formulons d’abord le problème de la segmentation initiale (détection

de l’activité vocale et des changements entre locuteurs) et de la re-

segmentation finale sous la forme d’un ensemble de problèmes d’étiquetage

de séquence basés sur les Mel-Frequency Cepstral Coefficients (MFCC),

puis nous les résolvons avec des réseaux neuronaux récurrents de

type LSTM bidirectionnels (Bidirectional Long Short-Term Memory).

Pour la détection de parole ou la segmentation en tours de parole,

l’ensemble de nos expériences sur la base de données télévisées ETAPE

montrent que les réseaux neuronaux récurrents fonctionnent mieux

que les modèles classiques par mélanges de Gaussiennes, en partic-

ulier sur la qualité des frontières.

Au stade du regroupement des régions de parole, nous proposons

d’utiliser l’algorithme de propagation d’affinité (affinity propagation)

à partir de plongements neuronaux de ces tours de parole dans l’espace

vectoriel des locuteurs.

Des expériences sur la base de données télévisées ETAPE montrent

que le regroupement par propagation d’affinité est plus approprié que

le regroupement hiérarchique agglomératif (hierarchical agglomerative

clustering) lorsqu’il est appliquée à des plongements neuronaux de lo-

cuteurs qui permettent une projection discriminante des segments de

parole. La segmentation basée sur les réseaux récurrents et la propaga-

tion d’affinité sont également combinées et optimisées conjointement

pour former une châıne de regroupement en locuteurs. Comparé à un

système dont les modules sont optimisés indépendamment, la nouvelle

châıne de traitements apporte une amélioration significative.

De plus, nous proposons d’améliorer l’estimation de la matrice de sim-

ilarité par des réseaux neuronaux récurrents, puis d’appliquer un par-

titionnement spectral à partir de cette matrice de similarité améliorée.

Le système proposé atteint des performances à l’état de l’art sur la

base de données de conversation téléphonique CALLHOME issue de

la campagne NIST 2000 Speaker Recognition Evaluation (SRE 2000).

Enfin, nous formulons le regroupement des tours de parole en mode

séquentiel sous la forme d’une tâche supervisée d’étiquetage de séquence

et abordons ce problème avec des réseaux récurrents empilés sem-

blable à la détection d’activité vocale et détection des changements

de locuteurs. Pour mieux comprendre le comportement du système,

une analyse basée sur une architecture de codeur-décodeur est pro-

posée. Sur des exemples synthétiques, nos systèmes apportent une

amélioration significative par rapport aux méthodes de regroupement

traditionnelles telles que le regroupement hiérarchique agglomératif et

la propagation d’affinité.

Contents

1 Introduction 1

1.1 Motivations . 2

1.2 Objectives . 3

1.3 Overview of the Thesis . 4

2 State of the Art 7

2.1 Feature extraction . 8

2.1.1 Short-term features . 8

2.1.2 Dynamic features . 9

2.1.3 Prosodic features . 9

2.2 Modeling . 10

2.2.1 Gaussian Mixture Models (GMM) 10

2.2.2 Hidden Markov Models (HMM) 11

2.2.3 Neural networks . 12

2.2.3.1 Multilayer Perceptron (MLP) 13

2.2.3.2 Convolutional Neural Network (CNN) 13

2.2.3.3 Recurrent Neural Network (RNN) 15

2.2.3.4 Encoder-decoder 18

2.2.3.5 Loss function and optimization 18

2.2.4 Speaker Modeling . 20

2.2.4.1 Probabilistic speaker model 20

viii

CONTENTS

2.2.4.2 Neural network based speaker model 21

2.3 Voice Activity Detection (VAD) 22

2.3.1 Rule-based approaches . 23

2.3.2 Model-based approaches 24

2.4 Speaker change detection (SCD) 24

2.5 Clustering . 25

2.5.1 Offline clustering . 26

2.5.1.1 Hierarchical clustering 26

2.5.1.2 K-means . 27

2.5.1.3 Spectral clustering 28

2.5.1.4 Affinity Propagation (AP) 29

2.5.2 Online clustering . 30

2.6 Re-segmentation . 31

2.7 Datasets . 32

2.7.1 REPERE & ETAPE . 32

2.7.2 CALLHOME . 33

2.8 Evaluation metrics . 33

2.8.1 VAD . 33

2.8.2 SCD . 34

2.8.2.1 Recall and precision 34

2.8.2.2 Coverage and purity 35

2.8.3 Clustering . 36

2.8.3.1 Confusion . 36

2.8.3.2 Coverage and purity 37

2.8.4 Diarization error rate (DER) 37

3 Neural Segmentation 39

3.1 Introduction . 39

3.2 Definition . 41

3.3 Voice activity detection (VAD) 41

ix

CONTENTS

3.3.1 Training on sub-sequence 42

3.3.2 Prediction . 43

3.3.3 Implementation details . 43

3.3.4 Results and discussion . 44

3.4 Speaker change detection (SCD) 45

3.4.1 Class imbalance . 46

3.4.2 Prediction . 47

3.4.3 Implementation details . 48

3.4.4 Experimental results . 49

3.4.5 Discussion . 50

3.4.5.1 Do we need to detect all speaker change points? . 50

3.4.5.2 Fixing class imbalance 51

3.4.5.3 “The Unreasonable Effectiveness of LSTMs” . . . 52

3.5 Re-segmentation . 53

3.5.1 Implementation details . 54

3.5.2 Results . 54

3.6 Conclusion . 56

4 Clustering Speaker Embeddings 58

4.1 Introduction . 58

4.2 Speaker embedding . 60

4.2.1 Speaker embedding systems 60

4.2.2 Embeddings for fixed-length segments 61

4.2.3 Embedding system with speaker change detection 62

4.2.4 Embedding system for experiments 62

4.3 Clustering by affinity propagation 64

4.3.1 Implementation details . 65

4.3.2 Results and discussions . 66

4.3.3 Discussions . 66

4.4 Improved similarity matrix . 68

x

CONTENTS

4.4.1 Bi-LSTM similarity measurement 68

4.4.2 Implementation details . 70

4.4.2.1 Initial segmentation 70

4.4.2.2 Embedding systems 71

4.4.2.3 Network architecture 71

4.4.2.4 Spectral clustering 71

4.4.2.5 Baseline . 72

4.4.2.6 Dataset . 72

4.4.3 Evaluation metrics . 73

4.4.4 Training and testing process 73

4.4.5 Results . 73

4.4.6 Discussions . 74

4.5 Conclusion . 75

5 End-to-End Sequential Clustering 76

5.1 Introduction . 76

5.2 Hyper-parameters optimization 77

5.2.1 Hyper-parameters . 77

5.2.2 Separate vs. joint optimization 78

5.2.3 Results . 78

5.2.4 Analysis . 79

5.3 Neural sequential clustering . 79

5.3.1 Motivations . 80

5.3.2 Principle . 81

5.3.3 Loss function . 82

5.3.4 Model architectures . 83

5.3.4.1 Stacked RNNs 83

5.3.4.2 Encoder-decoder 83

5.3.5 Simulated data . 85

5.3.5.1 Label generation y 85

xi

CONTENTS

5.3.5.2 Embedding generation (x) 86

5.3.6 Baselines . 86

5.3.7 Implementation details . 87

5.3.7.1 Data . 87

5.3.7.2 Stacked RNNs 87

5.3.7.3 Encoder-decoder architecture 87

5.3.7.4 Training and testing 88

5.3.7.5 Hyper-parameters tuning for baselines 89

5.3.8 Results . 89

5.3.9 Discussions . 91

5.3.9.1 What does the encoder do? 91

5.3.9.2 Neural sequential clustering on long sequences . . 93

5.3.9.3 Sequential clustering with stacked unidirectional

RNNs. 94

5.4 Conclusion . 95

6 Conclusions and Perspectives 96

6.1 Conclusions . 96

6.2 Perspectives . 98

6.2.1 Sequential clustering in real diarization scenarios 98

6.2.2 Overlapped speech detection 99

6.2.3 Online diarization system 99

6.2.4 End-to-end diarization system 100

References 118

xii

List of Figures

2.1 Diarization pipeline. 7

2.2 A 2-layer Neural Network (one hidden layer of 4 neurons and one

output layer with 2 neurons), and three inputs. 13

2.3 An example of 2-D convolution. Figure taken from [1]. 15

2.4 The computational graph of RNN. Figure taken from [1] with a

few modifications. 16

2.5 A LSTM memory block with one cell. Cells are connected recur-

rently to each other and have gates to control whether the cell can

be overwritten by an input, forgotten, or allowed to be fed to the

output gates. Figure taken from [1]. 17

2.6 Encoder-decoder architecture introduced in [2]. Figure taken from [1]. 19

2.7 The development of loss functions. Figure taken from [3]. 22

2.8 False alarm and miss detection. A hypothesis change point will be

counted as correct if it is within a tolerance of a reference change

point. 34

3.1 Diarization pipeline. In this chapter, we propose to rely on recur-

rent neural networks for gray modules. 39

3.2 Training process (left) and prediction process (right) for voice ac-

tivity detection. 42

3.3 Predictions of two different VAD systems on an example from

ETAPE dataset. 44

xiii

LIST OF FIGURES

3.4 Training process (left) and prediction process (right) for speaker

change detection. 45

3.5 An example of annotation in ETAPE dataset. 46

3.6 Zoom on the change point part. Frames in the direct neighborhood

of the manually annotated change points are also labeled as positive. 47

3.7 Segment duration distribution in ETAPE dataset. 48

3.8 Speaker change detection on ETAPE development set. 49

3.9 Left : coverage at 91.0% purity. Right : purity at 70.6% coverage. . 50

3.10 An example output of our SCD systems (bottom). The top is the

reference annotation. The detected change point in the black rect-

angle corresponds to a short non-speech segment in the reference

annotation. 50

3.11 Purity at 70.6% coverage for different balancing neighborhood size. 51

3.12 Expected absolute difference between prediction score and refer-

ence label, as a function of the position in the 3.2s subsequence. . 52

3.13 Re-segmentation on development (top) and test sets (bottom). The

best epoch on the development set is marked with an orange dot. 55

3.14 An example of re-segmentation result. Top: Reference annota-

tion. Middle: Hypothesis annotation before the re-segmentation.

Bottom: Hypothesis annotation after the re-segmentation. An op-

timal mapping has been applied to both hypothesis annotations.

The correction made by the re-segmentation step is in the rectangle

part. 56

4.1 Diarization pipeline. In this chapter, we propose to rely on neural

networks for some sub-steps of clustering. 58

4.2 Clustering of the diarization pipeline. We propose to rely on neu-

ral networks for speech turn embedding and similarity matrix mea-

surement. 59

4.3 Aggregation of fixed-length subsequence embeddings. 63

xiv

LIST OF FIGURES

4.4 Outliers in complete-link clustering. The five data points have the

x-coordinates 1 + 2ε, 4, 5 + 2ε, 6 and 7− ε. Complete-link cluster-

ing creates the two clusters shown as ellipses. The most intuitive

two-clusters clustering is {{d1}, {d2, d3, d4, d5}}, but in complete-

link clustering, the outlier d1 splits {d2, d3, d4, d5}. Figure taken

from [4]. 65

4.5 Clustering results of affinity propagation and hierarchical agglom-

erative clustering on an example from ETAPE dataset. The em-

beddings are converted to 2 dimensional by t-SNE. Each color rep-

resents the corresponding speaker in Figure 4.6 and the point size

corresponds to the segment duration. 67

4.6 Diarization results of affinity propagation and hierarchical agglom-

erative clustering on an example from ETAPE dataset. 67

4.7 Processing the entire n segments with a sliding window. The sim-

ilarity between segment x 1 and the segment xn cannot be directly

measured due to the limited window size. 69

4.8 Bi-LSTM similarity measurement for a similarity matrix. Figure

taken from [5]. 70

5.1 Diarization pipeline. We propose to jointly optimize the hyper-

parameters of the whole diarization pipeline. 76

5.2 Diarization pipeline. In this chapter, we propose to rely on recur-

rent neural networks for all modules. 77

5.3 Diarization pipeline and hyper-parameters. 77

5.4 An example of diarization results in different pipelines. 80

5.5 An example of sequential clustering. 81

5.6 All four predictions are equivalent because they all are permuta-

tions of the same clustering result. 82

5.7 Encoder-decoder for sequential clustering. 83

5.8 Mimic label generation. 86

xv

LIST OF FIGURES

5.9 Stacked RNNs. 88

5.10 Encoder-decoder. 89

5.11 Clustering results of traditional methods. 91

5.12 Clustering results of RNN-based methods. 92

5.13 The architecture used to predict the number of clusters of an input

sequence. 93

5.14 The difference between the predicted number of clusters and the

reference number of clusters (left). The distribution of number of

clusters (right). Experiments are conducted on toy data. 93

6.1 Common architecture to proposed LLSS solutions. At any time

t, online speaker diarization provides a set of nt speaker clusters

{cti}1≤i≤nt . Speaker detection is then applied to compare the speech

segments in each cluster cti against a pre-trained target speaker

model, thereby giving scores (or likelihood-ratios) sti. A final score

at time t is defined as the maximum score over all clusters: st =

max1≤i≤nt s
t
i. We provide several backends. Our proposed d-vector

embedding backend achieve the best performance. Figure taken

from [6]. 98

xvi

List of Tables

2.1 Examples of activation functions. 14

2.2 Datasets statistics with mean and standard deviation of speaker

counts per file. 32

3.1 Detection error rates on the ETAPE Test dataset for different sys-

tems. 44

3.2 Effect of re-segmentation (%). 54

4.1 Performance on ETAPE TV test set of hierarchical agglomerative

clustering and affinity propagation (AP). 66

4.2 DER (%) on CALLHOME dataset for different systems. 73

4.3 T-test in five groups with sorted durations. Table taken from [5]. . 75

5.1 Performance of different diarization pipelines. The evaluation met-

rics include diarization error rate (DER), false alarm rate (FA),

missed speech rate (Miss), confusion, purity and coverage. 79

5.2 Results of different systems on toy data. 90

5.3 Results of different systems on mimic data. 90

5.4 Results on long sequences. 94

5.5 Results of stacked unidirectional RNNs. 94

xvii

Chapter 1

Introduction

With the decreasing cost of storage and the development of Internet and social

media, every day, millions of audio and video recordings are being produced and

distributed, including broadcast news, telephone, meeting, lecture, TV series, etc.

As the amount of available data grows, finding useful information becomes more

difficult.

Imagine a meeting or an interview where the discussions are only recorded. If

you want to find the desired information, you should spend several hours listening

to the recordings. However, if the recordings are split and annotated with speaker

names, background noise, music, together with a transcript obtained by an Au-

tomatic Speech Recognition (ASR) system, it will be more efficient to search and

index the useful information.

As described in [7], audio diarization is defined as the process of annotating

an input audio channel with information that attributes (possibly overlapping)

temporal regions of signal energy to their specific sources. These sources can

include particular speakers, music, background noise sources and other signal

source/channel characteristics. The types and details of the audio sources are

application specific. When audio sources are speakers, this task is called speaker

diarization. Generally, speaker diarization is the task of determining “who speaks

when” in an audio file that usually contains an unknown number of speakers. A

1

1.1 Motivations

speaker diarization system involves splitting the audio into speaker-homogeneous

segments (segmentation) and then grouping them by speaker identities (cluster-

ing). Since it is an unsupervised process, the output of the system is a set of

segments with unique identifiers for different speakers.

Speaker diarization is often used as a preprocessing step in some other ap-

plications. In ASR, speaker diarization output is used to adapt the acoustic

models to each speaker in order to improve the accuracy of the transcription.

For speaker recognition and verification, speaker diarization can remove the non-

speech part by Voice Activity Detection (VAD) and accumulate more information

for a speaker. In addition, speaker diarization enables other high-level applica-

tions such as summarization.

1.1 Motivations

Speaker diarization has been applied in many audio domains. Current speaker

diarization systems perform well for some domains such as phone calls which

usually contain two dominant speakers in each recording. However, speaker di-

arization is still a hard task in other domains such as meeting recordings, child

language recordings, clinical interviews, etc [8]. In most of the conversations,

there are more than two speakers, and they will interrupt each other. In addi-

tion, conversations usually contain different types of noise, spontaneous speech,

and short speaker turns. Traditional statistical methods cannot achieve good

performance in these challenging scenarios.

In recent years, the performance of the state-of-the-art speaker verification

system has improved enormously thanks to the neural network (especially deep

learning) approaches. The neural-based approaches show much better perfor-

mance than i-vector and other statistical methods, especially for short duration

utterances [9]. In addition, Recurrent Neural networks (RNN) have been used

successfully for sequence-to-sequence tasks such as sequence labeling [10], lan-

2

1.2 Objectives

guage modeling [11] and machine translation [12]. That may be because the

RNN is able to learn the context required to make predictions. Those successful

applications of neural network approaches motivate us to apply neural networks

to the speaker diarization task.

1.2 Objectives

The main objective of this thesis is to apply neural network approaches to the

speaker diarization task. In details, the objectives are summarized as follows:

1. Propose a neural network model for the segmentation task. In speaker di-

arization system, the segmentation includes voice activity detection, speaker

change detection, and re-segmentation. All of them can be formulated as

a set of sequence labeling problems, addressed using recurrent neural net-

works.

2. Extract the high-level features from audio segments by existing neural

speaker embedding system [13; 14]. Then assess the adequacy of the stan-

dard Hierarchical Agglomerative Clustering (HAC) with these features and

compare it to alternative approaches like affinity propagation [15] and spec-

tral clustering [16].

3. Propose a new neural network architecture for end-to-end sequential cluster-

ing. Conversations between several speakers are usually highly structured

and turn-taking behaviors are not randomly distributed over time. The pro-

posed architecture should be able to take the sequential information into

consideration.

3

1.3 Overview of the Thesis

1.3 Overview of the Thesis

• Chapter 2 (State of the Art): This chapter reviews each step of common

speaker diarization pipelines. For each step, the different methods are also

introduced and compared. It also introduces the various input features for

speaker diarization task and the most used probabilistic models and neural

network models. Finally, it reviews the databases used for this thesis and

the evaluation metrics to evaluate the sub-modules and diarization outputs.

• Chapter 3 (Neural Segmentation): This chapter explains how to model

the segmentation (voice activity detection, speaker change detection, and

re-segmentation) as sequence labeling tasks and addressed with Recurrent

Neural Networks (RNN). The experiments are done on broadcast news cor-

pora.

• Chapter 4 (Clustering Speaker Embeddings): This chapter splits the clus-

tering into three steps: speech turn embedding, similarity matrix measure-

ment, and actual clustering. The first two steps are addressed with neural

network approaches in this chapter. It first reviews the neural-based speaker

embedding systems and shows how to extract the embedding vectors from

speech segments with variable lengths. Then it compares the Affinity Prop-

agation (AP) and Hierarchical Agglomerative Clustering (HAC) on top of

the embedding vectors of segments. Finally, it introduces how to use RNN

to improve the similarity matrix and apply spectral clustering with the

improved similarity matrix.

• Chapter 5 (End-to-End Sequential Clustering): This chapter introduces a

Proof of Concept (PoC) of a fully end-to-end neural speaker diarization

system. It first proposes to jointly optimize hyper-parameters of the whole

diarization pipeline. Then the clustering step is also formulated as a se-

quence labeling task and addressed with RNN like VAD and SCD.

4

1.3 Overview of the Thesis

• Chapter 6 (Conclusions and Perspectives): This chapter summarizes the

conclusions and contributions of this thesis. It also proposes some possible

perspectives.

5

1.3 Overview of the Thesis

•

6

Chapter 2

State of the Art

Introduction

Voice activity
detection

Speaker change
detection

Clustering Re-segmentation

Optional

Output

Figure 2.1: Diarization pipeline.

Speaker diarization is the task of determining “who speaks when” in an audio

stream that usually contains an unknown amount of speech from an unknown

number of speakers [7; 17].

Most speaker diarization systems are usually built as the combination of four

main stages as shown in Figure 2.1. First, non-speech regions such as silence,

music, and noise are removed by Voice Activity Detection (VAD). Next, speech

regions are split into speaker-homogeneous segments by Speaker Change Detec-

tion (SCD). Then, segments are grouped according to the identity of the speaker

thanks to unsupervised clustering approaches. Finally, speech turn boundaries

and labels are (optionally) refined with a re-segmentation stage. In some research

papers, several alternations of clustering and re-segmentation are performed until

7

2.1 Feature extraction

convergence.

This chapter reviews the literature related to the speaker diarization task.

The overview starts with an introduction of feature extraction, where we review

the most used features for speech processing. Next, the modeling methods and

the main stages of speaker diarization systems are reviewed. Finally, the datasets

for experiments and the evaluation metrics are introduced.

2.1 Feature extraction

Feature extraction is a dimensionality reduction process that converts the raw

speech signal into a sequence of acoustic feature vectors. Speaker diarization aims

at grouping audio signal into speaker-homogeneous segments, the extracted fea-

ture should therefore carry the speaker-specific characteristics to enable a system

to distinguish and separate different speakers in conversations recordings. An

ideal feature extractor should maintain both high inter-speaker and low intra-

speaker discrimination at the same time. In this section, features are divided into

three categories: short-term features, dynamic features, and prosodic features.

Other high-level features will be discussed later when needed.

2.1.1 Short-term features

Short-term features are based on the analysis of short frames of speech. The

lengths of frames range between 20ms to 40ms, where speech could be regarded

as pseudo-stationary signal. Adjacent frames usually have from 50% to 75%

overlap to prevent lacking information. The most widely used short-term fea-

tures for speaker diarization systems are Mel Frequency Cepstral Coefficients

(MFCC) [18]. Other short-term features include Linear Frequency Cepstral Co-

efficients (LFCC) [19], Perceptual Linear Predictive (PLP), Linear Predictive

Coding (LPC). Even though those short-term features were first introduced for

Automatic Speech Recognition (ASR) to capture the phonetic information and

8

2.1 Feature extraction

not for distinguishing speakers, they are widely used and yield good performance

in speaker recognition and verification tasks. The reason may be that those

features rely on the human hearing perception (MFCC, PLP) or the human

speech production (LPC) and they should carry enough information to iden-

tify the speakers, through a compact representation of the short-term vocal track

configuration.

2.1.2 Dynamic features

Dynamic features describe the time varying information of audio signal such as

the change of formant and energy. Dynamic information is very important for

speech recognition and speaker recognition, but simple models may hardly catch

this information from the presented short-term features. The most used dynamic

feature include the delta (first derivative) and double-delta (second derivative) of

short-term features (MFCC, LPCC). It was observed that our diarization system

improved significantly when using MFCC dynamics. Some other dynamic features

are introduced in [20].

2.1.3 Prosodic features

Prosodic speech features are often used to extract information about the speaking

style of a person. Different from short-term features extracted from acoustic

frames, prosodic speech features are based on speech segments such as syllable,

word, or sentences. The fundamental frequency [21], formants, duration, and

frame energy are the most used prosodic features. Prosodic features and their

dynamics have been successfully applied in speaker recognition task [22; 23]. [24]

shows that prosodic features and other long-term features can be combined with

short-term features to improve the speaker diarization result.

9

2.2 Modeling

2.2 Modeling

In speech processing, different models have been applied to model speech/non-

speech, phoneme, and speakers. Probabilistic models such as Gaussian Mixture

Models (GMM) and Hidden Markov Models (HMM) have been widely used in the

literature. In recent years, with the increase of available annotated data, neural

network models achieve state-of-the-art performance on numerous tasks.

2.2.1 Gaussian Mixture Models (GMM)

A Gaussian Mixture Model (GMM) is a generative model that assumes all data

points are generated from a mixture of some Gaussian distributions. The proba-

bility density function is a weighted sum of Gaussian component densities:

p(x|Θ) =
K∑
k=1

πkN(x, θk) (2.1)

where Θ is the set of parameters in GMM, the sum of weights
∑K

k=1 πk = 1, and

N(x, θk) is a multivariate Gaussian:

N(x, θk) =
1

(2π)D/2 |Σk|1/2
e−

1
2

(x−µk)>Σk
−1(x−µk) (2.2)

The data point dimension is D. µk is the mean vector and Σk is the covariance

matrix.

In speaker diarization, GMM modeling is widely used to model speech/non-

speech and speakers. An utterance u can be represented by a sequence of feature

vectors extracted from acoustic frames. Each feature vector represents a data

point generated by the GMM and all the data points are treated independently

from each other. The generative probability of u is the product of all the genera-

tive probability of data points. The parameters Θ of a GMM can be estimated via

the Expectation Maximization (EM) algorithm based on a collection of training

10

2.2 Modeling

data.

2.2.2 Hidden Markov Models (HMM)

A Hidden Markov Model (HMM) [25] is a probabilistic model that includes two

types of random variables: hidden states xt and observations y t. The hidden

(unobservable) state sequence X = x1, x2, . . . , xT is assumed to be a Markov

chain where the conditional probability distribution of the hidden state at time t

depends only on the value of the hidden state xt−1. The observation at time t is

generated by the hidden state xt and it can be either discrete or continuous. A

HMM can be specified by the following parameters:

• π, the initial probability vector of the first hidden state.

• A, the transition probability matrix where Aij = P (xt = sj | xt−1 = si)

represents the probability of transition from state si to state sj.

• Emission probability of observation given a hidden state. When the obser-

vation is discrete, it is a matrix B where B ik = P (yt = ok | xt = si). When

the observation is a continuous y ∈ RD, P (y t | xt = si) is usually modeled

by a GMM.

HMM can solve three basic problems:

1. Evaluation problem: given the model parameters, compute the likelihood

of an observation sequence.

2. Decoding problem: given the model parameters, choose an optimal hidden

state sequence of an observation sequence. This is solved by the Viterbi

algorithm.

3. Learning problem: estimate the optimal model parameters from the obser-

vation data. This is solved by the Baum-Welch algorithm.

11

2.2 Modeling

2.2.3 Neural networks

Neural networks is a representation learning method inspired by the mechanism

in the human brain, which aims to automatically learn the representations needed

for detection or classification tasks from raw data [26]. Different from probabilistic

models required to design a complex model, neural network models are composed

of hierarchical architectures with multiple simple but non-linear layers. Each layer

is composed of a number of nodes, which make decisions (activation) based on

their inputs. This architecture is similar to a real nervous system, with each node

acting as a neuron within a large network.

Neural networks learn representations of data with multiple levels of abstrac-

tion progressively as it goes through the network layers. Lower layers learn low-

level representation and feed into higher layers, which can learn representation at

a more abstract level. For classification tasks, representation outputs in higher

layers amplify aspects of the input that are important for discrimination and sup-

press irrelevant variations [26]. For example, in image recognition [27], the input

data is an array of pixel values, and the learned feature in the first layer may

be oriented edges. The second layer may learn the combinations of edges such

as corners, angles, and surface boundaries in the images. The subsequent layers

may learn an object by combining the features learned in previous layers. The

key advance of neural networks is that the hierarchical representations are not

designed by human engineers: they are learned from data by using the backprop-

agation algorithm [26]. Thanks to the increasing amount of available datasets

(ImageNet [28], Voxceleb [29] etc.) and the wide use of Graphics Processing Unit

(GPU), neural network models have dramatically improved the state-of-the-art

in different tasks.

Neural network models include three important parts: architecture, loss func-

tion, and optimizer. In this section, four most used neural network architectures

are presented from Section 2.2.3.1 to Section 2.2.3.4. The loss function and opti-

mizer are introduced in Section 2.2.3.5.

12

2.2 Modeling

2.2.3.1 Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP), also called feedforward neural network, is one of

the most used neural networks architecture. As shown in Figure 2.2, MLP is

composed by three parts: an input layer to receive the input data, an output

layer to make predictions about the input and in between are several hidden

layers. Each layer contains a number of nodes with connections feeding forward

to the neurons in the next layer. The value o of each node in a hidden layer is

defined as:

o = f(
m∑
i=0

w ix i + b) (2.3)

where x is the values of nodes from the previous layer, w is the vector of weights

and b is the bias. The linear part
∑m

i=0 w ix i + b can be rewritten by matrix

multiplication. f is the activation function. The most used activation functions

are listed in Table 2.1.

Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ⁵ Output Layer ∈ ℝ²

Figure 2.2: A 2-layer Neural Network (one hidden layer of 4 neurons and one
output layer with 2 neurons), and three inputs.

2.2.3.2 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a specialized kind of neural network

for processing data with a grid-like topology such as time-series data and image

data [1]. Similar to MLP, CNN consists of an input layer, an output layer, and

13

2.2 Modeling

Name Formula
Sigmoid σ(x) = 1

1+e−x

tanh tanh(x)
ReLU [30] max(0, x)
Leaky ReLU [31] max(0.1x, x)

ELU [32]

{
x, if x ≥ 0

α(ex − 1), otherwise

Maxout [33] max(W1x+ b1,W2x+ b2)

Table 2.1: Examples of activation functions.

several hidden layers. The matrix multiplication in MLP hidden layers is replaced

by convolution to simplify the computation. Beside convolutional layers, hidden

layers in CNN include pooling layers, fully connected layers, and normalization

layers. The following is a brief description of the convolution layer and pooling

layer.

Convolution layer Convolutional layers apply a convolution operation to the

input which involves two arguments: input and kernel. If we use a two-

dimensional image I as input, a two-dimensional kernel K should be applied.

The convolution is defined like:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.4)

where S is the output, sometimes also called feature map. m, n are the indices

of kernel K. As shown in Figure 2.3, the kernel slides through the input, and all

computations share the same parameters. Compared to the matrix multiplica-

tion in MLP, convolution needs less free parameters, and the parameter sharing

strategy allows the CNN network to be deeper with fewer parameters. Each CNN

layer usually contains multiple kernels. To keep the output dimension the same

as input, padding operations should be applied before convolution.

14

2.2 Modeling

Input

Output

Kernel

Figure 2.3: An example of 2-D convolution. Figure taken from [1].

Pooling layer A pooling layer is typically applied right after the convolution

layer. It replaces the output of previous layers at a certain location with a sum-

mary statistic of the nearby outputs. It helps to reduce the spatial size of the

input and extracts representations approximately invariant to small translations.

The most used pooling function is the max pooling and the average pooling.

Other pooling functions include stochastic pooling, L2 norm pooling etc.

2.2.3.3 Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is a type of neural networks used to process

sequential data. The parameter sharing strategy is also applied in RNN archi-

tecture and makes it possible to process sequences of variable length. In the

convolution operation, the same convolution kernel is applied at each time step,

and the corresponding output is a function output over a small number of neigh-

boring members of the input. In RNN, it works differently. RNN has a recurrent

15

2.2 Modeling

connection from the current hidden unit to the next hidden unit. Each member

of the output sequence is produced using the same update rule applied to the

current hidden state and current input. Figure 2.4 shows a traditional RNN for

Unfold

Figure 2.4: The computational graph of RNN. Figure taken from [1] with a few
modifications.

the sequence classification task. The update rule is defined as follows:

a (t) = b + W h (t−1) + U x (t), (2.5)

h (t) = tanh(a (t)), (2.6)

o(t) = c + V h (t), (2.7)

ŷ (t) = softmax(o(t)), (2.8)

where x (t) is the input vector at timestep t, h (t) is the hidden state, ŷ (t) is the

corresponding output, b, W and U are shared parameters. softmax is the most

used activation function at output layer for classification task. It is defined as

follow:

softmax(o)i =
eoi∑K
j=1 e

oj

(2.9)

where the K is the number of categories.

16

2.2 Modeling

Long Short-Term Memory networks (LSTM) For standard RNNs, it is

difficult to learn long-term dependencies because gradients propagated over many

stages tend to either vanish or explode. Long Short-Term Memory network

(LSTM) is designed to overcome this problem. Its structure resembles a standard

RNN with a hidden layer, but each ordinary node in the hidden layer is replaced

by a memory cell which is shown in Figure 2.5. Each memory cell contains a node

with a self-connected recurrent edge with minor linear interactions, ensuring that

the gradient can pass across many time steps without vanishing or exploding.

Other variants of LSTM such as GRU [34] are also widely used.

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

at each time step.

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of a single time step.

Leaky units allow the network to accumulate information (such as evidence
for a particular feature or category) over a long duration. However, once that
information has been used, it might be useful for the neural network to forget the
old state. For example, if a sequence is made of sub-sequences and we want a leaky
unit to accumulate evidence inside each sub-subsequence, we need a mechanism to
forget the old state by setting it to zero. Instead of manually deciding when to
clear the state, we want the neural network to learn to decide when to do it. This

409

Figure 2.5: A LSTM memory block with one cell. Cells are connected recurrently
to each other and have gates to control whether the cell can be overwritten by an
input, forgotten, or allowed to be fed to the output gates. Figure taken from [1].

Bidirectional RNN In a bidirectional RNN, there are two layers of hidden

nodes. Both hidden layers are connected to input and output. The first layer

is the same as a standard RNN, which has recurrent connections from the past

time steps while in the second layer, the direction of recurrent of connections is

17

2.2 Modeling

flipped in order to pass information backward along the sequence. In other words,

bidirectional RNN can be realized by a forward RNN layer and a backward one.

Then the concatenation of outputs is passed to the next layer. By using bidirec-

tional RNN, the state at the current time step can use the context information

from the past and the future, which is helpful for speaker modeling and other

sub-tasks in speaker diarization.

2.2.3.4 Encoder-decoder

Standard RNN can map an input sequence to an output sequence of the same

length or to a fixed-size vector (the hidden state at the last timestep). In some

other sequence-to-sequence tasks such as speech recognition and machine trans-

lation, the input sequence and the output sequence may have different sizes.

Encoder-decoder is designed to solve these tasks. The traditional encoder-decoder

architecture [34] is shown in Figure 2.6. An encoder RNN processes the input

sequence and outputs the context vector c, which represents a summary of the

input sequence. Usually, c is the final hidden state in RNN. Another decoder

RNN is used to generate the output sequence with the context c. In [2], atten-

tion mechanism is introduced to encoder-decoder in order to use different context

vectors at each time step.

2.2.3.5 Loss function and optimization

In machine learning tasks, the loss function or objective function represents the

inaccuracy of predictions. These tasks can be considered as optimization prob-

lems seeking to minimize a loss function. The most used loss functions include

mean squared error, binary cross-entropy, and category cross-entropy.

Gradient descent is a common method to solve optimization problems, espe-

cially when the objective function is convex. However, in neural network models,

we do not use the gradient descent directly. The main reason is that the train

set becomes so big that it is expensive to compute the gradient. In addition, the

18

2.2 Modeling

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.4 Encoder-Decoder Sequence-to-Sequence Architec-

tures

We have seen in figure how an RNN can map an input sequence to a fixed-size10.5
vector. We have seen in figure how an RNN can map a fixed-size vector to a10.9
sequence. We have seen in figures , , and how an RNN can10.3 10.4 10.10 10.11
map an input sequence to an output sequence of the same length.

Encoder

…

x(1)x(1) x(2)x(2) x()...x()... x(nx)x(nx)

Decoder

…

y (1)y (1) y (2)y (2) y ()...y ()... y (ny)y (ny)

CC

Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence (y(1), . . . , y(ny)) given an input sequence
(x(1),x (2), . . . , x(nx)). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.

Here we discuss how an RNN can be trained to map an input sequence to an
output sequence which is not necessarily of the same length. This comes up in
many applications, such as speech recognition, machine translation or question

396

Figure 2.6: Encoder-decoder architecture introduced in [2]. Figure taken from [1].

objective functions are typically non-convex, and the result may converge to a

local optimum. Stochastic Gradient Descent (SGD), also known as incremental

gradient descent is widely used in neural network models, which is a stochastic

approximation of the gradient descent. It seeks minima by iteration with a learn-

ing rate. The train set is divided into several batches. Each iteration just uses

one batch and does the gradient descent with it. SGD method can diverge or

converge slowly if the learning rate is set inappropriately. There are also many

alternative advanced methods. For example, Momentum, Nesterov accelerated

gradient, Adagrad, Adadelta, RMSprop, Adam. A brief introduction to these

methods can be found in [35].

19

2.2 Modeling

2.2.4 Speaker Modeling

The features introduced in 2.1 are not only representing the individual charac-

teristics of speakers but also some interfering sources such as background noise,

music, and channel. To find an invariant speaker representation and build more

robust speaker verification and diarization systems, researchers design speaker

models with the original acoustic features. In recent years, probabilistic speaker

models and neural network based speaker models are mostly used.

2.2.4.1 Probabilistic speaker model

Probabilistic speaker model aims at factorizing the speech signal features into

factors related to speakers and other variations. A classical probabilistic speaker

model is the Gaussian Mixture Model-Universal Background Model (GMM-UBM).

The UBM is a model that represents general, person-independent feature char-

acteristics. UBM is usually represented by a GMM and trained with a lot of

data [36]. The speaker model is derived from the UBM by Maximum a Posteri-

ori (MAP) Adaptation [37]. GMM-UBM is extended to a low-rank formulation,

leading to the Joint Factor Analysis (JFA) model that decomposes speech signal

into speaker independent, speaker dependent, channel dependent, and residual

components [38]. I-vector model [39] is a simplified version of JFA and it became

the state-of-the-art in early 2010. The speaker dependent and channel dependent

factors are replaced by a total variability factor:

s = m + Tw (2.10)

where s is the utterance supervector, m is a speaker and channel independent

supervector from UBM, T is the total variability matrix, and w is the i-vector. If

T is given, i-vector can be extracted from speech utterances. Therefore, i-vector

system can be used as a feature extractor to extract a low-dimensional fixed-size

representation vector from a speech utterance.

20

2.2 Modeling

2.2.4.2 Neural network based speaker model

Although the probabilistic speaker models yield good performance in speaker

recognition and diarization tasks, the systems still have an inevitable limitation

on robustness against the complex environments (noise, channel, speaking style).

The main reason is that the probabilistic model relies on strong prior assumption,

and it is difficult to model all the variations from original acoustic features with

a GMM. Motivated by the powerful feature extraction capability of deep neu-

ral networks (DNNs) applied to speech recognition and face recognition, neural

networks are also used to directly model the speaker space. Similar to i-vector

introduced in 2.2.4.1, neural network models are often used as a feature extractor

and the extracted representation vector are called d-vector [13] or x-vector [14].

In early works, a supervised DNN was trained to classify speakers in a fixed list

over the frame level input features. The high-level features are extracted from

bottleneck or the last DNN layer and then used to train the speaker model. Prob-

abilistic speaker model introduced in 2.2.4.1 can also be applied over bottleneck

features [40; 41]. In [13], the average output of the last hidden layer in DNN

is taken as the speaker representation, and it achieves better performance than

the i-vector system on a small footprint text-dependent speaker verification task.

Instead of stacking frames as input, [42] proposes to use time-delay DNN [43]

and a statistics pooling layer to capture long-term speaker characteristics. The

speaker representation is the outputs of two affine layers after statistics pooling.

In [9], Heigold et al. propose an end-to-end text-dependent speaker verifica-

tion system that learns speaker embeddings based on the cosine similarity. This

system is developed to handle variable length input in a text-independent veri-

fication task through a temporal pooling layer [44] and data augmentation [14].

The above systems are based on the cross-entropy loss, and encourage the sep-

arability of speaker features. However, it is not sufficient to learn features with

a large margin. To make features not only separable but also discriminative,

researchers in face recognition domain explored discriminative loss functions for

21

2.3 Voice Activity Detection (VAD)

2014 2015 2016 2017 2018

Contrastive loss Triplet loss Center loss Feature and weight normalization Large margin lossSoftmax loss

Deepface
(softmax)

Center loss
(center loss)

FaceNet
(triplet loss)

Normface
(feature

normalization)

AMS loss
(large margin)

L-softmax
(large margin)

A-softmax
(large margin)

TPE
(triplet loss)

Arcface
(large margin)

VGGface
(triplet+softmax)

DeepID
(softmax)

DeepID2
(contrastive loss)

DeepID2+
(contrastive loss)

DeepID3
(contrastive loss)

TSE
(triplet loss)

Range loss

Marginal loss

L2 softmax
(feature

normalization)

vMF loss
(weight and feature

normalization)

Center
invariant loss

(center loss)

CoCo loss
(feature

normalization)

Cosface
(large margin)

Figure 2.7: The development of loss functions. Figure taken from [3].

enhanced generalization ability [3]. Figure 2.7 shows the development of the loss

functions in face recognition domain. The contrastive loss and the triplet loss

became the commonly used loss functions in face recognition task [45; 46] and

then applied to speaker verification task [47; 48; 49]. They project inputs into

Euclidean feature space and compress intra-variance and enlarges inter-variance.

During the training process, the contrastive loss and triplet loss occasionally en-

counter instability and slow convergence due to the selection of training pairs

or triplets, [50] proposed center loss to enhance the discriminative power of the

deeply learned features. After that, angular/cosine-margin-based loss as well as

feature and weight normalization became popular. The neural network systems

introduced in this section are also called embedding systems which extract the

speaker embedding vectors from audio segments. The similarity between audio

segments can be directly computed by cosine metric or Euclidean metric with

their embedding vectors. The speaker verification and identification can be done

by thresholding the similarities.

2.3 Voice Activity Detection (VAD)

Voice Activity Detection (VAD) is the task of labeling speech and non-speech

segments in an audio stream. Non-speech segments may include silence, music,

22

2.3 Voice Activity Detection (VAD)

laughing, and other background noises. VAD is a fundamental task in almost all

fields of speech processing tasks such as speech enhancement, speaker recognition,

and speech recognition [51]. In speaker diarization task, VAD has a significant

impact in two ways. First, the missed and false alarm speech segments contribute

directly to the diarization evaluation metrics such as diarization error rate (DER).

Poor VAD performance will therefore increase DER. Second, in the clustering

step, the missed speech segments reduce the available data for speakers and the

false alarm speech segments bring impurities into speaker clusters. So a poor VAD

system also leads to an increase of clustering error. Initial speaker diarization

system attempted to do VAD in clustering step where non-speech segments were

treated as an extra cluster. However, it was observed that using VAD as a pre-

processing step can lead to a better result [17].

[17; 51] reviewed different traditional approaches for the VAD task. These

approaches can be separated into two categories: rule-based and model-based

approaches. In recent years, neural network approaches are also successfully

applied to VAD.

2.3.1 Rule-based approaches

Rule-based approaches make the decision of speech/non-speech directly based on

the feature of the current observation or frame. The most used feature is en-

ergy [52]. A threshold is used on short-term spectral energy to decide whether

a region contains speech/non-speech. Other rule-based approaches include spec-

trum divergence measures between speech and background noise [53], pitch es-

timation [54], zero crossing rate, and higher-order statistics in the LPC residual

domain [55]. These approaches were generally used on telephone speech data

and do not require any labeled training data. However, in broadcast news and

meeting data, rule-based approaches have proven to be relatively ineffective.

23

2.4 Speaker change detection (SCD)

2.3.2 Model-based approaches

Model-based approaches rely on a classifier with two classes: speech and non-

speech. Each class is trained on external data. Traditionally, similar to speaker

model, speech and non-speech models are estimated with GMMs and the detec-

tion is based on Viterbi decoding. In addition, Discriminant classifiers such as Lin-

ear Discriminant Analysis (LDA) [56] and Support Vector Machines (SVM) [57]

have also been used in VAD task.

More recently, MLP, CNN, and LSTM were also applied to VAD tasks. In [58;

59], a MLP was trained to map long-temporal spectral features to speech/non-

speech posterior probabilities. Then two strategies are used in the detection step.

The first makes frame-wise speech/non-speech decisions by thresholding on the

posterior probability. The second is based on a Viterbi decoder with a 2-state

(speech/nonspeech) HMM, which finds a smoother path through the posteriors.

Although model-based approaches show a better performance than rule-based

approaches, VAD is still a challenging task in meeting and broadcast TV data.

2.4 Speaker change detection (SCD)

Speaker change detection is an important part of speaker diarization systems.

It aims at finding the boundaries between speech turns of one more different

speakers in a given audio and then split audio stream into speaker homogeneous

segments which will be used for clustering step. Some diarization systems [16; 60]

use uniform segmentation directly. However, conversations may have fast speaker

interactions, and impure segments will cause confusion in the diarization error

rate. In addition, longer segments can get more information to represent the

contained speaker.

In conventional speaker change detection methods, one will use two adjacent

sliding windows on the audio data, compute a distance between them, then de-

cide (usually by thresholding the distance) whether the two windows originate

24

2.5 Clustering

from the same speaker. Gaussian divergence [61] and Bayesian Information Cri-

terion (BIC) [62] have been used extensively in the literature to compute such a

distance: they have both advantages of leading to good segmentation results and

not requiring any training step (other than for tuning the threshold).

Recently, there are some attempts at improving over these strong baselines

with supervised approaches. Desplanques et al. [63] investigate factor analysis

and i-vector for speaker segmentation. Bredin [48] proposes to replace BIC or

Gaussian divergence by the Euclidean distance between TristouNet embeddings,

and it brings significant speaker change detection improvement. However, because

they rely on relatively long adjacent sliding windows (2 seconds or more), all these

methods tend to miss boundaries in fast speaker interactions.

Recently, neural networks were also applied in speaker change detection.

In [64], the speaker change detection is formulated as a classification problem

and addressed with DNN. The DNN output states correspond to the location of

the speaker change points in the speech segment. Results show that the proposed

system can reduce the number of missed change points, compared with traditional

methods. In [65] the proposed system is based on CNN and fuzzy labeling, and

it outperforms the GLR-based system.

Automatic Speech Recognition (ASR) is also used to find candidate speech

turn points [66]. Any two segments centered by word boundary positions of the

transcript are compared to detect the possible speaker-turn points.

2.5 Clustering

In some scenarios, clustering is the most important step in speaker diarization

system. It is an unsupervised problem, and no information about the number of

speakers and their identities is provided. In this step, the speaker homogeneous

segments obtained from the speaker change detection step will be grouped accord-

ing to the hypothesized identity of the speaker. The similarity metrics described

25

2.5 Clustering

in Section 2.4 can also be used to measure the distance between clusters, such

as BIC, KL divergence, and GLR. In recent years, motivated by the success of

i-vector and d-vector in speaker verification tasks, the input audio segments are

first embedded into a fixed-length vectors, and the clustering is done on top of

these embedding vectors. Clustering algorithms can be split into offline clustering

and online clustering according to the run-time latency.

2.5.1 Offline clustering

Offline systems have access to all the recording data before processing. Therefore,

offline clustering systems typically outperform online clustering systems and are

mostly used in the literature.

2.5.1.1 Hierarchical clustering

Hierarchical clustering can be categorized into two groups: divisive and agglom-

erative. In divisive clustering, one cluster is initialized and then divided until

the stopping criterion is met. Usually, a single GMM model is first trained on

all the speech segments. Then new speaker clusters are added one-by-one iter-

atively using some selection procedures to identify suitable training data from

the single GMM model [17]. Divisive approaches are extremely computationally

efficient [67]. However, they are prone to poor speaker model initialization, and

they are generally out-performed by the best agglomerative systems [17].

Hierarchical Agglomerative Clustering (HAC) is the most used clustering al-

gorithm in speaker diarization systems. All segments are initialized as single

clusters. At each iteration, two clusters with the highest similarity are merged

until the similarity score between any two segments is below a given threshold.

In traditional methods, similar to divisive clustering, clusters are modeled by

GMMs. When two clusters are merged, a new GMM is re-estimated. Distance

metrics introduced in Section 2.4 are used to evaluate the similarity, such as:

26

2.5 Clustering

Bayesian Information Criterion (BIC) [62], KullbackLeibler divergence [61], the

Generalized Likelihood Ratio (GLR) [68]

In recent years, i-vector and d-vector introduced in Section 2.2.4, are widely

used in speaker verification tasks, both of them can be used as speaker embed-

ding systems to extract representation vectors from audio segments. Then the

distance between two representation vectors can be computed by cosine distance,

angular distance, or Probabilistic Linear Discriminant Analysis (PLDA) [69]. For

clusters, two strategies can be used to compute their distances. The first one is

pooling. The segments representation vectors in a cluster are first pooled into a

single vector. Then the distances between clusters are computed the same way

as segments. The second one is linkage. The distance of two clusters is the dis-

tance of the minimum distance (single linkage), maximum distance (completed

linkage), and average distance (average linkage) between their members.

2.5.1.2 K-means

K-means is one of the most used clustering algorithms in speaker diarization task.

Given cluster number k, it aims at choosing k cluster centers and minimize the

average squared distance between each point and its closest cluster center. It

works as follows:

1. Choose k initial cluster centers C = c1, ..., ck. Different methods can be ap-

plied in this step, a commonly used method is called Forgy, which randomly

chooses k data points from the whole set as the initial cluster centers.

2. Assign each segment to a cluster with the least squared distance between

segment and cluster centers. Segment i is noted by xi and the set of seg-

ments in cluster j is noted by Cj.

3. Update the new cluster center by averaging the segment embeddings in the

corresponding cluster: c
(t+1)
i = 1∣∣∣C(t)

i

∣∣∣
∑

xj∈C
(t)
i
xj

27

2.5 Clustering

4. Repeat Steps 2 and 3 until convergence

K-means results can be arbitrarily bad compared to the optimal clustering due to

the arbitrary initialization step, and initialization with K-means++ [70] can im-

prove both the speed and the accuracy. [71] proposes to initialize the speaker

diarization system using the K-means, and it brings an improvement on the

CALLHOME dataset. If the number of speakers is unknown in advance, el-

bow method [16] or average silhouette method can be applied to determine the

number of speakers.

2.5.1.3 Spectral clustering

Spectral clustering is also a widely used clustering method in speaker diarization

tasks. It outperforms the other clustering methods such as k-means if the cluster

shapes are very complex. Given data points x 1, ...,xn, and the similarity matrix

S = (sij), where sij is the similarity between x i and x j. We set sij = 0, when

i = j. Spectral clustering consists of the following steps:

1. Construct the normalized Laplacian matrix Lnorm:

L = D − S (2.11)

Lnorm = D−1L (2.12)

where D is a diagonal matrix and D ii =
∑n

j=1 Si,j.

2. Manually or automatically select the number of clusters k.

3. Compute eigenvalues and eigenvectors of Lnorm.

4. Take the k largest eigenvalues λ1, λ2, ...λk and corresponding eigenvectors

p1,p2, ...pk of Lnorm and form matrix P = [p1,p2, ...pk] ∈ Rn×k .

5. Cluster row vectors y1,y2, ...yn of P using the k-means algorithm. Let’s

denote the k-means clustering results as C1, C2, ...Ck, then the final output

28

2.5 Clustering

clusters A1, A2, ...An satisfy Ai = {j|y j ∈ Ci}.

The distance metrics introduced in Section 2.4 cannot be used directly as the

similarity metric. A normalization should be applied as follows:

S ij = exp(
−d2(xi, xj)

σ2
) (2.13)

where d(xi, xj) is the distance between segment i and j and σ2 is a scaling pa-

rameter. In [72], d(xi, xj) = 1− cos score(wi, wj), wi, wj are i-vectors for segment

i and j. In [16], with an embedding system proposed in [73], the similarity is

the cosine similarity between segment embeddings, and it also proposes some

refinements to smooth and denoise the data in the similarity matrix.

2.5.1.4 Affinity Propagation (AP)

Affinity Propagation (AP) [15] is a clustering method based on the concept of

“message passing” between data points. It has been used to cluster images of

faces, detect genes, and identify representative sentences in an article. Affinity

propagation does not require the number of clusters to be determined or esti-

mated before running the algorithm. All data points are potential cluster centers

(exemplars). The algorithm should find the exemplars and decide which other

data points belong to which exemplar.

The clustering algorithm starts with a similarity matrix S, where s(i, k) i 6= k

indicates how well xk is suited to be the exemplar for xi. On the diagonal of

the similarity matrix, s(k, k) is set to be the preference value, a hyperparameter

which influences the choice of exemplars and thus the final number of clusters.

The “message passing” process has two kinds of message: responsibility and

availability. Responsibility r(i, k) is a message sent from data point i to k that

quantifies how well-suited xk is to serve as the exemplar for xi. Availability

a(i, k) is a message sent from data point k to i that represents how appropriate

it would be for xi to pick xk as its exemplar. Responsibility and availability are

29

2.5 Clustering

first initialized to 0 and then iteratively updated by the following formulas:

rt(i, j) = (1− λ)rnewt (i, j) + λrt−1(i, j) (2.14)

at(i, j) = (1− λ)anewt (i, j) + λat−1(i, j) (2.15)

where λ is a damping factor introduced to avoid numerical oscillations. rnewt (i, j)

is defined as follows:

rnewt (i, k) = s(i, k)− max
k′: k′ 6=k

[at−1(i, k′) + s(i, k′)] (2.16)

and

anewt (i, k) =

min[0, rt−1(k, k) +
∑

i′:i′ /∈{i,k}max [0, rt−1(i′, k)]] , if k = i∑
i′:i′ 6=k r(i

′, k), otherwise

(2.17)

At each iteration, affinity propagation combines the responsibilities and availabil-

ities to control the selection of exemplars. For segment i, the segment k which

maximizes r(i, k) + a(i, k) is the corresponding exemplar. The whole affinity

propagation procedure terminates after a fixed number of iterations or after the

exemplar stay unchanged for a chosen number of iterations.

2.5.2 Online clustering

Online clustering should process the data at real time. In other words, the system

can only access the data recorded up to the current time. To make sure the data

contains enough information for processing, it might allow a latency in output.

A brute-force strategy for online clustering is to re-run the clustering from

scratch when a new audio segment comes. But that would be expensive, and

bring an issue of temporal discontinuity: the labels obtained from current clus-

tering and previous results may be conflict. To overcome this problem, Zhu et

30

2.6 Re-segmentation

al. propose to use a greedy algorithm [74], where the clustering is run only once

after a warm-up period, and then only the existing clusters will be updated.

However, the greedy algorithm is significantly less accurate than re-clustering.

It is also sensitive to the initial conditions and does not converge to the off-line

solution [75]. Another solution proposed in [66; 75] is reconciliation algorithm.

It compares the sequences of labels obtained in previous and current cluster sets

on the same portion of the audio, and examines all possible permutations of the

current labels, then selects the permutation with the lowest Hamming distance

between both sequences of labels. In other words, it permutes the current labels

to make it similar to the previous ones. To reduce the computational complexity,

[66] proposes to use “active window” to limit the history to the N latest segments.

Another naive online clustering method is introduced [16]. When a new seg-

ment comes, it is compared with all existing clusters. If the minimum similarity

is smaller than a given threshold, then create a new cluster containing only this

segment. Otherwise, add this segment to the most similar cluster. [76] proposes

unbounded interleaved-state recurrent neural network (UIS-RNN) for clustering.

The clustering step is treated as an online generative process of an entire utterance

(X, Y), where X is the sequence of segment embeddings and Y is the sequence

of speaker labels. Each speaker is modeled by a parameter-sharing RNN, while

the RNN states for different speakers interleave in the time domain. The un-

bounded speaker number is modeled by distance-dependent Chinese Restaurant

Process (ddCRP). It also uses an online decoding approach for prediction. This

method outperforms the state-of-the-art spectral offline clustering algorithm on

the CALLHOME dataset.

2.6 Re-segmentation

Re-segmentation is the final step in most diarization systems. The errors made in

VAD and SCD will be accumulated and lead to an increase of clustering errors.

31

2.7 Datasets

Re-segmentation aims at refining speech turn boundaries and labels. It is usually

solved by the Viterbi decoding based on a frame-level, temporally-constrained

process with MFCC features. Each state of the HMM represents a speaker or the

non-speech and is modeled by a GMM. Transitions between states correspond

to speaker turns. Usually, a minimum duration constraint is applied in the de-

coding process to avoid spurious short speaker turns. The re-segmentation and

clustering can be repeated iteratively. In [77], after merging two clusters, the

Viterbi re-segmentation and model re-estimation steps are performed. [78] pro-

poses an algorithm for re-segmentation that operates in factor analysis subspace

and achieves good performance on the CALLHOME dataset.

2.7 Datasets

In this section, the principal datasets used in our experiments are presented.

2.7.1 REPERE & ETAPE

Dataset
Hours
(speech)

nb. of speakers
Total Per file

REPERE 59 (96%) 1758 9.6 ± 6.1
ETAPE TV (train) 14 (94%) 184 9.7 ± 7.6
ETAPE TV (dev.) 4 (93%) 93 8.0 ± 4.4
ETAPE TV (test) 4 (92%) 92 9.2 ± 5.6

Table 2.2: Datasets statistics with mean and standard deviation of speaker counts
per file.

Both REPERE [79] and ETAPE TV [80] datasets contain recording of French

TV broadcast with news, debates, and entertainment. The annotations for the

ETAPE TV dataset were obtained using the following two-steps process: auto-

matic forced alignment of the manual speech transcription followed by manual

boundaries adjustment by trained phoneticians. The statistics of REPERE and

ETAPE are shwon in Table 2.2.

32

2.8 Evaluation metrics

2.7.2 CALLHOME

CALLHOME is a subset of NIST SRE 2000 (the R65 8 1 folder), which is one

of the most used benchmark datasets in diarization papers. It is a collection of

telephone call recordings between familiar speakers. It contains 500 utterances

distributed across six languages: Arabic, English, German, Japanese, Mandarin,

and Spanish. In each conversation, there are between 2 and 7 speakers including

2 dominant speakers (average is 2.57 speaker) and other speakers are from the

same channel as either of the 2 main speakers.

2.8 Evaluation metrics

Speaker diarization systems are usually evaluated using Diarization Error Rate

(DER). In addition, each stage in the diarization system has its evaluation metric.

This section first summarizes the most used evaluation metrics for VAD, SCD,

and clustering. Then the DER is introduced.

2.8.1 VAD

The VAD is usually evaluated by False Alarm Error (EFA) and Miss Detection

Error (EMD), which are two important parts in DER. EFA is the percentage of

time that the hypothesized speech part is labeled as non-speech in the reference:

EFA =
|SHyp − SRef|

Ttotal

(2.18)

EMD is the percentage of time that the reference speech part is labeled as non-

speech in the hypothesis:

EMD =
|SRef − SHyp|

Ttotal

(2.19)

33

2.8 Evaluation metrics

where SHyp and SRef indicate the hypothesized and reference speech part, |SHyp − SRef|
indicates the duration of hypothesized speech not in reference speech and Ttotal

is the total duration

The detection error (ED) for VAD is the sum of EFA and EMD:

ED = EFA + EMD (2.20)

2.8.2 SCD

Speaker change detection system is usually evaluated by recall and precision. [48]

introduces another evaluation metric: coverage and purity.

2.8.2.1 Recall and precision

Speaker change detection result can be viewed as sequences of 0 and 1. 1 repre-

sents the change point or a segment boundary. The comparison process is shown

in Figure 2.8. A hypothesis change point is counted as correct if it is within

a temporal distance (tolerance) of a reference change point. If more than one

predicted change point occurs within the range of tolerance, only the closest one

is correct. If a hypothesis change point is not in reference, it is a False Alarm

(FA) change point. If a reference change point is not detected by a model, it is a

Miss Detection (MD) point.

Figure 2.8: False alarm and miss detection. A hypothesis change point will be
counted as correct if it is within a tolerance of a reference change point.

The False Alarm Error (EFA) can be computed by the number of false alarm

34

2.8 Evaluation metrics

nFA and the total number of the predicted change points nH .

EFA =
nFA

nH

(2.21)

The Missed Detection Error (EMD) can be computed by the number of miss

detection nMD and the total number of change points in reference nR.

EMD =
nMD

nR

(2.22)

The recall and precision is computed by the following formula:

Recall = 1− EMD (2.23)

Precision = 1− EFA (2.24)

2.8.2.2 Coverage and purity

In recall and precision evaluation metric, a hypothesized change point is counted

as correct if it is within the temporal neighborhood of a reference change point.

Both values are very sensitive to the actual size of this temporal neighborhood

(aka. tolerance) – quickly reaching zero as the tolerance decreases. It also means

that it is very sensitive to the actual temporal precision of human annotators.

Purity and coverage evaluation metrics (as defined in pyannote.metrics [81]) do

not depend on a tolerance parameter and are more relevant in the perspective of

a speaker diarization application. Purity [82] and coverage [83] were introduced

to measure cluster quality but can also be adapted to the speaker change points

detection task. Given R the set of reference speech turns, and H the set of

hypothesized segments, coverage is defined as follows:

coverage(R,H) =

∑
r∈R maxh∈H |r ∩ h|∑

r∈R |r|
(2.25)

35

2.8 Evaluation metrics

where |s| is the duration of segment s and r ∩ h is the intersection of segments

r and h. Purity is the dual metric where the role of R and H are interchanged.

Over-segmentation (i.e. detecting too many speaker changes) would result in high

purity but low coverage, while missing lots of speaker changes would decrease

purity – which is critical for subsequent speech turn agglomerative clustering.

2.8.3 Clustering

Clustering is an unsupervised step and it does not need to identify the speakers by

names. Since the speaker labels assigned to both the hypothesis and the reference

segmentation are different, an optimal label mapping between the hypothesis and

reference files is first done according to the overlap time between speaker-pairs in

two sets. Two evaluation metrics are introduced for clustering stage.

2.8.3.1 Confusion

Confusion Error (Econfusion) is an important part of DER. Some research papers

directly refer to confusion as their DER. Confusion is the percentage of time that

the hypothesized speaker is assigned to the wrong speaker in reference:

Econfusion =

∑
s∈S |s| · (min(Nhyp(s), Nref (s))−Ncorrect(s))∑

s∈SNref (s)|s|
(2.26)

where S is the segment set which is obtained by collapsing together the hypothesis

and reference speaker turns. |s| is the duration of segment s, Nref (s) and Nhyp(s)

indicate number of speakers in reference and hypothesis on segment s. Ncorrect

indicates the number of speakers in segment s that has been matched correctly be-

tween reference and hypothesis. Non-speech segments contain 0 speakers. When

all speakers/non-speech are correctly matched in a segment s, the corresponding

error is 0.

36

2.8 Evaluation metrics

2.8.3.2 Coverage and purity

While the confusion error provides a convenient way to evaluate the clustering

result, purity [82] and coverage [83] are also widely used to analyze the type of

errors committed by the system [81]. Purity and coverage are two dual evaluation

metrics and are defined as follows:

purity =

∑
cluster maxspeaker |cluster ∩ speaker|∑

cluster |cluster|
(2.27)

coverage =

∑
speaker maxcluster |speaker ∩ cluster|∑

speaker |speaker|
(2.28)

where |speaker| (respectively |cluster|) is the speech duration of this particular

reference speaker (resp. hypothesized cluster), and |cluster∩ speaker| is the dura-

tion of their intersection. Over-segmented results (e.g. too many speaker clusters)

tend to lead to high purity and low coverage, while under-segmented results (e.g.

when two speakers are merged into one large cluster) lead to low purity and higher

coverage.

2.8.4 Diarization error rate (DER)

Speaker diarization systems are usually evaluated and compared using Diarization

Error Rate (DER), which is used by NIST in the RT evaluations. It is measured

as the fraction of time that is not attributed correctly to a speaker or non-speech,

and it is computed as:

DER =

∑
s∈S |s|(max(Nref (s), Nhyp(s))−Ncorrect(s))∑

s∈SNref (s)|s|
(2.29)

In addition, DER can be decomposed into three components:

DER = EFA + EMD + EConfusion (2.30)

37

2.8 Evaluation metrics

where EConfusion is the confusion error in clustering step, EFA and EMD are the

false alarm error and miss detection error in VAD. The definitions of EFA and

EMD in DER are a little different from the evaluation metrics for VAD, where

the overlap parts are not taken into consideration. The EFA and EMD in DER

are computed as:

EFA =

∑
s∈S 1(Nhyp(s)−Nref (s)>0)|s| · (Nhyp(s)−Nref (s))∑

s∈SNref (s)|s|
(2.31)

EMD =

∑
s∈S 1(Nref (s)−Nhyp(s)>0)|s| · (Nref (s)−Nhyp(s))∑

s∈SNref (s)|s|
(2.32)

In order to account for manual annotation imprecision, it is common prac-

tice not to evaluate short collars centered on each speech turn boundary (usu-

ally 250ms on both sides) and speech regions with more than one simultaneous

speaker.

DER for a dataset with multiple audio files is the weighted average DER of

individual files. Usually, the corresponding weight is computed according to the

total (including overlap part) time that has been evaluated for each file.

Practically, for all experiments in the following chapters, we use the open-

source implementation of diarization error rate available in pyannote.metrics [81].

38

Chapter 3

Neural Segmentation

3.1 Introduction

Voice activity
detection

Speaker change
detection

Initial segmentation

Clustering Re-segmentation Output

Figure 3.1: Diarization pipeline. In this chapter, we propose to rely on recurrent
neural networks for gray modules.

Most diarization systems rely on probabilistic models to address four sub-

tasks: Voice Activity Detection (VAD), Speaker Change Detection (SCD), speech

turn clustering, and re-segmentation. Usually, VAD and SCD are referred as

the initial segmentation which aims at removing non-speech regions in an au-

dio stream and then splitting it into speaker homogeneous segments. The re-

segmentation aims at refining speech turn boundaries and labels after clustering.

In recent years, the performance of the state-of-the-art speech and speaker

recognition systems has been improved enormously thanks to the neural net-

work (especially deep learning) approaches. In speech recognition and natu-

ral language processing, Long Short-Term Memory (LSTM) networks have been

39

3.1 Introduction

used successfully for sequence labeling [10], language modeling [11] and machine

translation [12]. However, existing speaker diarization systems do not take full

advantages of these new techniques. As introduced in Chapter 2, conventional

initial segmentation and re-segmentation methods still rely on probabilistic mod-

els. For example, in speaker change detection, traditional methods are based on

two adjacent sliding windows and a distance metric. Gaussian divergence [61]

and Bayesian Information Criterion (BIC) [62] have been used extensively in the

literature to compute such a distance: they have both advantages of leading to

good segmentation results and not requiring any training step (other than for

tuning the threshold). There were some recent attempts at improving over these

strong baselines, such as factor analysis, i-vector [63] and TristouNet [48]. How-

ever, because they rely on relatively long adjacent sliding windows (2 seconds or

more), all these methods tend to miss boundaries in fast speaker interactions.

Gelly et al. propose to address Voice Activity Detection (VAD) as a frame-

wise sequence labeling task on top of MFCC features [84]. Then they apply

bidirectional LSTM on overlapping feature sequences to predict whether each

frame corresponds to a speech region or a non-speech one.

In this chapter, we first define the generic sequence labeling task. Then the

LSTM-based VAD proposed by Gelly et al. is reviewed in Section 3.3. Our first

contribution is presented in Section 3.4. It is the direct translation of Gelly ’s work:

the SCD is also addressed as a supervised binary classification task (change vs.

non-change) using bidirectional LSTM. Our second contribution is introduced in

Section 3.5, where we show how to adapt this method to re-segmentation, which is

traditionally done using GMM and Viterbi decoding [85]. As shown in Figure 3.1,

at the end of this chapter, all modules except the clustering stage will be based

on neural networks.

40

3.2 Definition

3.2 Definition

Let x ∈ X be a sequence of feature vectors extracted from an audio recording:

x = (x1, . . . , xT) where T is the length of the sequence. Typically, x would be a

sequence of MFCC features extracted on a short (a few milliseconds) overlapping

sliding window (aka. frame). Let y ∈ Y be the corresponding sequence of labels:

y = (y1, . . . , yT) and yi ∈ {0, . . . , K − 1}. K is the number of classes and depends

on the task.

The objective is to find a function g : X→ Y that matches a feature sequence x

to the corresponding label sequence y.

3.3 Voice activity detection (VAD)

Voice activity detection (VAD) is an important preprocessing step in almost all

speech processing tasks. It is the direct application of the above sequence la-

beling principle with K = 2 classes: yi = 1 for speech, yi = 0 for non-speech.

The traditional approaches reviewed in Chapter 2 cannot take full advantage of

the contextual information. For example, the energy-based approach predicts the

speech/non-speech only based on the current frame. However, the sequence of

speech and non-speech in meetings and broadcast news are usually highly struc-

tured. For example, in some broadcast news, the music (music is considered

as non-speech) is always played after an interview. This type of information is

difficult to be modeled by simple approaches. Recently, data-driven modeling

methods like neural networks have been applied to VAD.

Gelly et al. propose to model the function g with a stacked LSTMs [84]. MLP

is also tested by them, which shows worse performance than LSTM. That may be

because MLP only focuses on the current frame like energy-based approach, and

cannot make use of any contextual information. Since the VAD system proposed

in [84] is used for the speech recognition task, which aims at minimizing the Word

Error Rate (WER), the proposed loss functions are related to the WER. However,

41

3.3 Voice activity detection (VAD)

in the speaker diarization system, it is not necessary. We simplify the system and

propose to train the neural network directly with the binary cross-entropy:

L = − 1

T

T∑
i=1

yi log(f(x)i) + (1− yi) log(1− f(x)i) (3.1)

The actual architecture of the network is composed of Bi-LSTMs and multi-

layer perceptrons (MLP) whose weights are shared across the sequence. Bi-

LSTMs [86] allow to process sequences in forward and backward directions, mak-

ing use of both past and future information.

0

1

spk1 spk1 spk2

1

0

...

...

...

(A)

(B)

(C)

(D)

(G)

(F)

(E)

(H)

seg1 seg3 seg4

spk1 spk1 spk2

Figure 3.2: Training process (left) and prediction process (right) for voice activity
detection.

3.3.1 Training on sub-sequence

One well-publicized property of LSTMs is that they are able to avoid the vanishing

gradients problem encountered by traditional recurrent neural networks [10; 87].

Therefore, the initial idea was to train them on whole audio sequences at once,

but we found out that this has several limitations, including the limited number

of training sequences, and the computational cost and complexity of processing

such long sequences with variable lengths. Consequently, as depicted in part C of

42

3.3 Voice activity detection (VAD)

Figure 3.2, the long audio sequences are split into short fixed-length overlapping

sequences. This has the additional benefit of increasing the variability and num-

ber of sequences seen during training, as is usually done with data augmentation

for computer vision tasks.

3.3.2 Prediction

Once the network is trained, it can be used to perform voice activity detection as

depicted in the right part of Figure 3.2. Similarly to what is done during training,

test files are split into overlapping feature sequences (part D of Figure 3.2). The

network processes each subsequence to give a sequence of scores between 0 and 1

at the frame level (part E of Figure 3.2). Because input sequences are overlapping,

each frame can have multiple candidate scores; they are averaged to obtain the

final frame-level score. Then the sequence of speech scores is post-processed using

two (θonset and θoffset) thresholds for the detection of the beginning and end of

speech regions [84], as shown in part F of Figure 3.2. Parts G and H respectively

represent the hypothesized and groundtruth speech/non-speech parts.

3.3.3 Implementation details

Feature extraction. VAD and the following tasks share the same set of input

features extracted every 10ms on a 25ms window using Yaafe toolkit [88]: 19

mel-frequency cepstral coefficients (MFCC), their first and second derivatives,

and the first and second derivatives of the energy (amounting to a total of 59

dimensions).

Network architecture. The model for VAD is composed of two bidirectional

LSTM layers and two fully connected layers. Bi-LSTM1 has 64 outputs (32

forward and 32 backward) and Bi-LSTM2 has 32 outputs (16 forward and 16

backward). The two fully connected layers are 16-dimensional with tanh acti-

vation function. The output layer is 1-dimensional with a sigmoid function to

43

3.3 Voice activity detection (VAD)

output a SAD score between 0 and 1.

Training. For all experiments in this chapter, subsequences for training are 3.2s

long with a step of 800ms (i.e. two adjacent sequences overlap by 75%). The

actual training is implemented in Python using the Pytorch toolkit, and we use

the Stochastic Gradient Descent (SGD) optimizer.

Dataset. All experiments in this chapter are trained on REPERE dataset, tuned

on ETAPE development subset and applied on ETAPE test subset.

Hyperparameter tuning. For all experiments in this chapter, the hyperpa-

rameters (θonset and θoffset for VAD) are tuned by scikit-optimize [89].

3.3.4 Results and discussion

Methods Detection error rate(%) FA(%) Miss(%)
LSTM 4.93 4.22 0.71
GMM-HMM 7.69 7.51 0.18

Table 3.1: Detection error rates on the ETAPE Test dataset for different systems.

Reference annotation

Alain_Marschall Benoît_Petit Philippe_Varin

LSTM-based VAD

200 220 240 260 280 300
Time

GMM-HMM based VAD

Figure 3.3: Predictions of two different VAD systems on an example from ETAPE
dataset.

44

3.4 Speaker change detection (SCD)

The detection error rates on the ETAPE dataset of two different VAD systems

are shown in Table 3.1. The results of GMM-HMM based VAD system are pro-

vided by LIUM [90]. The LSTM-based system is 2.76% better than GMM-HMM

based one, that corresponds to a 36% relative improvement. From Table 3.1, we

can also find that the improvements of the LSTM-based system are mostly due to

the low false alarm error rate. As shown in Figure 3.3, the GMM-HMM based sys-

tem tends to ignore the short non-speech segments. In addition, the boundaries

of segments generated by the LSTM-based system are more precise. This may be

because the GMM-HMM based VAD system is a sub-module of a traditional di-

arization system where the different speakers are modeled by probabilistic model,

and long segments are encouraged.

3.4 Speaker change detection (SCD)

0

1

spk1 spk2 spk1 spk4

spk1 spk2 spk1 spk4

1

1

0

0

...

...

...

θ

(A)

(B)

(C)

(D)

(E)

(H)

(G)

(F)

(I)

seg1 seg2 seg3 seg4

Figure 3.4: Training process (left) and prediction process (right) for speaker
change detection.

Given an audio recording, speaker change detection aims at finding the bound-

aries between speech turns of different speakers. In Figure 3.4, the expected out-

put of such a SCD system would be the list of timestamps between spk1 & spk2,

spk2 & spk1, and spk1 & spk4.

Similar to VAD, SCD can also be addressed using the same principle: yi = 1

45

3.4 Speaker change detection (SCD)

if there is a speaker change during the ith frame, yi = 0 otherwise. Compared

to VAD, the contextual information is more important for SCD task. It needs

to capture change over time. It is virtually impossible to predict a change/not

change based on a single frame. Traditional SCD approaches need two adjacent

windows centered at the current frame. Then one should decide whether the

two windows originate from the same speaker according to the statistic distance

between them. Motivated by the success of Bi-LSTMs in VAD task, we adapt

Gelly ’s work to our SCD task and the process is depicted in Figure 3.4.

3.4.1 Class imbalance

Waveform

174.0 174.5 175.0 175.5 176.0 176.5 177.0 177.5 178.0
Time

Annotation

Jean-Noël_Deparis Roger

Figure 3.5: An example of annotation in ETAPE dataset.

Since there are relatively few change points in the audio files as shown in

Figure 3.5, very little frames are in fact labeled as positive. For instance, in the

ETAPE dataset which is used in the experimental section, this represents only

0.4% of all frames. This class imbalance issue could be problematic when training

the neural network. Moreover, one cannot assume that human annotation is

precise at the frame level. It is likely that the actual location of speech turn

boundaries is a few frames away from the one selected by the human annotators.

46

3.4 Speaker change detection (SCD)

This observation led most speaker diarization evaluation benchmarks [91; 92;

93] to remove from evaluation a short collar (up to half a second) around each

manually annotated boundary. Therefore, as depicted in part C of Figure 3.4 and

Figure 3.6, the number of positive labels is increased artificially by labeling as

positive every frame in the direct neighborhood of the manually annotated change

point. We will further evaluate the impact of the size of this neighborhood in

Section 3.4.5.

Neighborhood size

0

1

Figure 3.6: Zoom on the change point part. Frames in the direct neighborhood
of the manually annotated change points are also labeled as positive.

3.4.2 Prediction

As shown in Figure 3.4, SCD shares its training and prediction processes with

VAD. The long audio sequences are split into short fixed-length overlapping se-

quences, and the final sequence of scores is the average of several overlapping

sequences of scores. However, the post-processing step proposed in VAD can-

not be applied for SCD. While the speech or non-speech parts always consist of

several consecutive frames, a change point is a single frame.

The segment duration distribution in ETAPE dataset is shown in Figure 3.7.

From the distribution, we can find most segments are longer than 1s. In other

47

3.4 Speaker change detection (SCD)

0 10 20 30 40 50
Durations (s)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Fr
eq

ue
nc

y

Dev set

0 10 20 30 40 50
Durations (s)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Fr
eq

ue
nc

y

Test set

Figure 3.7: Segment duration distribution in ETAPE dataset.

words, the distance between adjacent change point frames is always longer than

1s. That leads us to use a similar post-processing step in conventional SCD

approaches: all local maxima on a sliding window of duration δpeak exceeding

a threshold θpeak are marked as speaker change points, as shown in part G of

Figure 3.4, where δpeak is used to prevent speech segments shorter than δpeak.

Parts H and I respectively represent the hypothesized and ground truth speaker

change points.

3.4.3 Implementation details

Network architecture. The model for SCD is composed of two Bi-LSTM layers

and two fully connected layers. Bi-LSTM1 has 128 outputs (64 forward and 64

backward). Bi-LSTM2 has 64 (32 each). Both fully connected layers are 32-

dimensional. The output layer is 1-dimensional with a sigmoid function just like

VAD task.

Class imbalance. A positive neighborhood of 100ms (50ms on both sides) is

used around each change point, to partially solve the class imbalance problem.

Baseline. Both BIC [62] and Gaussian divergence [61] baselines rely on the same

set of features (without derivatives, because it leads to better performance), using

two 2s adjacent windows. We also report the result obtained by the TristouNet

approach, that used the very same experimental protocol [48].

48

3.4 Speaker change detection (SCD)

3.4.4 Experimental results

40 50 60 70 80 90 100

Coverage (%)
84

86

88

90

92

94

96

98

100
Pu

rit
y

(%
)

Ours
TristouNet
Gaussian divergence
BIC

Figure 3.8: Speaker change detection on ETAPE development set.

All tested approaches (including the one we propose) rely on a peak detec-

tion step (keeping only those whose value is higher than a given threshold θpeak).

Curves in Figure 3.8 were obtained by varying the value of this threshold θpeak.

Our proposed solution outperforms BIC-, divergence-, and TristouNet-based ap-

proaches, whatever the operating point. Notice how it reaches a maximum purity

of 98%, while all others are stuck at 95.1%. This is explained by the structural

limitations of approaches based on the comparison of two adjacent windows: it is

not possible for them to detect two changes if they belong to the same window.

Our proposed approach is not affected by this issue.

Figure 3.9 summarizes the same set of experiments in a different way, showing

purity at 70.6% coverage, and coverage at 91.0% purity. Those two values are

marked by the horizontal and vertical lines in Figure 3.8 and were selected because

they correspond to the operating point of the divergence-based segmentation

module of our in-house multi-stage speaker diarization system [18]. Our approach

improves both purity and coverage. For instance, in comparison to Gaussian

divergence, it produces speech turns that are 28.8% longer on average, with the

49

3.4 Speaker change detection (SCD)

BIC G.Div. TristouNet Ours60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

68.5 70.6

80.9

90.9
Coverage (%)

BIC G.Div. TristouNet Ours90.0
91.0
92.0
93.0
94.0
95.0
96.0
97.0

90.5 91.0

93.0

96.7
Purity (%)

Figure 3.9: Left : coverage at 91.0% purity. Right : purity at 70.6% coverage.

same level of purity.

3.4.5 Discussion

3.4.5.1 Do we need to detect all speaker change points?

Reference annotation

François-Xavier_Weill Olivier_Truchot

1540 1550 1560 1570 1580 1590 1600
Time

LSTM-based SCD

Figure 3.10: An example output of our SCD systems (bottom). The top is the ref-
erence annotation. The detected change point in the black rectangle corresponds
to a short non-speech segment in the reference annotation.

In our training process, speech/non-speech changes are considered the same as

speaker changes and our prediction relies on a peak detection step, where the short

non-speech duration may converge to a single change point. However, as shown in

Figure 3.10, the VAD system did not detect the non-speech around the rectangle,

and the detected change point is not a real speaker change point, because the

50

3.4 Speaker change detection (SCD)

speakers centered by this point are the same. Preliminary experiments tend to

show that we should not consider those as change points. VAD will take care of

that.

3.4.5.2 Fixing class imbalance

0ms 150ms 300ms 500ms

96.4

96.6

96.8

97.0

97.2

97.4

Purity (%)

Figure 3.11: Purity at 70.6% coverage for different balancing neighborhood size.

As discussed in Section 3.4.1, to deal with the class imbalance problem, we

artificially increased the number of positive labels during training by labeling as

positive every frame in the direct neighborhood of each change point. Figure 3.11

illustrates the influence of the duration of this neighborhood on the segmentation

purity, given that coverage is fixed at 70.6%. It shows a maximum value for a

neighborhood of around 200ms. One should also notice that, even without any

class balancing effort, the proposed approach is still able to reach 96.5% purity,

outperforming the other three tested approaches: the class imbalance issue is not

as problematic as we initially expected.

51

3.4 Speaker change detection (SCD)

3.4.5.3 “The Unreasonable Effectiveness of LSTMs”

As Karpathy would put it1, the proposed approach seems unreasonably effective.

Even though LSTMs do rely on an internal memory, it is still surprising that

they perform that well for speaker change detection, given that, at a particular

time step i, all they see is the current feature vector x i. We first thought that

concatenating features from adjacent frames would be beneficial, but this did not

bring any significant improvement. The internal memory mechanism is powerful

enough to collect and keep track of contextual information.

0s 1.6s 3.2s
5.0

5.5

6.0

6.5

7.0 100× δ(i)

Figure 3.12: Expected absolute difference between prediction score and reference
label, as a function of the position in the 3.2s subsequence.

This is further highlighted in Figure 3.12 that plots the expected absolute

difference between predicted scores f(x)i ∈ [0, 1] and reference labels yi ∈ {0, 1},
as a function of the position i in the sequence: δ(i) = Ex,y (|f(x)i − yi|). It

clearly shows that the proposed approach performs better in the middle than at

the beginning or the end of the sequence, quickly reaching a plateau as enough

contextual information has been collected. This anticipated behavior justifies

after the fact the use of strongly overlapping subsequences – making sure that

each time step falls within the best performing region at least once.

1karpathy.github.io/2015/05/21/rnn-effectiveness

52

karpathy.github.io/2015/05/21/rnn-effectiveness

3.5 Re-segmentation

3.5 Re-segmentation

Given the output of the clustering step, re-segmentation aims at refining speech

segments boundaries and labels. Similar to VAD and SCD, this task can also

be addressed as a sequence labeling task. Assuming the output of the clustering

step predicts k different speakers, we can use the same principle with K = k + 1

classes: yi = 0 for non-speech and yi = k for speaker k.

Re-segmentation is usually achieved with a combination of GMMs cluster

modeling and Viterbi decoding, as described in Chapter 2. We propose to use

the same approach as VAD and SCD. The only difference is the loss function,

which is changed to categorical cross entropy, and the activation function of the

output layer is replaced by softmax.

Re-segmentation step is usually applied independently to each file. Similar

to VAD and SCD, audio files are processed using overlapping sliding windows

to generate subsequences. At training time, the (unsupervised) output of the

clustering step is used as its reference label sequence, which is then used to train

the neural network for several epochs E.

At test time, the model at Eth epoch is applied on the very same test file

it has been trained on. For each time step i, this results in several overlapping

sequences of K-dimensional (softmax-ed) scores, are averaged to obtain the final

score of each class. Then, the resulting sequence of K-dimensional scores is post-

processed by choosing the class with the maximum score for each frame.

Even though the training and testing are applied independently for each file,

the hyper-parameter E is tuned globally. If E is small, the model may not be

powerful enough to make a prediction (underfitting), and if the E is large, the

prediction may converge to the clustering result.

Suitable E may vary in different files. To stabilize the choice of this hyper-

parameter E and make the prediction scores smoother, scores from the m = 3

previous epochs are averaged when doing predictions at epoch E.

While this re-segmentation step does improve the labeling of speech regions, it

53

3.5 Re-segmentation

DER FA Miss Confusion Purity(%) Coverage
Before re-segm. 28.84 5.11 6.91 16.81 78.49 82.63
After re-segm. 27.50 4.81 7.22 15.46 80.01 83.89

Table 3.2: Effect of re-segmentation (%).

also has the side effect of increasing false alarms (i.e. non-speech regions classified

as speech). Therefore, its output is further post-processed to revert speech/non-

speech regions back to the original VAD output.

3.5.1 Implementation details

Network architecture. The model is composed of two Bi-LSTM layers and one

fully connected layer. Bi-LSTM1 has 128 outputs (64 forward and 64 backward).

Bi-LSTM2 has 64 (32 each). The fully connected layer is 32-dimensional. The

output layer is K-dimensional with a softmax function.

Diarization system. The diarization system is based on neural VAD, SCD in-

troduced in this chapter, affinity propagation clustering which will be introduced

in Chapter 4, and hyper-parameters joint optimization which will be introduced

in Chapter 5.

3.5.2 Results

Table 3.2 shows the effect of the proposed re-segmentation step on the output

of affinity propagation clustering: it improves both cluster purity and coverage,

leading to an absolute decrease of 1.34% in diarization error rate. A detailed

file-wise analysis shows that this re-segmentation step consistently improves per-

formance on every file.

Figure 3.13 is meant to analyze the behavior of the approach and to evaluate

the robustness of its unique hyper-parameter E. The horizontal dashed line is the

DER of the system before re-segmentation (i.e. the output of the clustering step).

DER quickly decreases during the first few epochs, reaches an improved minimum

54

3.5 Re-segmentation

16

18

20

22

24

26

DE
R

(%
)

0 4 8 12 16 20 24 28 32 36 40
Epoch

25.0

27.5

30.0

32.5

35.0

DE
R

(%
)

Figure 3.13: Re-segmentation on development (top) and test sets (bottom). The
best epoch on the development set is marked with an orange dot.

value, then starts to over-fit and converges to a DER that is always better than

original DER. This observation, combined with the fact that the optimal number

of epochs on the test set is close to the one selected on the development set, leads

us to the conclusion that the proposed LSTM-based re-segmentation is stable and

very unlikely to degrade performance.

Figure 3.14 shows how the proposed re-segmentation system improves the di-

arization result. Usually, the errors made in the SCD step will be passed to the

clustering step. In this example, the first speaker change point is not detected, and

the first segment is grouped with a wrong cluster (the clustering algorithms for

speaker diarization systems always make a lot of errors in overlap part). Our pro-

posed re-segmentation can make some corrections around boundaries, as shown

in the rectangle part in Figure 3.14.

In the framework of DIHARD II speaker diarization challenge [94], we also

55

3.6 Conclusion

Reference

Jean-Pierre_Gratien Michel_Sapin

Before re-segmentation

1110 1112 1114 1116 1118 1120
Time

After re-segmentation

Figure 3.14: An example of re-segmentation result. Top: Reference annotation.
Middle: Hypothesis annotation before the re-segmentation. Bottom: Hypothesis
annotation after the re-segmentation. An optimal mapping has been applied to
both hypothesis annotations. The correction made by the re-segmentation step
is in the rectangle part.

successfully applied this re-segmentation technique, improving the provided base-

line by 1.2% DER (32.6% vs 31.4%).

3.6 Conclusion

In this chapter, we show that both the initial segmentation (voice activity detec-

tion and speaker change detection) and the final re-segmentation can be formu-

lated as a set of sequence labeling problems, addressed using bidirectional Long

Short-Term Memory (Bi-LSTM) networks.

For speaker change detection, the experimental results on the ETAPE dataset

led to significant improvements over conventional methods (e.g., based on Gaus-

sian divergence) and recent state-of-the-art results based on TristouNet embed-

dings [48] also using LSTMs). While neural networks are often considered as

“magic” black boxes, we tried in Section 3.4.5.3 to better understand why these

approaches are so powerful, despite their apparent simplicity.

56

3.6 Conclusion

For the re-segmentation step, it also shows an improvement in diarization

results. However, finding the best epoch E relies on a development set. We plan

to investigate a way to automatically select the best epoch for each file.

Preliminary experiments show that this family of approaches can also be used

for overlapped speech detection (y = 1 for overlap, y = 0 otherwise)

We did try to integrate our improved speaker change detection into our in-

house speaker diarization system. Unfortunately, the overall impact on the com-

plete system in terms of diarization error rate is very limited. This may be because

the subsequent clustering module was optimized jointly with the divergence-based

segmentation step, expecting a normal distribution of features in each segment –

which has no reason to be true for the ones obtained through the use of LSTMs.

That leads us to Chapter 4, where we will integrate neural-based segmentation

with neural speaker embedding.

57

Chapter 4

Clustering Speaker Embeddings

4.1 Introduction

Voice activity
detection

Speaker change
detection

Initial segmentation

Clustering Re-segmentation Output

Figure 4.1: Diarization pipeline. In this chapter, we propose to rely on neural
networks for some sub-steps of clustering.

As we proposed in Chapter 3, all modules in the diarization system are ad-

dressed with neural approaches except the clustering. However, even though

VAD and SCD achieve excellent performance with LSTM, the integration with

conventional HAC shows little impact on the final result. That may be because

the clustering algorithm still relies on statistical similarity metrics such as BIC

and CLR. Motivated by the successful application of i-vector and d-vector in

speaker verification tasks, as shown in Figure 4.2, clustering in recent diariza-

tion systems is split into three steps: speech turn embedding, similarity matrix

measurement, and actual clustering. Speech turn embedding aims at extract-

ing high-level speaker representation vectors from audio segments by a speaker

58

4.1 Introduction

embedding system. Then the similarity between two audio segments can be mea-

sured by the PLDA score or the other similarity metrics. In Section 4.2, we do

a brief introduction of speaker embedding systems and show how to combine the

segmentation results with the trained speaker embedding systems to compute the

similarity matrix for clustering.

Initial segmentation
Speech turn
embedding

Similarity matrix Clustering

Clustering

Figure 4.2: Clustering of the diarization pipeline. We propose to rely on neural
networks for speech turn embedding and similarity matrix measurement.

Hierarchical agglomerative clustering is the most used clustering method in

conventional diarization systems. In Section 4.3, we compare the hierarchical

agglomerative clustering with another clustering algorithm: affinity propagation.

Both of them are applied on top of a neural speaker embedding system introduced

in [48; 95]. An affinity propagation variant has been introduced in [96] for speaker

diarization, but it is supervised by the number of speakers and relies on standard

statistical models to compute speaker similarities.

For similarity measurement, in most existing clustering algorithms, the simi-

larity between any two segments is measured independently, and the sequential

information is ignored. However, conversations between several speakers are usu-

ally highly structured, and turn-taking behaviors are not randomly distributed

over time. In [95], structured prediction is applied for online speaker diarization,

but only the structural information from the forward direction is considered. In

Section 4.4, we propose to generate a more precise similarity matrix with a stacked

bidirectional LSTMs and employ spectral clustering [16] to generate the final re-

sults. This work [5] was performed in collaboration with Qingjian Lin who did

most of the experiments.

59

4.2 Speaker embedding

As shown in Figure 4.1 and Figure 4.2, at the end of this chapter, the clustering

stage will be partly (speech turn embedding and similarity matrix measurement)

based on neural networks.

4.2 Speaker embedding

As shown in Figure 4.2, the clustering module is split into three sub-steps. First,

an embedding system f : X → RD is trained to embed speech sequences x into

a D-dimensional space where the segments from different speakers should be

separable. Next, the pairwise similarity matrix is obtained by a similarity metric

like cosine distance and PLDA. Finally, an actual clustering method is applied

on top of the similarity matrix to generate the outputs.

4.2.1 Speaker embedding systems

There are three most used speaker embedding systems:

i-vector [39] is obtained by a dimensionality reduction process of the GMM

supervector using joint factor analysis, where the GMM is speaker-specific and

trained on MFCC features:

s = m + Tw (4.1)

where s is the speaker supervector, m is a speaker-independent supervector from

UBM, T is the total variability matrix, and w is the i-vector. m and T should be

trained with a large speaker dataset, if T is given, the i-vector can be computed

from a speech segment.

d-vector is obtained by deep neural networks (DNNs). The input feature can be

MFCC, Fbank and spectrogram etc. Here we categorize d-vector into two types.

For the first type, a supervised DNN is trained to classify different speakers

over the frame level features of speech segments, where the speakers are fixed

in a given list. The d-vector is the output of bottleneck or the penultimate

60

4.2 Speaker embedding

layer. For this type, PLDA, together with a normalization method, is usually

employed to measure the similarity between two d-vectors. For the second type,

the DNN is used to embed a speech segment directly to a high-level embedding

space. The first type of systems always uses the cross-entropy loss to encourage

the separability of d-vector from different speakers. To make d-vector not only

separable but also discriminative, the second type of d-vector usually involves

some discriminative loss functions such as the contrastive loss and the triplet

loss [45; 46]. The similarity between two d-vectors can be directly computed by

cosine metric or Euclidean metric.

x-vector [14] is a specific case of the first type d-vector which is proposed by the

Johns Hopkins University. The input feature is MFCC, and the neural network ar-

chitecture is a time-delay neural network (TDNN) including a time-pooling layer

to transform multiple frame-level features into a single vector which will be then

passed to the fully connected layers. x-vector is the output of the penultimate

layer.

4.2.2 Embeddings for fixed-length segments

Most speaker diarization systems rely on a uniform segmentation where speaker

embeddings are extracted from a sliding window of fixed duration. This may lead

to segments that contain more than one speaker. Since recent speaker embedding

systems are trained with a large speaker dataset, and some data augmentation

techniques are performed, systems are still able to extract the representation

vector of the dominant speaker in the segments. In addition, when one evaluates

the diarization results, it is common not to evaluate short collars centered on

each speech turn boundary and exclude the overlap part. Therefore, uniform

segmentation is widely used in recent speaker diarization systems. With fixed-

length segments, the pretrained speaker embedding system can be applied directly

to map them into a fixed-dimensional feature space.

61

4.2 Speaker embedding

4.2.3 Embedding system with speaker change detection

The initial segmentation system introduced in Chapter 3 aims at splitting the au-

dio into speaker-homogeneous segments. Different from a uniform segmentation,

the resulting segments have different lengths. The embedding systems trained

with fixed-length speech segments cannot be applied directly.

An alternative solution is training a speaker embedding system with variable

length utterances. The i-vector and most neural network architectures such as

RNN and CNN support variable length inputs. In [49], Zhang et al. proposed to

replace the final max/average pooling layer with a Spatial Pyramid Pooling layer

in the Inception-Resnet-v1 architecture to train d-vector with the arbitrary size of

the input. In [76], a d-vector model is trained by using variable-length windows to

sample training examples. The window size is drawn from a uniform distribution

within [240ms, 1600ms] during training. However, as shown in Figure 3.7, the

duration of some segments is longer than 10 seconds, and long input sequences

may cause a high computational cost and complexity.

For the second type of d-vector, our proposed solution is shown in Figure 4.3.

It depicts how an embedding system – initially meant to process fixed-length

(a few seconds, typically) speech segments – can be used to embed variable-

length speech segments coming from the initial segmentation step (A). The idea

is to slide a fixed-size window (B) over the duration of the file, embed each

of these subsequences (C), and then average the embedding of all overlapping

subsequences to obtain one embedding per initial segment (D).

4.2.4 Embedding system for experiments

The network architecture used for our experiments is introduced in [48] and fur-

ther improved in [97]. Briefly, an LSTM-based neural network is trained to embed

speech sequences x into a D-dimensional space, using the triplet loss paradigm.

In the embedding space, two sequences xi and xj of the same speaker (resp.

62

4.2 Speaker embedding

(A) seg1 seg2 seg3 seg4

(B)

(C)

(D)

...
f fff

AVGAVG AVGAVG AVGAVG AVGAVG

Figure 4.3: Aggregation of fixed-length subsequence embeddings.

two different speakers) are expected to be close to (resp. far from) each other

according to their cosine distance:

d(xi,xj) =
f(xi) · f(xj)

|f(xi)| · |f(xj|)
(4.2)

Two data augmentation strategies are applied in this embedding system. Noise

from MUSAN dataset [98] is added to the audio during training. Similar to

the embedding system proposed in [76], in training process, the length of the

input speech segments is sampled from a uniform distribution within [500ms,

1500ms]. Even though our speaker embedding system can embed speech segments

of variable lengths, we use the second aggregation strategy because speech turn

may be longer than 1500ms. The sliding window is fixed to 1s in our experiments.

As shown in Figure 4.3, the embedding of segment i is denoted as ωi in the next

63

4.3 Clustering by affinity propagation

section.

4.3 Clustering by affinity propagation

Hierarchical agglomerative clustering is the most used clustering method in speaker

diarization systems. Even though hierarchical agglomerative clustering is easy to

understand and implement, its weaknesses are obvious:

1. It cannot pull back the previous decision. Once an example has been as-

signed to a wrong cluster, it cannot be moved out. And it will affect the

next decision.

2. As introduced in Section 2.5.1.1, it relies on linkage criteria to compute

the distance between two clusters. For single and complete linkage, only

a single pair of examples from two clusters will be considered for distance

computation, ignoring the global information.

3. It is very sensitive to outliers. In complete linkage, a single data point far

from the center can increase the distance to other clusters dramatically and

completely change the final clustering. An example is shown in Figure 4.4.

The four data points {d2, d3, d4, d5} are split because of the outlier d1 at

the left edge and it does not find the most intuitive cluster structure in this

example [4].

The affinity Propagation (AP) algorithm [15] does not require a prior choice of

the number of clusters contrary to other popular clustering methods. All speech

segments are potential cluster centers (exemplars). Taking as input the pairwise

similarities between all pairs of speech segments, AP will select the exemplars and

associate all other speech segments to an exemplar. In our case, the similarity

between ith and jth speech segments is the negative cosine distance between their

embeddings: s(i, j) = −d(ωi, ωj)

64

4.3 Clustering by affinity propagation

Online edition (c)
2009 Cambridge UP

17.2 Single-link and complete-link clustering 385

0 1 2 3 4 5 6 7
0
1 ×

d1

×

d2

×

d3

×

d4

×

d5

◮ Figure 17.7 Outliers in complete-link clustering. The five documents have
the x-coordinates 1 + 2ǫ, 4, 5 + 2ǫ, 6 and 7 − ǫ. Complete-link clustering cre-
ates the two clusters shown as ellipses. The most intuitive two-cluster cluster-
ing is {{d1}, {d2, d3, d4, d5}}, but in complete-link clustering, the outlier d1 splits
{d2, d3, d4, d5} as shown.

distances without regard to the overall shape of the emerging cluster. This
effect is called chaining.CHAINING

The chaining effect is also apparent in Figure 17.1. The last eleven merges
of the single-link clustering (those above the 0.1 line) add on single docu-
ments or pairs of documents, corresponding to a chain. The complete-link
clustering in Figure 17.5 avoids this problem. Documents are split into two
groups of roughly equal size when we cut the dendrogram at the last merge.
In general, this is a more useful organization of the data than a clustering
with chains.

However, complete-link clustering suffers from a different problem. It
pays too much attention to outliers, points that do not fit well into the global
structure of the cluster. In the example in Figure 17.7 the four documents
d2, d3, d4, d5 are split because of the outlier d1 at the left edge (Exercise 17.1).
Complete-link clustering does not find the most intuitive cluster structure in
this example.

17.2.1 Time complexity of HAC

The complexity of the naive HAC algorithm in Figure 17.2 is Θ(N3) because
we exhaustively scan the N × N matrix C for the largest similarity in each of
N − 1 iterations.

For the four HAC methods discussed in this chapter a more efficient algo-
rithm is the priority-queue algorithm shown in Figure 17.8. Its time complex-
ity is Θ(N2 log N). The rows C[k] of the N× N similarity matrix C are sorted
in decreasing order of similarity in the priority queues P. P[k].MAX() then
returns the cluster in P[k] that currently has the highest similarity with ωk,
where we use ωk to denote the kth cluster as in Chapter 16. After creating the
merged cluster of ωk1

and ωk2 , ωk1
is used as its representative. The function

SIM computes the similarity function for potential merge pairs: largest simi-
larity for single-link, smallest similarity for complete-link, average similarity
for GAAC (Section 17.3), and centroid similarity for centroid clustering (Sec-

Figure 4.4: Outliers in complete-link clustering. The five data points have the
x-coordinates 1 + 2ε, 4, 5 + 2ε, 6 and 7 − ε. Complete-link clustering creates
the two clusters shown as ellipses. The most intuitive two-clusters clustering
is {{d1}, {d2, d3, d4, d5}}, but in complete-link clustering, the outlier d1 splits
{d2, d3, d4, d5}. Figure taken from [4].

On the diagonal of the similarity matrix, s(k, k) is set to the preference value

θAP, a hyper parameter which influences the choice of ωk as exemplar and thus

the final number of clusters. AP clustering can be viewed as a “message passing”

process between speech segments with two kinds of message: responsibility and

availability. Responsibility r(i, k) is a message sent from segment i to k that

quantifies how well-suited xk is to serve as the exemplar for xi. Availability

a(i, k) is a message sent from segment k to i that represents how appropriate it

would be for segment i to pick segment k as its exemplar.

4.3.1 Implementation details

Dataset. The REPERE corpus is used for training the neural networks used in

VAD, SCD, and embeddings. The ETAPE TV development subset is used for

hyper-parameter tuning.

Feature extraction. Each part of the diarization pipeline shares the same set of

input features extracted every 10ms on a 25ms window using Yaafe toolkit [88]:

19 mel-frequency cepstral coefficients (MFCC), their first and second derivatives,

and the first and second derivatives of the energy (amounting to a total of 59

dimensions).

Initial segmentation. The experiments use the same initial segmentation re-

65

4.3 Clustering by affinity propagation

sults reported in Chapter 3. Both VAD and SCD are tuned independently ac-

cording to the detection error rate (VAD) and segmentation coverage and purity

(SCD).

Sequence embedding. Implementation details are identical to the ones used

in [95]. It is trained on REPERE dataset and 192-dimensional embeddings are

extracted every 0.4s on sub-sequences of duration 1s.

4.3.2 Results and discussions

DER FA Miss Confusion Purity Coverage
AP 31.28 3.95 6.97 20.36 77.54 76.48
HAC 35.99 3.95 6.97 25.06 75.14 75.29

Table 4.1: Performance on ETAPE TV test set of hierarchical agglomerative
clustering and affinity propagation (AP).

Table 4.1 summarizes the results of two clustering methods. Affinity propaga-

tion shows a much better performance than hierarchical agglomerative clustering

with complete-link on the ETAPE TV dataset according to DER (31.28% vs.

35.99%). Both purity and coverage are improved when we switch from hierarchi-

cal agglomerative clustering to affinity propagation. A detailed file-wise analysis

shows that affinity propagation consistently outperforms the hierarchical agglom-

erative clustering on every file. For hierarchical agglomerative clustering, other

linkages were also tested (average, pool) but found to lead to worse performance.

4.3.3 Discussions

An example of clustering results of affinity propagation and hierarchical agglomer-

ative clustering from ETAPE dataset is shown in Figure 4.5. Segment embedding

vectors are converted to 2 dimensional by t-SNE [99]. Different colors represent

different speakers, and the point size corresponds to the segment duration. From

66

4.3 Clustering by affinity propagation

Reference AP HAC

Figure 4.5: Clustering results of affinity propagation and hierarchical agglom-
erative clustering on an example from ETAPE dataset. The embeddings are
converted to 2 dimensional by t-SNE. Each color represents the corresponding
speaker in Figure 4.6 and the point size corresponds to the segment duration.

Reference

Alexis_Brézet Christophe_Ruaults Claude_Weill Laurent_Neumann Romain_Gubert

AP

200 300 400 500 600 700 800 900 1000
Time

HAC

Figure 4.6: Diarization results of affinity propagation and hierarchical agglomer-
ative clustering on an example from ETAPE dataset.

Figure 4.5, we can find that almost all the long speech segments are grouped

correctly in the result of affinity propagation, while in hierarchical agglomerative

clustering, the number of clusters is not correctly detected and a number of long

segments are assigned to the wrong clusters. We can also find that in this exam-

ple, the main source of clustering error is from short segments in both approaches.

That may be because it is difficult for our speaker embedding system to extract

67

4.4 Improved similarity matrix

speaker information from very short speech segments. In addition, as shown in

Figure 4.6, in some short speech segments, there is more than one speaker speak-

ing. However, our speaker embedding system is trained with pure segments and

may be confused in overlapped speech segments. Therefore, traditional cluster-

ing methods such as affinity propagation and hierarchical agglomerative clustering

cannot handle these short segments directly, and that leads us to use sequential

information to improve the similarity matrix for clustering in Section 4.4.

4.4 Improved similarity matrix

Most existing clustering methods including hierarchical agglomerative clustering

and spectral clustering, are based on a similarity matrix which is computed be-

tween each pair of segment embeddings independently. The similarity metric

could be the cosine distance (for d-vector) or PLDA (for i-vector or x-vector).

However, the sequential information is always ignored during the computation.

In this section, we show how to improve the similarity matrix with sequential

information.

Because we focus on the clustering step, we choose to use oracle VAD in this

section, followed by uniform segmentation. In the clustering step, we use i-vector

and x-vector as our embedding system, and Bi-LSTM is proposed to model the

similarity matrix S . Finally, spectral clustering is applied on top of the improved

similarity matrix.

4.4.1 Bi-LSTM similarity measurement

Let x ∈ X denote a sequence of speaker embedding vectors (e.g. i-vector, x-

vector) extracted from a set of speech segments: x = (x1,x2...xn), where n is

the total number of segments for this audio file. Let S be a similarity matrix,

where S i,j is the similarity between segments i and j. The objective is to find

a function f : X → S that maps the entire speaker embedding sequence into a

68

4.4 Improved similarity matrix

similarity matrix.

A similarity matrix is robust against speaker index changes or flipping. There-

fore, we utilize S as the label of the entire speaker embedding sequence x for

supervised diarization learning.

…

No tracking

1
0

𝒙" 𝒙#

Figure 4.7: Processing the entire n segments with a sliding window. The similarity
between segment x 1 and the segment xn cannot be directly measured due to the
limited window size.

Since the number of segments n may be huge and vary between files, it is

difficult to train such a function f directly. If we process the entire n segments

in an m-segment (m < n) sliding window manner, the size of input and label

vectors is fixed, which could make the training stage easier. However, such a

system eventually generates a diagonal block similarity matrix. Since part of

information in the matrix is lost, it easily fails to track different speakers among

different windows. An example is shown in Figure 4.7. The similarity between

segment x 1 and the segment xn cannot be directly measured due to the limited

window size. Therefore, the system does not know that x 1 and xn are from the

same speaker A.

In the proposed approach, we address this problem as a row by row sequence

69

4.4 Improved similarity matrix

𝒙1
𝒙1

𝒙1
𝒙2

𝒙1
𝒙3

𝒙1
𝒙𝑛

𝒙2
𝒙1

𝒙2
𝒙2

𝒙2
𝒙3

𝒙2
𝒙𝑛

𝒙𝑛
𝒙1

𝒙𝑛
𝒙2

𝒙𝑛
𝒙3

𝒙𝑛
𝒙𝑛

⋮
…

…

…

⋮
Bi-LSTM

model
1
0

1st input

sequence

2nd input

sequence

nth input

sequence

𝑛 × 𝑛
similarity matrix S

𝑺1

𝑺2

𝑺𝑛

𝑛 × 𝑛 × 2𝑑
batch input matrix

Figure 4.8: Bi-LSTM similarity measurement for a similarity matrix. Figure
taken from [5].

labeling task such that S i,j = 1 if segment i and j are from the same speaker,

and S i,j = 0 otherwise. The ith row in the similarity matrix S i. is calculated as

follows:

S i. = f(x i,x) (4.3)

We propose to model the function f with a stacked Bi-LSTMs like VAD and

SCD. As depicted in Fig. 4.8, for row i, the input at time j is the concatenation

of x i and current embedding vector x j. The similarity between segment i and

segment j can be defined as follows:

S i,j = fLSTM(x i,x)j = fLSTM

x 1

x i

 ,
x 2

x i

 , · · · ,
xn

x i

j

(4.4)

Once this Bi-LSTM model is trained, we apply this model on a speaker embedding

sequence x = (x 1,x 2...xn) n times, each time to perform inference for one row

S i. of the similarity matrix S .

4.4.2 Implementation details

4.4.2.1 Initial segmentation

All experiments share the same initial segmentation step. Non-speech regions

are first removed by an oracle VAD. Then, a sliding window is applied on speech

70

4.4 Improved similarity matrix

regions to generate segments. The sliding window is 1.5s long with a step size of

0.75s (50% overlapping). In training process, the corresponding speaker for each

segment is the dominant speaker who occupies the most in the central 0.75s. The

reference similarity matrix SRef consists only of 1 or 0, representing whether a

pair of segments is from the same speaker or not.

4.4.2.2 Embedding systems

Two embedding systems are applied and compared in the proposed system: i-

vector and x-vector. For i-vector, 20-dimensional MFCCs with delta and delta-

delta coefficients are extracted to train a 2048-component GMM-UBM model. Su-

pervectors of GMM is then projected into 128-dimensional i-vectors through the

total variability matrix T . The whole i-vector system is based on the kaldi/egs/

callhome diarization/v1 scripts [100; 101]. For x-vector, 23-dimensional MFCCs

are extracted and followed by the sliding-window based cepstral mean normal-

ization. Reverberation, noise, music, and babble noises are added to audio files

for data augmentation. The whole x-vector system is based on the kaldi/egs/

callhome diarization/v2 scripts [101; 102].

4.4.2.3 Network architecture

Similar to the VAD and SCD, the architecture includes two Bi-LSTM layers

followed by one fully connected layers (FC). Both Bi-LSTM layers have 512 out-

puts, 256 forward and 256 backward separately. The fully connected layer is 64-

dimensional with the ReLU activation function. The output layer is 1-dimensional

with a sigmoid activation function to output a similarity score between 0 and 1.

4.4.2.4 Spectral clustering

The similarity matrix obtained with the LSTM is post-processed by a normaliza-

tion step proposed in [16] before spectral clustering:

71

4.4 Improved similarity matrix

1. Symmetrization: Y i,j = max(S i,j,S j,i)

2. Diffusion: Y = Y Y T

3. Row-wise max normalization: S i,j = Y i,j/maxkY i,k

In spectral clustering, the cluster number is selected by thresholding the eigen-

values of the normalized Laplacian matrix.

4.4.2.5 Baseline

The similarity matrix in baselines is measured by PLDA:

Si,j = fPLDA(xi,xj). (4.5)

As a hypothesis testing based method, PLDA generates both negative and pos-

itive scores, which is not supported in spectral clustering. We normalize PLDA

scores by a logistic function:

g(x) =
1

1 + e−5x
(4.6)

4.4.2.6 Dataset

i-vectors and x-vectors are trained on a collection of SRE-databases including SRE

2004, 2005, 2006, 2008 and Switchboard. To compare with other systems, the

CALLHOME dataset is used for evaluation. Similar to [76], a 5-fold validation is

carried out on the dataset. The 500 utterances are split into 5 subsets uniformly

and each time one subset is drawn as the evaluation dataset while the other four

are used for training Bi-LSTM model. The reported diarization error rate is the

average of the 5-fold evaluation results. In baseline, we also conduct the 5-fold

validation where four training subsets are used for whitening PLDA including

mean subtraction, full rank PCA mapping, and length normalization.

72

4.4 Improved similarity matrix

4.4.3 Evaluation metrics

Speaker diarization systems are usually evaluated through Diarization Error Rate

(DER). In order to be comparable with other systems, the short collars centered

on each speech turn boundary (0.25s on both sides) and overlapping speech are

ignored. DER has three components: false alarm (FA), miss, and speaker con-

fusion, among which FA and miss are mostly caused by VAD errors. Since an

oracle VAD is employed in our implementation, we exclude FA and Miss from

our evaluations. The DER referred here is the speaker confusion.

4.4.4 Training and testing process

In the training process, we reshape both the batch output and the ground truth

similarity matrix into n2 vectors and adopt the binary cross-entropy loss. Stochas-

tic gradient descent optimizer is employed with a learning rate initialized at 0.01

and divided by 10 every 40 epochs. The whole model training process terminates

after 100 epochs, and then the training outputs are used to tune thresholds for

clustering systems. In the evaluation process, the learned thresholds are applied

to the testing dataset, and the system is evaluated by DER.

4.4.5 Results

Description Embedding DER (%)

PLDA
i-vector 10.13
x-vector 8.05

LSTM
i-vector 8.53
x-vector 7.73
Fusion 6.63

Recent works

Wang et al. [16] 12.0
Sell at al. [78] 11.5
Romero et al. [60] 9.9
Zhang et al. [76](5-fold) 7.6

Table 4.2: DER (%) on CALLHOME dataset for different systems.

73

4.4 Improved similarity matrix

Table 4.2 summarizes the main experimental results. All systems share the

same initial segmentation step and the spectral clustering method. The proposed

pipeline reaches a better performance than PLDA baseline (8.53% vs. 10.13%

for i-vector and 7.73% vs. 8.05% for x-vector). The proposed systems based

on i-vector and x-vector are fused at the similarity matrix level. The fusion is

performed by the weighted sum of their similarity matrices, and the resulting

system outperforms all recent diarization systems on CALLHOME dataset.

4.4.6 Discussions

To analyze the behavior of the proposed system, we conduct Student’s t-test

on the results of PLDA and LSTM similarity measurement with the i-vector

embedding system. The 500 utterances in CALLHOME dataset are first sorted

by increasing duration and then split into five groups. In other words, the first

group contains the 100 shortest utterances, while the last group contains the

longest ones. Next, the t-test analysis is performed on each group independently.

The null (H0) and alternative (H1) hypotheses are:

H0 : DERplda = DERlstm, H1 : DERplda 6= DERlstm

The p-value is set to 0.05 and thus accept H0 if the t-value is in (-1.96, 1.96),

otherwise, reject H0. The results are shown in Table 4.3. H0 is accepted in short

utterance groups while rejected in long utterance groups with 95% confidence.

In addition, DERLSTM are smaller than DERplda for long utterances. PLDA

model ignores context information while Bi-LSTM model takes full advantage of

sequential information from forward and backward sequences. LSTM outperforms

PLDA in longer utterances because longer utterances may include more sequential

information than short utterances.

74

4.5 Conclusion

sorted utterances DERplda DERLSTM t-value H0

1th ∼ 100th 6.6 5.5 -1.22 accepted
101th ∼ 200th 5.7 5.3 -0.35 accepted
201th ∼ 300th 6.1 3.9 -2.16 rejected
301th ∼ 400th 9.2 7.5 -2.11 rejected
401th ∼ 500th 13.9 11.6 -2.38 rejected

Table 4.3: T-test in five groups with sorted durations. Table taken from [5].

4.5 Conclusion

In this chapter, we split clustering into three sub-steps: speech turn embedding,

similarity measurement, and clustering. We extract segment embedding vectors

and then measure the similarity matrix. We also show that the affinity propa-

gation outperforms the standard HAC with complete-link. In addition, we use

Bi-LSTM to improve the similarity matrix with i-vector and x-vector embedding

systems. The fusion system with spectral clustering achieves state-of-the-art per-

formance with a 6.63% DER on CALLHOME dataset.

The proposed systems is a step towards an integrated end-to-end neural ap-

proach to speaker diarization. However, the proposed diarization systems still

rely on a traditional clustering method, such as affinity propagation and spec-

tral clustering. That leads us to Chapter 5, where we propose to formulate the

clustering step as a supervised classification task that can be handled by neural

approaches.

75

Chapter 5

End-to-End Sequential Clustering

5.1 Introduction

Voice activity
detection

Speaker change
detection

Initial segmentation

Clustering Re-segmentation Output

Joint optimization

Figure 5.1: Diarization pipeline. We propose to jointly optimize the hyper-
parameters of the whole diarization pipeline.

As depicted in Figure 5.1, we were able to replace most diarization steps by

neural approaches and are getting closer to obtaining a fully end-to-end neural

speaker diarization. In this chapter, to get even closer, we first propose to jointly

optimize the hyper-parameters of the whole diarization pipeline. This is summa-

rized in Section 5.2. The next step, described in Section 5.3, is to formulate the

clustering step as a supervised classification task that can be handled by neural

approaches. As shown in Figure 5.2, at the end of this chapter, all modules will

be based on neural networks.

76

5.2 Hyper-parameters optimization

Voice activity
detection

Speaker change
detection

Initial segmentation

Clustering Re-segmentation Output

Figure 5.2: Diarization pipeline. In this chapter, we propose to rely on recurrent
neural networks for all modules.

5.2 Hyper-parameters optimization

5.2.1 Hyper-parameters

Speech activity detection

Input audio

Speaker change detection

Speech turn embedding

Affinity propagation

Re-segmentation

output diarization result

Initial
segmentation

Clustering

Figure 5.3: Diarization pipeline and hyper-parameters.

Our proposed speaker diarization pipeline consists of four consecutive mod-

ules: VAD, SCD, clustering, and re-segmentation. As shown in Figure 5.3, for

VAD, the hyper-parameters include θonset and θoffset, which are used to post-

process the sequence of speech scores for the detection of the start and end time

of speech regions. For SCD, the hyper-parameters include δpeak and θpeak. In the

sequence of scores, all local maxima on a sliding window of duration δpeak exceed-

ing a threshold θpeak are marked as speaker change points. Since we use affinity

77

5.2 Hyper-parameters optimization

propagation in the clustering step, the hyper-parameters include preference value

θAP and damping factor λAP. For re-segmentation, the hyper-parameter is E,

which is the number of epochs in the self-training step.

5.2.2 Separate vs. joint optimization

Each step of the pipeline introduced in Chapter 3 and Chapter 4 can be opti-

mized separately on ETAPE TV development set. VAD hyper-parameters are

optimized to minimize the detection error rate introduced in Section 2.8.1. For

SCD, the system is evaluated with dual metrics purity and coverage (introduced

in Section 2.8.2) that can be combined into a single F1 score. However, since

errors made in the initial segmentation step cannot be corrected in the clustering

step, high purity is more important than high coverage. Therefore, we tune SCD

hyper-parameters to maximize coverage under the constraint the purity has to

be at least 94%. For clustering and re-segmentation, hyper-parameters are tuned

to minimize the diarization error rate.

In joint optimization, all the hyper-parameters in our proposed diarization

pipeline are jointly optimized. More precisely, we use the Tree-structured Parzen

Estimator hyper-parameter optimization approach [103] available in

scikit-optimize [89] to automatically select the set of hyper-parameters that mini-

mizes diarization error rate. Note that hyper-parameter E for re-segmentation is

tuned separately, but it should ideally be optimized with the rest of the pipeline.

5.2.3 Results

Table 5.1 summarizes the results of jointly and separately optimized diarization

pipelines. It shows that the jointly optimized pipeline performs better according

to the diarization error rate (28.84% vs. 31.28%) where the confusion is decreased

3.55% at the expense of the increase (1.16%) of false alarm rate.

78

5.3 Neural sequential clustering

DER FA Miss Confusion Purity Coverage
Separate optimization 31.28 3.95 6.97 20.36 77.54 76.48
Joint optimization 28.84 5.11 6.91 16.81 78.49 82.63
Joint optimization (VAD) 27.84 3.82 7.30 16.71 78.49 82.63

Table 5.1: Performance of different diarization pipelines. The evaluation metrics
include diarization error rate (DER), false alarm rate (FA), missed speech rate
(Miss), confusion, purity and coverage.

5.2.4 Analysis

Even though the jointly optimized pipeline shows a better performance than

separately optimized pipeline, the false alarm rate is increased. As shown in

Figure 5.4, the jointly optimized pipeline “prefers” to ignore short non-speech

segments. To take advantage of our separately optimized VAD system, we can

also post-process the result by removing the non-speech part in the separately

optimized VAD results. This operation brings a 1% decrease in diarization error

rate as shown in Table 5.1.

We also do an analysis of SCD in both pipelines. Minimum segment dura-

tion δpeak converges to zero in an separately optimized SCD system. However,

in the jointly optimized pipeline, minimum segment duration δpeak is converged

to be around 3s. That may be because longer segments are easier to cluster. As

shown in Figure 5.4, the confusion error is mostly caused by short segments. That

also explains why the jointly optimized pipeline prefers to ignore short non-speech

segments.

5.3 Neural sequential clustering

Given an audio recording, the clustering step in speaker diarization system aims

at grouping the speech turns according to the speaker identities. Since it does

not need to determine the actual speaker identities, any permutation of the labels

are equivalent (e.g. ‘aabbcc’ is equivalent to ‘bbaacc’).

79

5.3 Neural sequential clustering

Reference

Alain_Marschall Benoît_Petit Philippe_Varin

Separate optimization

200 220 240 260 280 300
Time

Joint optimization

200 220 240 260 280 300
Time

Joint optimization with the separately optimized VAD

Figure 5.4: An example of diarization results in different pipelines.

5.3.1 Motivations

Most clustering algorithms such as hierarchical agglomerative clustering and spec-

tral clustering need to be provided with a number of clusters or a stopping crite-

rion to determine how many clusters should be generated. However, in a speaker

diarization task, audio files vary in number of speakers, and a global optimal

threshold may not be optimal for each file. Recently, computer vision and natu-

ral language processing tasks improved a lot thanks to the end-to-end learning.

An end-to-end system is usually composed of neural networks and treated as

an adaptive black box that generates the prediction from the input data directly

without any intermediate steps. However, clustering is an unsupervised task,

while almost all the existing end-to-end systems are supervised. It is difficult to

design a differentiable loss function close to diarization error rate or to standard

clustering metrics.

Even though in Chapter 4, we propose to use stacked RNNs to improve the

80

5.3 Neural sequential clustering

similarity matrix, the proposed system is trained on a supervised binary classi-

fication task and still relies on the spectral clustering backend. An end-to-end

sequential clustering system should be able to map the input vectors sequence

directly to the cluster labels bypassing the similarity matrix. More precisely, we

would like a sequential clustering system that takes a sequence of speaker embed-

dings (e.g. extracted on a 1s sliding window) as input and returns a sequence of

cluster labels of the same length.

We are going to work on a toy problem as a Proof of Concept (PoC), where we

propose to address the sequential clustering as a sequence labeling task similarly

to VAD and SCD introduced in Chapter 3.

5.3.2 Principle

0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

1

2
0 20 40 60 80

0

2

4

6

8

Gr
ou

nd
tru

th

Figure 5.5: An example of sequential clustering.

Let x ∈ X be a sequence of segment embedding vectors as shown in the left

part of Figure 5.5: x = (x1, . . . , xN), and let y ∈ Y be the corresponding sequence

of clustering labels as shown in the right part of Figure 5.5: y = (y1, . . . , yN) and

yi ∈ {0, . . . , nmax}, where N is the length of sequence and nmax is the maximum

81

5.3 Neural sequential clustering

number of speakers estimated on the training set. Because this is a clustering

task, it is also correct to predict any permutation of y cluster indices as shown

in Figure 5.6. The objective is to train a function g : X → Y that matches an

0 20 40 60 80
Time steps

0

2

4

6

8

Ac
tiv

e
clu

st
er

0 20 40 60 80
Time steps

0

2

4

6

8

0 20 40 60 80
Time steps

0

2

4

6

8

0 20 40 60 80
Time steps

0

2

4

6

8

Figure 5.6: All four predictions are equivalent because they all are permutations
of the same clustering result.

embedding sequence x to the corresponding label sequence y.

5.3.3 Loss function

Learning tasks can be considered as optimization problems seeking to minimize a

loss function that measures prediction inaccuracy. For neural approaches, almost

every loss function is designed for supervised learning. Speaker diarization is

usually evaluated by the diarization error rate. However, it is not differentiable

because it relies internally on the Hungarian algorithm that is solved by dynamic

programming. As shown in Figure 5.6, any permutation of reference cluster

indices is also correct. Therefore, an alternative loss function is motivated by the

permutation invariant training [104]:

min
r∈R

L(r, ŷ) (5.1)

where R is the set of permutation of reference y cluster indices, ŷ is the prediction,

and L is any traditional loss function for classification tasks such as mean squared

error or category cross-entropy. This loss function first determines the optimal

output-target assignment and then computes the loss. However, it may cause a

high cost of computation during training.

82

5.3 Neural sequential clustering

To simplify the sequential clustering task, we convert it into a supervised

sequence labeling task: the first speaker in a sequence should be labeled as ‘1’,

second as ‘2’ and the other speakers are labeled according to their chronological

order as shown in Figure 5.5. Then, the category cross-entropy can be used to

train the system.

5.3.4 Model architectures

In this paragraph, we describe the different network architectures for sequential

clustering.

5.3.4.1 Stacked RNNs

Stacked RNNs are the most used architecture for sequence labeling tasks, and

they have been successfully applied in our previous works in VAD and SCD.

Therefore, in this section, stacked RNNs are also applied to model the function

g.

5.3.4.2 Encoder-decoder

Encoder (f) Decoder (h)

𝒙% 𝒙& 𝒙' 𝒙(… 𝒚% 𝒚& 𝒚' 𝒚(…

𝒄
𝒙%

𝒄
𝒙&

𝒄
𝒙'

𝒄
𝒙(…𝒄

Figure 5.7: Encoder-decoder for sequential clustering.

Motivated by the successful application of encoder-decoder in machine trans-

83

5.3 Neural sequential clustering

lation and other sequence-to-sequence tasks, we propose an encoder-decoder ar-

chitecture for sequential clustering. Generally, the encoder f aims at mapping

an input sequence into an internal representation vector c which is then used to

generate an output sequence by the decoder h.

Our proposed architecture for sequential clustering task is shown in Figure 5.7.

The encoder consists of stacked RNNs which read the embedding vector one by

one. The final hidden state of the final RNN is defined as the context vector c,

which represents the summary of the input sequence.

c = f(x) (5.2)

We expect c to contain information about the whole input sequence (such as the

number of clusters, the position of the centroids, etc.). This will be discussed in

Section 5.3.9.1.

The decoder is another RNN which is used to generate the output sequence

of labels. Unlike the decoder in traditional architecture proposed in [34], the

input of our proposed decoder consists of two parts: the context vector c and

the original embedding vectors. The input at timestep t is the concatenation of

c and xt. Therefore, the output sequence is computed using:

y = h(x, c) = h

 c

x 1

 ,
 c

x 2

 , · · · ,
 c

xn

 (5.3)

The architecture of the decoder is motivated by our previous work in Chapter 4,

in which we used stacked RNNs to predict the similarity matrix, and where the

input of RNN is the concatenation of two embedding vectors.

The intuition is that context c contains the centroids information, and decoder

RNN could compare c with the input embedding vectors to guess the cluster label

and smooth the resulting sequence temporally. While in traditional sequence-to-

sequence tasks, input and output sequences can have different lengths, it is not

84

5.3 Neural sequential clustering

the case in our sequential clustering task.

5.3.5 Simulated data

An end-to-end system usually needs to be trained with numerous data. Since

we work on a toy problem as a proof of concept, we start with some toy simu-

lated data. The generated sequence should include sequential information. Our

proposed simulated data generative process involves two parts: label generation

(y) and embedding generation (x). To simplify the visualization of the clustering

results, the dimension of the embedding vectors is fixed to 2, and the sequence

length is also fixed to 100.

5.3.5.1 Label generation y

Label generation aims at modeling the generative process of speaker turns. We

use two strategies to generate the label sequences: toy and mimic.

The toy generator relies on a traditional Markov model. For each sequence,

the number of clusters is first initialized randomly, and then the prior probability

and the transition matrix are also randomly initialized. Since the speech turns

in a real conversation are not uniform distributed, the label duration is modeled

by a discrete Poisson distribution.

Mimic generator relies on a real diarization dataset which includes the anno-

tation of “who spoke when”. As shown in Figure 5.8, an annotation file is first

randomly selected from the dataset (Part A). Then the duration of each segment

is randomly modified (up to 20%), and the labels are also randomly modified

with the probability of 0.05 (Part B). The output sequence of labels is a random

part of the modified annotation file without non-speech (Part C & D).

Both toy and mimic label generation techniques share the same post-processing

step: rename the labels to make sure clusters are numbered in chronological order.

85

5.3 Neural sequential clustering

Dataset

1 1 2 2 2 … 3 3 3 3 3

(A)

(B)

(C)

(D)

Figure 5.8: Mimic label generation.

5.3.5.2 Embedding generation (x)

Embedding generation aims at modeling the generative process of speaker em-

beddings. For a generated sequence of labels, each label corresponds to a cluster

(speaker), modeled by a Gaussian model. For instance, in Figure 5.5, there are

three clusters, whose means and variances are initialized randomly.

5.3.6 Baselines

The proposed end-to-end clustering system is compared with three baselines. The

first one is hierarchical agglomerative clustering with complete or pooling link-

age which were introduced in 2.5.1.1. The second one is affinity propagation

(AF), which has been successfully applied in our previous work. The third one is

UIS-RNN, which is essentially a mixture of RNN and parametric models. Sim-

ilar to our proposed approaches, UIS-RNN also models sequential information.

Therefore, it is expected to be the best of the three baselines.

86

5.3 Neural sequential clustering

5.3.7 Implementation details

5.3.7.1 Data

The length of the generated sequence is fixed to 100. For toy label generator, the

number of clusters is sampled from a discrete uniform distribution over [1, 10)

and the λ in Poisson distribution is 10. In other words, the average length of

speech turns is 10. For mimic label generator, the REPERE database serves

as conversation templates. For embedding generator, the cluster centers and

variance are sampled from the continuous uniform distribution over [0.0, 1.0).

5.3.7.2 Stacked RNNs

Different from our previous task such as VAD, SCD, we use the Gated Recurrent

Units (GRU) as RNN instead of the Long Short-Term Memory (LSTM). As

shown in Figure 5.9, the architecture is composed of three parts: linear, RNNs,

and output. Linear is a fully connected layer without activation function, which

is used to transform the input data dimension from 2 to the same dimension as

the hidden size in RNN. RNN is composed of several bi-directional RNN layers (2

for toy data, 3 for mimic data). All the RNN layers have 256 (128× 2) outputs.

Because we do not model overlap and each point belongs to exactly one cluster,

the output layer is a linear layer with a softmax activation function.

5.3.7.3 Encoder-decoder architecture

As shown in Figure 5.10, the encoder is composed of two parts: linear and RNNs.

Similar to stacked RNNs, linear is used to transform the input data dimension.

RNNs is composed of several bi-directional RNN layers (1 for toy data, 2 for

mimic data) and the output size is 256 (128 × 2). The decoder is composed

of a single bi-directional RNN and an output layer, where the input of RNN

is the concatenation of the last hidden state (128 × 2) of the encoder and the

transformation of original input (128). The output layer is a linear layer with a

87

5.3 Neural sequential clustering

𝒙" 𝒙# 𝒙$ 𝒙%…

𝒚" 𝒚# 𝒚$ 𝒚%…

Linear

RNNs

Output

Figure 5.9: Stacked RNNs.

softmax activation function like stacked RNNs.

5.3.7.4 Training and testing

In the training process, the Adam optimizer is employed with a learning rate

initialized at 0.001 and divided by 10 every 200 epoch. The model training process

terminates after 500 epochs. Then a development set with 1000 sequences is used

to select the best epoch. In the testing process, the model is evaluated on a test

set which contains 1000 sequences.

Note that all the data is generated randomly and relies on a random seed. We

ensure that training, development, and test sets are different by using a different

random seed for each of them.

88

5.3 Neural sequential clustering

𝒙" 𝒙# 𝒙$ 𝒙%… 𝒚" 𝒚# 𝒚$ 𝒚%…

𝒄
𝒙"

𝒄
𝒙#

𝒄
𝒙$

𝒄
𝒙%…𝒄

Encoder (f)

Linear

RNNs RNNs
Decoder (h)

Output

Linear

Figure 5.10: Encoder-decoder.

5.3.7.5 Hyper-parameters tuning for baselines

For each baseline, 1000 sequences taken from the training set are used to tune the

hyper-parameters. The threshold θHAC for hierarchical agglomerative clustering

and preference value θAP , damping factor λAP for affinity propagation are tuned

by scikit-optimize [89] in order to minimize the diarization error rate. UIS-RNN

is trained with 20000 epoch with its official code in github1, and the model of the

last epoch is selected.

5.3.8 Results

All systems are evaluated by diarization error rate, purity, and coverage. Since we

exclude the non-speech in our generated data, the DER referred here is the class

confusion. Table 5.2 summarizes the main experimental results on toy data. The

top three systems (stacked RNNs, encoder-decoder, and UIS-RNN) are based on

RNNs, and they can model the sequential information during the training pro-

cess, while the traditional clustering methods such as hierarchical agglomerative

1https://github.com/google/uis-rnn

89

5.3 Neural sequential clustering

DER Purity Coverage
Stacked RNNs 7.4 94.04 95.88
Encoder-decoder 8.5 93.18 94.85
UIS-RNN 14.6 85.50 97.77
HAC (pool) 23.0 81.43 89.19
HAC (average) 23.5 82.45 87.44
AF 24.8 82.71 84.36

Table 5.2: Results of different systems on toy data.

DER Purity Coverage
Stacked RNNs 10.78 92.35 94.80
Encoder-decoder 13.12 90.59 92.63
UIS-RNN 13.65 86.50 98.21
HAC (pool) 29.61 78.94 90.00
HAC (average) 28.47 78.67 90.29
AF 25.84 77.41 89.69

Table 5.3: Results of different systems on mimic data.

clustering and affinity propagation just process the segments independently. The

experimental results on the toy data show that the RNN-based systems lead to

significant improvements over conventional systems. Stacked RNNs reaches the

best performance.

An example of clustering results of traditional methods is shown in Fig-

ure 5.11. We can find that most data points have been grouped to the correct

clusters. However, there are some fast speech turns in predicted label sequences.

The results of RNN-based methods are shown in Figure 5.12. The results have

been smoothed, and almost all the data points are grouped into the correct clus-

ters.

When we switch to the mimic data, all the performances of different systems

degrade a little, except the UIS-RNN. That may be because UIS-RNN is more

suitable to model the real speech turn information.

90

5.3 Neural sequential clustering

0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

0

1

2

0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

0

1

2

0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

0

1

2

3

0 20 40 60 80

0

1

2

3

4

Gr
ou

nd
tru

th

0 20 40 60 80

0

1

2

3

4HA
C

av
er

ag
e

(D
ER

: 2
1%

)

0 20 40 60 80

0

1

2

3

4

HA
C

po
ol

 (D
ER

: 1
1%

)

0 20 40 60 80

Time steps

0

1

2

3

4

AP
 (D

ER
: 2

2%
)

Figure 5.11: Clustering results of traditional methods.

5.3.9 Discussions

5.3.9.1 What does the encoder do?

We anticipate that our proposed encoder-decoder imitates the process of humans

doing the clustering, where one first guesses the centroids based on the data points

(encoder) and then aligns the data points to the clusters according to the distance

between data points and corresponding centroids (decoder). We expect that the

context vector c contains the centroids information and the decoder is able to

compare the data points with c. As we have already successfully applied stacked

RNNs to improve the similarity matrix, we also choose bi-directional RNN as

decoder. However, neural network modules are like black boxes, and it is difficult

to analyze their inner behavior directly.

To well understand the working mechanism of encoder-decoder, as shown in

91

5.3 Neural sequential clustering

0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

0

1

2

0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

0

1

2

0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

0

1

2

0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

0

1

2

3

0 20 40 60 80

0

1

2

3

Gr
ou

nd
tru

th

0 20 40 60 80

0

1

2

3

UI
S-

RN
N

(D
ER

: 2
%

)

0 20 40 60 80

0

1

2

3St
ac

ke
d

RN
N

(D
ER

: 1
%

)

0 20 40 60 80

Time steps

0

1

2

3

En
co

de
r-d

ec
od

er
 (D

ER
: 4

%
)

Figure 5.12: Clustering results of RNN-based methods.

Figure 5.13, we replace the decoder by MLP to predict the number of clusters of

an input sequence. The encoder is taken from a trained encoder-decoder model,

and its parameters are frozen. The MLP is composed of two fully connected

layers, which are 128- and 10-dimensional respectively. This model is trained

with 50 epochs and the model of the last epoch is used to test on 1000 randomly

generated sequences.

We compute the absolute difference between the predicted number of clusters

and the reference number of clusters. The difference distribution is shown in the

left part of Figure 5.14. It shows that more than 60% are predicted correctly, and

when we choose a tolerance of 1, it reaches 90%. The right part of Figure 5.14

is the distribution of number of clusters. If we use a naive classification model

that always predicts 5, only 21% is correct. It means that the context vector does

contain information about the number of clusters.

92

5.3 Neural sequential clustering

Encoder (f)

MLP

𝒙$ 𝒙% 𝒙& 𝒙'…

𝒄

𝒚

Figure 5.13: The architecture used to predict the number of clusters of an input
sequence.

0 2 4 6 8
0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9
0

25

50

75

100

125

150

175

200

Figure 5.14: The difference between the predicted number of clusters and the
reference number of clusters (left). The distribution of number of clusters (right).
Experiments are conducted on toy data.

5.3.9.2 Neural sequential clustering on long sequences

In real speaker diarization datasets such as ETAPE and AMI, the conversations

may last more than half an hour. However, in our previous experiments, the

sequence length is fixed to 100. Since most speaker embedding systems are de-

signed to embed the audio segments of 1s, the duration of the sequences in our

previous experiments would only be 1 minute 40 seconds. Since LSTM and GRU

are designed to memorize long-term dependencies of sequences, we also conduct

the experiments with longer sequences where the length of sequences is extended

93

5.3 Neural sequential clustering

to 600. The results of different systems are presented in Table 5.4. All systems

show a significant decrease in performance, compared with the results on short

sequences.

DER Purity Coverage
Stacked RNNs 11.8 90.22 93.43
Encoder-decoder 13.3 88.61 91.95
UIS-RNN 15.83 86.21 95.84
HAC (pool) 32.17 77.71 88.87
HAC (average) 31.33 77.37 89.07
AF 28.50 76.91 86.60

Table 5.4: Results on long sequences.

5.3.9.3 Sequential clustering with stacked unidirectional RNNs.

Bi-directional RNN can process the sequence from forward and backward direc-

tions at the same time. However, this architecture is restricted to offline cluster-

ing. To adapt the stacked RNNs to online sequential clustering, we re-ran the

experiments with unidirectional RNN where the backward direction is discarded.

Similarly to our proposed stacked bi-directional RNNs, it is composed of two

standard RNN layers. Both of them are 256-dimensional. Table 5.5 presents the

results of stacked unidirectional RNNs. The performance degrades a lot compared

to the stacked bi-directional RNNs. Nevertheless, it still better than traditional

clustering methods, even though they are offline.

Length DER Purity Coverage
100 13.9 89.62 91.10
600 17.3 85.95 89.71

Table 5.5: Results of stacked unidirectional RNNs.

94

5.4 Conclusion

5.4 Conclusion

In this chapter, we first introduce the joint optimization for our proposed diariza-

tion pipeline. Compared to the pipeline with separately optimized modules, the

new pipeline shows a significant improvement. In addition, we propose to do end-

to-end sequential clustering directly with stacked RNNs and an encoder-decoder

model. The experiments are conducted on toy data, and our proposed systems

show a much better performance than traditional clustering algorithms. The main

reason may be because the sequential information is modeled by these RNN-based

methods. In addition, the stacked unidirectional RNNs are also successfully ap-

plied in our experiments which may lead to an online sequential clustering system

in the future.

Sequential clustering is an important task not only in speaker diarization but

also in other applications with time series data. For example, wearable sensor

data can be expressed as a timeline of a few actions (walking, sleeping etc.) [105].

In the future, we will test our proposed methods with real speaker embeddings

and other sequential clustering applications.

95

Chapter 6

Conclusions and Perspectives

6.1 Conclusions

Overall, the main topic of this thesis is to improve the speaker diarization system

with neural networks. In this thesis, all modules of our proposed diarization

systems are addressed with neural network approaches. The main contributions

of this thesis are summarized as follows:

• First contribution. We show that both the initial segmentation and the

final re-segmentation can be formulated as a set of frame-wise sequence

labeling problems on top of MFCC features, addressed using bidirectional

LSTMs. The proposed methods lead to significant performance improve-

ment in broadcast TV dataset. Recently, LSTM-based methods also achieve

state-of-the-art performance on most other sequence labeling tasks, compar-

ing with other probabilistic methods. That may be because the LSTMs can

learn the context required to make a prediction at each time step. Because

conversational speech is usually highly structured, contextual information

is critical for segmentation tasks. This type of information is difficult to

capture by probabilistic models.

• Second contribution. Traditional clustering modules in diarization sys-

tems rely on variations of Hierarchical Agglomerative Clustering (HAC)

96

6.1 Conclusions

approaches and use BIC, CLR or i-vector to compute similarities between

clusters. In recent years, the performance of state-of-the-art speaker recog-

nition systems has improved enormously, thanks to the neural-based speaker

embedding systems. We propose to use affinity propagation clustering on

top of a neural speaker embedding system introduced in [48; 95]. Experi-

ments on a broadcast TV dataset show that affinity propagation clustering

is more suitable than hierarchical agglomerative clustering when applied to

neural speaker embeddings. In addition, we propose to improve the simi-

larity matrix by bidirectional LSTM and then apply spectral clustering on

top of the improved similarity matrix. The proposed system achieves state-

of-the-art performance in the CALLHOME telephone conversation dataset.

The analysis shows that the improvement mainly results from the sequence

modeling of the LSTM model on longer recordings.

• Third contribution. While speaker diarization modules are usually tuned

empirically and independently from each other, we propose to jointly opti-

mize the whole diarization pipeline composed of neural-based segmentation

and affinity propagation. Compared to the pipeline with separately op-

timized modules, the new pipeline shows a significant improvement on a

broadcast TV dataset.

• Fourth contribution. We formulated sequential clustering as a supervised

sequence labeling task and addressed it with stacked RNNs. To better un-

derstand its behavior, the analysis is based on a proposed encoder-decoder

architecture. Our proposed systems bring a significant improvement com-

pared with traditional clustering methods on toy examples. It appears that

stacked RNNs is capable to model the whole sequence.

97

6.2 Perspectives

online

speaker

diarization

cluster #1

cluster #nt

cluster #2

scoring

scoring

scoring

max

score s1
t

score snt
t

score s2
t

score st

audio
stream

up to
time t

enrollment
target

speech

target model

speaker detection

scoring

Figure 6.1: Common architecture to proposed LLSS solutions. At any time t,
online speaker diarization provides a set of nt speaker clusters {cti}1≤i≤nt . Speaker
detection is then applied to compare the speech segments in each cluster cti against
a pre-trained target speaker model, thereby giving scores (or likelihood-ratios) sti.
A final score at time t is defined as the maximum score over all clusters: st =
max1≤i≤nt s

t
i. We provide several backends. Our proposed d-vector embedding

backend achieve the best performance. Figure taken from [6].

6.2 Perspectives

Due to limited time, some promising research perspectives could not be investi-

gated during my thesis.

6.2.1 Sequential clustering in real diarization scenarios

In Chapter 5, we proposed to use stacked RNNs and encoder-decoder for the se-

quential clustering task. Even though the two proposed models show an excellent

performance with toy data, we did not have time to test them in real diarization

scenarios. Our short term goal for the sequential clustering task is to explore

the applicability of our systems in real scenarios and try other neural network

architectures. Recently, transformer [106], encoder-decoder with attention mech-

anism [2] and Neural Turing Machine (NTM) [107] have been successfully applied

for sequence to sequence tasks in natural language processing domain, such as

machine translation. These architectures could be also used for the sequential

clustering task. In addition, the proposed loss function (categorical cross-entropy)

assumes that cluster indices are ordered chronologically. We would like to relax

98

6.2 Perspectives

this constraint by investigating permutation invariant losses closer to the standard

diarization error rate evaluation metric.

6.2.2 Overlapped speech detection

Overlapped speech is a very common phenomenon in human conversations like

meetings and phone calls. Our proposed systems in this thesis can only assign

speech segments to one speaker, thus incurring missed speech errors in overlapped

speech regions where two or more speakers are active. Preliminary experiments

show that overlapped speech detection can also be formulated as a sequence la-

beling problem (y = 1 for overlap, y = 0 otherwise), addressed using bidirectional

LSTMs like VAD and SCD. Our short term goal is to integrate the LSTM-based

overlapped detection into our proposed diarization systems. In addition, our

proposed end-to-end sequential clustering models in Chapter 5 cannot model

overlapped speech. Our long term goal is to handle overlapped speech during

the sequential clustering. Therefore, the neural network architectures proposed

in Chapter 5 should be modified. For instance, the activation function in output

layers could be switched from softmax to sigmoid, while the loss function could

be replaced by mean squared error.

6.2.3 Online diarization system

Speaker diarization is often used as a preprocessing step in some other applica-

tions such as ASR. In some scenarios like meetings and lectures, the ASR system

should be in real time. In [6], we proposed a new task termed low-latency speaker

spotting (LLSS). It consists in determining as early as possible when a specific

speaker starts talking in an audio stream. Our proposed system architecture for

LLSS is depicted in Figure 6.1, which combines online speaker diarization with

speaker detection approach. With the growth of these types of applications, on-

line diarization systems become more and more important in speech processing

domain. For initial segmentation, our proposed system can be done in an online

99

6.2 Perspectives

manner, with a latency of 3.2s (the sliding window size). For sequential cluster-

ing, in Chapter 5, we tried to do it by a standard RNN. However, the performance

degraded a lot on toy data, comparing with bidirectional RNN. Our short term

goal for this task is to adapt our proposed systems to an online manner and apply

them to real diarization scenarios. Our long term goal is developing an adequate

architecture for online speaker diarization.

6.2.4 End-to-end diarization system

Even though some parts of the proposed diarization system are based on neural

approaches, the system still relies on hand-crafted features (MFCC), and this is

therefore not an end-to-end speaker diarization system. An end-to-end system

should be able to map the waveform directly to the diarization result bypassing

the feature extraction and other steps. Rather than employing standard hand-

crafted features, [108] proposes a novel CNN architecture, called SincNet, to

learn low-level speech representations from waveforms directly. The proposed

architecture converges faster and performs better than a standard CNN on raw

waveforms in the speaker verification task. Our preliminary experiments on VAD

and SCD achieved the same conclusion. It seems that SincNet is powerful enough

to replace the traditional hand-crafted feature extractors in speech processing

tasks. Our short term goal for this task is to replace the MFCC feature extractor

by SincNet in our proposed systems. Our long term goal is developing a real

end-to-end speaker diarization system.

100

References

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press,

2016. xiii, 13, 15, 16, 17, 19

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by

Jointly Learning to Align and Translate,” ICLR 2015, International Con-

ference on Learning Representations, 2015. xiii, 18, 19, 98

[3] M. Wang and W. Deng, “Deep Face Recognition: A Survey,” arXiv preprint

arXiv:1804.06655, 2018. xiii, 22

[4] C. Manning, P. Raghavan, and H. Schütze, “Introduction to Information

Retrieval,” Natural Language Engineering, vol. 16, no. 1, p. 385, 2010. xv,

64, 65

[5] Q. Lin, R. Yin, M. Li, H. Bredin, and C. Barras, “Recurrent Neural Net-

work Based Segments Similarity Measurement with Spectral Clustering for

Speaker Diarization,” in Interspeech 2019, 20th Annual Conference of the

International Speech Communication Association, (Graz, Austria), Septem-

ber 2019. xv, xvii, 59, 70, 75

[6] J. Patino, R. Yin, H. Delgado, H. Bredin, A. Komaty, G. Wisniewski,

C. Barras, N. Evans, and S. Marcel, “Low-latency Speaker Spotting with

Online Diarization and Detection,” in Odyssey 2018, The Speaker and Lan-

guage Recognition Workshop, 2018. xvi, 98, 99

101

REFERENCES

[7] S. E. Tranter and D. A. Reynolds, “An Overview of Automatic Speaker

Diarization Systems,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 14, no. 5, pp. 1557–1565, 2006. 1, 7

[8] N. Ryant, K. Church, C. Cieri, A. Cristia, J. Du, S. Ganapathy, and

M. Liberman, “First DIHARD Challenge Evaluation Plan,” 2018. 2

[9] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-End Text-

Dependent Speaker Verification,” in ICASSP 2016, IEEE International

Conference on Acoustics, Speech and Signal Processing, pp. 5115–5119,

IEEE, 2016. 2, 21

[10] A. Graves, “Neural Networks,” in Supervised Sequence Labelling with Re-

current Neural Networks, pp. 15–35, Springer, 2012. 2, 40, 42

[11] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM Neural Networks for

Language Modeling,” in Interspeech 2012, 13th Annual Conference of the

International Speech Communication Association, pp. 194–197, 2012. 3, 40

[12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning

with Neural Networks,” in NIPS 2014, Advances in Neural Information

Processing Systems, pp. 3104–3112, 2014. 3, 40

[13] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-

Dominguez, “Deep Neural Networks for Small Footprint Text-dependent

Speaker Verification,” in ICASSP 2014, IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 4052–4056, IEEE, 2014. 3, 21

[14] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-

vectors: Robust DNN Embeddings for Speaker Recognition,” in ICASSP

2018, IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, pp. 5329–5333, IEEE, 2018. 3, 21, 61

102

REFERENCES

[15] B. J. Frey and D. Dueck, “Clustering by Passing Messages Between Data

Points,” Science, vol. 315, no. 5814, pp. 972–976, 2007. 3, 29, 64

[16] Q. Wang, C. Downey, L. Wan, P. A. Mansfield, and I. L. Moreno, “Speaker

Diarization with LSTM,” in ICASSP 2018, IEEE International Conference

on Acoustics, Speech, and Signal Processing, 2018. 3, 24, 28, 29, 31, 59, 71,

73

[17] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland, and

O. Vinyals, “Speaker diarization: A Review of Recent Research,” IEEE

Transactions on Audio, Speech, and Language Processing, vol. 20, no. 2,

pp. 356–370, 2012. 7, 23, 26

[18] C. Barras, X. Zhu, S. Meignier, and J. L. Gauvain, “Multi-Stage Speaker

Diarization of Broadcast New,” IEEE Transactions on Audio, Speech and

Language Processing, vol. 14, pp. 1505–1512, Sept. 2006. 8, 49

[19] J. Ajmera and C. Wooters, “A Robust Speaker Clustering Algorithm,” in

ASRU 2003, IEEE Workshop on Automatic Speech Recognition and Under-

standing, pp. 411–416, IEEE, 2003. 8

[20] M. Nosratighods, E. Ambikairajah, and J. Epps, “Speaker Verification Us-

ing A Novel Set of Dynamic Features,” in ICPR 2006, 18th International

Conference on Pattern Recognition, vol. 4, pp. 266–269, IEEE, 2006. 9

[21] P. Rose, Forensic Speaker Identification. CRC Press, 2002. 9

[22] E. Shriberg, L. Ferrer, S. Kajarekar, A. Venkataraman, and A. Stolcke,

“Modeling Prosodic Feature Sequences for Speaker Recognition,” Speech

Communication, vol. 46, no. 3-4, pp. 455–472, 2005. 9

[23] A. Adami, R. Mihaescu, D. Reynolds, and J. Godfrey, “Modeling Prosodic

Dynamics for Speaker Recognition,” in ICASSP 2003, IEEE International

103

REFERENCES

Conference on Acoustics, Speech and Signal Processing, vol. 4, pp. IV – 788,

05 2003. 9

[24] G. Friedland, O. Vinyals, Y. Huang, and C. Muller, “Prosodic and Other

Long-Term Features for Speaker Diarization,” IEEE Transactions on Au-

dio, Speech, and Language Processing, vol. 17, no. 5, pp. 985–993, 2009.

9

[25] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Ap-

plications in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2,

pp. 257–286, 1989. 11

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,

no. 7553, p. 436, 2015. 12

[27] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional Deep Belief

Networks for Scalable Unsupervised Learning of Hierarchical Representa-

tions,” in ICML 2009, 26th Annual International Conference on Machine

Learning, pp. 609–616, ACM, 2009. 12

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A Large-Scale Hierarchical Image Database,” in CVPR 2009, IEEE Con-

ference on Computer Vision and Pattern Recognition, pp. 248–255, IEEE,

2009. 12

[29] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A Large-Scale

Speaker Identification Dataset,” in Interspeech 2017, 18th Annual Confer-

ence of the International Speech Communication Association, (Stockholm,

Sweden), August 2017. 12

[30] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Net-

works,” in AISTATS 2011, 14th International Conference on Artificial In-

104

REFERENCES

telligence and Statistics, (Ft. Lauderdale, FL, USA), pp. 315–323, April

2011. 14

[31] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve

Neural Network Acoustic Models,” in ICML 2013, 30th International Con-

ference on Machine Learning, (Atlanta, USA), p. 3, June 2013. 14

[32] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep

Network Learning by Exponential Linear Units (ELUs),” in ICLR 2016,

International Conference on Learning Representations, (San Juan, Puerto

Rico), May 2016. 14

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Sur-

passing Human-Level Performance on Imagenet Classification,” in IEEE

International Conference on Computer Vision, (Santiago, Chile), pp. 1026–

1034, December 2015. 14

[34] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning Phrase Representations using RNN

Encoder-Decoder for Statistical Machine Translation,” in EMNLP 2014,

Conference on Empirical Methods in Natural Language Processing, 2014.

17, 18, 84

[35] S. Ruder, “An Overview of Gradient Descent Optimization Algorithms,”

2016. 19

[36] D. Reynolds, Universal Background Models, pp. 1349–1352. Boston, MA:

Springer, 2009. 20

[37] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker Verification Us-

ing Adapted Gaussian Mixture Models,” Digital Signal Processing, vol. 10,

no. 1-3, pp. 19–41, 2000. 20

105

REFERENCES

[38] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint Factor Anal-

ysis versus Eigenchannels in Speaker Recognition,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 15, no. 4, pp. 1435–1447,

2007. 20

[39] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-

End Factor Analysis for Speaker Verification,” IEEE Transactions on Au-

dio, Speech, and Language Processing, vol. 19, no. 4, pp. 788–798, 2011. 20,

60

[40] T. Yamada, L. Wang, and A. Kai, “Improvement of Distant-Talking

Speaker Identification Using Bottleneck Features of DNN.,” in Interspeech

2013, 14th Annual Conference of the International Speech Communication

Association, pp. 3661–3664, 2013. 21

[41] S. H. Ghalehjegh and R. C. Rose, “Deep Bottleneck Features for i-

vector Based Text-Independent Speaker Verification,” in ASRU 2015, IEEE

Workshop on Automatic Speech Recognition and Understanding, pp. 555–

560, IEEE, 2015. 21

[42] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep Neural

Network Embeddings for Text-Independent Speaker Verification.,” in In-

terspeech 2017, 18th Annual Conference of the International Speech Com-

munication Association, (Stockholm, Sweden), pp. 999–1003, August 2017.

21

[43] V. Peddinti, D. Povey, and S. Khudanpur, “A Time Delay Neural Net-

work Architecture for Efficient Modeling of Long Temporal Contexts,” in

Interspeech 2015, 16th Annual Conference of the International Speech Com-

munication Association, 2015. 21

[44] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero, Y. Carmiel, and

S. Khudanpur, “Deep Neural Network-Based Speaker Embeddings for End-

106

REFERENCES

to-End Speaker Verification,” in SLT 2016, IEEE Spoken Language Tech-

nology Workshop, pp. 165–170, IEEE, 2016. 21

[45] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep Learning Face Represen-

tation by Joint Identification-Verification,” in Advances in Neural Informa-

tion Processing Systems, pp. 1988–1996, 2014. 22, 61

[46] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A Unified Embed-

ding for Face Recognition and Clustering,” in CVPR 2015, IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 815–823, 2015. 22,

61

[47] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep Speaker

Recognition,” in Interspeech 2018, 19th Annual Conference of the Interna-

tional Speech Communication Association, 2018. 22

[48] H. Bredin, “TristouNet: Triplet Loss for Speaker Turn Embedding,” in

ICASSP 2017, IEEE International Conference on Acoustics, Speech, and

Signal Processing, (New Orleans, USA), March 2017. 22, 25, 34, 40, 48, 56,

59, 62, 97

[49] C. Zhang and K. Koishida, “End-to-End Text-Independent Speaker Ver-

ification with Flexibility in Utterance Duration,” in ASRU 2017, IEEE

Automatic Speech Recognition and Understanding Workshop, pp. 584–590,

2017. 22, 62

[50] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A Discriminative Feature Learning

Approach for Deep Face Recognition,” in ECCV 2016, European Confer-

ence on Computer Vision, pp. 499–515, Springer, 2016. 22

[51] J. Ramirez, J. M. Górriz, and J. C. Segura, “Voice Activity Detection. Fun-

damentals and Speech Recognition System Robustness,” in Robust Speech

Recognition and Understanding, InTech, 2007. 23

107

REFERENCES

[52] K.-H. Woo, T.-Y. Yang, K.-J. Park, and C. Lee, “Robust Voice Activity

Detection Algorithm for Estimating Noise Spectrum,” Electronics Letters,

vol. 36, no. 2, pp. 180–181, 2000. 23

[53] M. Marzinzik and B. Kollmeier, “Speech Pause Detection for Noise Spec-

trum Estimation by Tracking Power Envelope Dynamics,” IEEE Transac-

tions on Speech and Audio Processing, vol. 10, no. 2, pp. 109–118, 2002.

23

[54] R. Tucker, “Voice Activity Detection Using A Periodicity Measure,” IEE

Proceedings I (Communications, Speech and Vision), vol. 139, no. 4,

pp. 377–380, 1992. 23

[55] E. Nemer, R. Goubran, and S. Mahmoud, “Robust Voice Activity Detec-

tion Using Higher-Order Statistics in the LPC Residual Domain,” IEEE

Transactions on Speech and Audio Processing, vol. 9, no. 3, pp. 217–231,

2001. 23

[56] E. Rentzeperis, A. Stergiou, C. Boukis, A. Pnevmatikakis, and L. C. Poly-

menakos, “The 2006 Athens Information Technology Speech Activity De-

tection and Speaker Diarization Systems,” in International Workshop on

Machine Learning for Multimodal Interaction, pp. 385–395, Springer, 2006.

24

[57] A. Temko, D. Macho, and C. Nadeu, “Enhanced SVM Training for Robust

Speech Activity Detection,” in ICASSP 2007, IEEE International Confer-

ence on Acoustics, Speech and Signal Processing, vol. 4, pp. IV–1025, IEEE,

2007. 24

[58] T. Ng, B. Zhang, L. Nguyen, S. Matsoukas, X. Zhou, N. Mesgarani,

K. Veselỳ, and P. Matějka, “Developing A Speech Activity Detection Sys-

tem for the DARPA RATS Program,” in Interspeech 2012, 13th Annual

108

REFERENCES

Conference of the International Speech Communication Association, 2012.

24

[59] N. Ryant, M. Liberman, and J. Yuan, “Speech Activity Detection on

Youtube Using Deep Neural Networks,” in Interspeech 2013, 14th An-

nual Conference of the International Speech Communication Association,

pp. 728–731, Lyon, France, 2013. 24

[60] D. Garcia-Romero, D. Snyder, G. Sell, D. Povey, and A. McCree, “Speaker

Diarization Using Deep Neural Network Embeddings,” in ICASSP 2017,

IEEE International Conference on Acoustics, Speech and Signal Processing,

pp. 4930–4934, IEEE, 2017. 24, 73

[61] M. A. Siegler, U. Jain, B. Raj, and R. M. Stern, “Automatic Segmentation,

Classification and Clustering of Broadcast News Audio,” in Proc. DARPA

speech recognition workshop, vol. 1997, 1997. 25, 27, 40, 48

[62] S. Chen and P. Gopalakrishnan, “Speaker, Environment and Channel

Change Detection and Clustering via the Bayesian Information Criterion,”

in Proc. DARPA Broadcast News Transcription and Understanding Work-

shop, vol. 8, pp. 127–132, Virginia, USA, 1998. 25, 27, 40, 48

[63] B. Desplanques, K. Demuynck, and J.-P. Martens, “Factor Analysis for

Speaker Segmentation and Improved Speaker Diarization,” in Interspeech

2015, 16th Annual Conference of the International Speech Communication

Association, pp. 3081–3085, 2015. 25, 40

[64] V. Gupta, “Speaker Change Point Detection Using Deep Neural Nets,” in

ICASSP 2015, IEEE International Conference on Acoustics, Speech and

Signal Processing, pp. 4420–4424, IEEE, 2015. 25

[65] M. Hrúz and Z. Zaj́ıc, “Convolutional Neural Network for Speaker Change

Detection in Telephone Speaker Diarization System,” in ICASSP 2017,

109

REFERENCES

IEEE International Conference on Acoustics, Speech and Signal Process-

ing, pp. 4945–4949, IEEE, 2017. 25

[66] D. Dimitriadis and P. Fousek, “Developing On-Line Speaker Diarization

System.,” in Interspeech 2017, 18th Annual Conference of the International

Speech Communication Association, (Stockholm, Sweden), pp. 2739–2743,

August 2017. 25, 31

[67] S. Bozonnet, N. W. Evans, and C. Fredouille, “The LIA-EURECOM RT’09

Speaker Diarization System: Enhancements in Speaker Modelling and Clus-

ter Purification,” in ICASSP 2010, IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 4958–4961, IEEE, 2010. 26

[68] Q. Jin and T. Schultz, “Speaker Segmentation and Clustering in Meet-

ings,” in ICSLP 2004, 18th International Conference on Spoken Language

Processing, 2004. 27

[69] S. J. Prince and J. H. Elder, “Probabilistic Linear Discriminant Analysis

for Inferences about Identity,” in ICCV 2007, 11th IEEE International

Conference on Computer Vision, pp. 1–8, 2007. 27

[70] D. Arthur and S. Vassilvitskii, “k-means++: The Advantages of Careful

Seeding,” in 18th Annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 1027–1035, Society for Industrial and Applied Mathematics, 2007. 28

[71] O. Ben-Harush, O. Ben-Harush, I. Lapidot, and H. Guterman, “Initializa-

tion of Iterative-Based Speaker Diarization Systems for Telephone Conver-

sations,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 20, no. 2, pp. 414–425, 2012. 28

[72] S. H. Shum, N. Dehak, R. Dehak, and J. R. Glass, “Unsupervised Methods

for Speaker Diarization: An Integrated and Iterative Approach,” IEEE

110

REFERENCES

Transactions on Audio, Speech, and Language Processing, vol. 21, no. 10,

pp. 2015–2028, 2013. 29

[73] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized End-to-End

Loss for Speaker Verification,” in ICASSP 2018, IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, pp. 4879–4883, 2018.

29

[74] W. Zhu and J. Pelecanos, “Online Speaker Diarization using Adapted i-

vector Transforms,” in ICASSP 2016, IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 5045–5049, IEEE, 2016. 31

[75] K. Church, W. Zhu, J. Vopicka, J. Pelecanos, D. Dimitriadis, and P. Fousek,

“Speaker diarization: a perspective on challenges and opportunities from

theory to practice,” in ICASSP 2017, IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 4950–4954, IEEE, 2017. 31

[76] A. Zhang, Q. Wang, Z. Zhu, J. Paisley, and C. Wang, “Fully Supervised

Speaker Diarization,” in ICASSP 2019, IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 6301–6305, IEEE, 2019. 31,

62, 63, 72, 73

[77] C. Wooters and M. Huijbregts, “The ICSI RT07s speaker diarization sys-

tem,” in Multimodal Technologies for Perception of Humans, pp. 509–519,

Springer, 2007. 32

[78] G. Sell and D. Garcia-Romero, “Diarization Resegmentation in the Factor

Analysis Subspace,” in ICASSP 2015, IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 4794–4798, IEEE, 2015. 32,

73

[79] A. Giraudel, M. Carré, V. Mapelli, J. Kahn, O. Galibert, and L. Quintard,

111

REFERENCES

“The REPERE Corpus: A Multimodal Corpus for Person Recognition.,”

in LREC, pp. 1102–1107, 2012. 32

[80] G. Gravier, G. Adda, N. Paulson, M. Carré, A. Giraudel, and O. Galibert,

“The ETAPE Corpus for the Evaluation of Speech-based TV Content Pro-

cessing in the French Language,” in LREC - Eighth international conference

on Language Resources and Evaluation, (Turkey), p. na, 2012. 32

[81] H. Bredin, “pyannote.metrics: A Toolkit for Reproducible Evaluation, Di-

agnostic, and Error Analysis of Speaker Diarization Systems,” in Inter-

speech 2017, 18th Annual Conference of the International Speech Commu-

nication Association, (Stockholm, Sweden), August 2017. 35, 37, 38

[82] M. Cettolo, “Segmentation, Classification and Clustering of An Ital-

ian Broadcast News Corpus,” in Content-Based Multimedia Information

Access-Volume 1, pp. 372–381, 2000. 35, 37

[83] J.-L. Gauvain, L. Lamel, and G. Adda, “Partitioning and transcription of

broadcast news data.,” in ICSLP 1998, 5th International Conference on

Spoken Language Processing, vol. 98, pp. 1335–1338, 1998. 35, 37

[84] G. Gelly and J.-L. Gauvain, “Minimum Word Error Training of RNN-based

Voice Activity Detection.,” in Interspeech 2015, 16th Annual Conference of

the International Speech Communication Association, pp. 2650–2654, 2015.

40, 41, 43

[85] C. Barras, X. Zhu, S. Meignier, and J.-L. Gauvain, “Improving Speaker

Diarization,” in RT-04F Workshop, 2004. 40

[86] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recognition with

deep bidirectional LSTM,” in Automatic Speech Recognition and Under-

standing (ASRU), 2013 IEEE Workshop on, pp. 273–278, IEEE, 2013. 42

112

REFERENCES

[87] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997. 42

[88] B. Mathieu, S. Essid, T. Fillon, J. Prado, and G. Richard, “YAAFE, an

Easy to Use and Efficient Audio Feature Extraction Software.,” in ISMIR

2010, 11th International Society for Music Information Retrieval Confer-

ence, pp. 441–446, 2010. 43, 65

[89] G. M. Kumar and T. Head, “Scikit-Optimize,” 2017. 44, 78, 89

[90] P.-A. Broux, F. Desnous, A. Larcher, S. Petitrenaud, J. Carrive, and

S. Meignier, “S4D: Speaker Diarization Toolkit in Python,” in Interspeech

2018, 19th Annual Conference of the International Speech Communication

Association, September 2018. 45

[91] J. G. Fiscus, N. Radde, J. S. Garofolo, A. Le, J. Ajot, and C. Laprun,

“The Rich Transcription 2005 spring meeting recognition evaluation,” in

International Workshop on Machine Learning for Multimodal Interaction

(MLMI), pp. 369–389, Springer, 2005. 47

[92] O. Galibert, J. Leixa, G. Adda, K. Choukri, and G. Gravier, “The ETAPE

Speech Processing Evaluation.,” in LREC 2014, Language Resources and

Evaluation, pp. 3995–3999, 2014. 47

[93] O. Galibert, “Methodologies for the Evaluation of Speaker Diarization and

Automatic Speech Recognition in the Presence of Overlapping Speech,”

in Interspeech 2013, 14th Annual Conference of the International Speech

Communication Association, pp. 1131–1134, 2013. 47

[94] N. Ryant, K. Church, C. Cieri, A. Cristia, J. Du, S. Ganapathy, and

M. Liberman, “The Second DIHARD Diarization Challenge: Dataset, task,

and baselines,” in Interspeech 2019, 20th Annual Conference of the Inter-

113

REFERENCES

national Speech Communication Association, (Graz, Austria), September

2019. 55

[95] G. Wisniewski, H. Bredin, G. Gelly, and C. Barras, “Combining Speaker

Turn Embedding and Incremental Structure Prediction for Low-Latency

Speaker Diarization,” in Interspeech 2017, 18th Annual Conference of the

International Speech Communication Association, August 2017. 59, 66, 97

[96] X. Zhang, J. Gao, P. Lu, and Y. Yan, “A Novel Speaker Clustering Al-

gorithm via Supervised Affinity Propagation,” ICASSP 2008, IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, pp. 4369–

4372, 2008. 59

[97] G. Gelly and J.-L. Gauvain, “Spoken Language Identification using LSTM-

based Angular Proximity,” in Interspeech 2017, 18th Annual Conference of

the International Speech Communication Association, August 2017. 62

[98] D. Snyder, G. Chen, and D. Povey, “Musan: A Music, Speech, and Noise

Corpus,” arXiv preprint arXiv:1510.08484, 2015. 63

[99] L. v. d. Maaten and G. Hinton, “Visualizing Data Using t-SNE,” Journal

of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008. 66

[100] G. Sell and D. Garcia-Romero, “Speaker Diarization with PLDA i-vector

Scoring and Unsupervised Calibration,” in SLT 2014, IEEE Spoken Lan-

guage Technology Workshop, pp. 413–417, IEEE, 2014. 71

[101] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,

M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, et al., “The kaldi speech

recognition toolkit,” in ASRU 2011, IEEE Workshop on Automatic Speech

Recognition and Understanding, no. EPFL-CONF-192584, IEEE Signal

Processing Society, 2011. 71

114

REFERENCES

[102] G. Sell, D. Snyder, A. McCree, D. Garcia-Romero, J. Villalba, M. Maciejew-

ski, V. Manohar, N. Dehak, D. Povey, S. Watanabe, et al., “Diarization is

Hard: Some Experiences and Lessons Learned for the JHU Team in the In-

augural DIHARD Challenge,” in Interspeech 2018, 19th Annual Conference

of the International Speech Communication Association, pp. 2808–2812,

2018. 71

[103] J. Bergstra, D. Yamins, and D. Cox, “Making A Science of Model Search:

Hyperparameter Optimization in Hundreds of Dimensions for Vision Archi-

tectures,” in International Conference on Machine Learning, pp. 115–123,

2013. 78

[104] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation Invariant Train-

ing of Deep Models for Speaker-Independent Multi-Talker Speech Sepa-

ration,” in ICASSP 2017, IEEE International Conference on Acoustics,

Speech and Signal Processing, pp. 241–245, 2017. 82

[105] D. Hallac, S. Vare, S. Boyd, and J. Leskovec, “Toeplitz Inverse Covariance-

Based Clustering of Multivariate Time Series Data,” in 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, pp. 215–223, 2017. 95

[106] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is All You Need,” in NIPS 2017,

Advances in Neural Information Processing Systems, pp. 5998–6008, 2017.

98

[107] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing Machines,” arXiv

preprint arXiv:1410.5401, 2014. 98

[108] M. Ravanelli and Y. Bengio, “Speaker Recognition from Raw Waveform

with SincNet,” in SLT 2018, IEEE Spoken Language Technology Workshop,

pp. 1021–1028, 2018. 100

115

REFERENCES

[109] J. Patino, H. Delgado, R. Yin, H. Bredin, C. Barras, and N. Evans,

“ODESSA at Albayzin Speaker Diarization Challenge 2018,” in Iber-

SPEECH 2018, 2018.

[110] R. Yin, H. Bredin, and C. Barras, “Neural speech turn segmentation and

affinity propagation for speaker diarization,” in Interspeech 2018, 19th An-

nual Conference of the International Speech Communication Association,

2018.

[111] F.-F. Li, A. Karpathy, and J. Johnson, “CS231n: Convolutional Neural

Networks for Visual Recognition,” University Lecture, 2015.

[112] Y. Liu, M. Russell, and M. Carey, “The Role of Dynamic Features in Text-

Dependent and-Independent Speaker Verification,” in ICASSP 2006, IEEE

International Conference on Acoustics Speech and Signal Processing Pro-

ceedings, vol. 1, IEEE, 2006.

[113] H. Bredin, “pyannote.audio.” https://github.com/pyannote/

pyannote-audio, 2017.

[114] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge university

press, 2004.

[115] S. Galliano, E. Geoffrois, D. Mostefa, K. Choukri, J.-F. Bonastre, and

G. Gravier, “The ESTER Phase II Evaluation Campaign for the Rich Tran-

scription of French Broadcast News,” in 9h European Conference on Speech

Communication and Technology, 2005.

[116] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John

Wiley & Sons, 2012.

[117] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A Python Library

for Optimizing the Hyperparameters of Machine Learning Algorithms,” in

116

https://github.com/pyannote/pyannote-audio
https://github.com/pyannote/pyannote-audio

REFERENCES

Proceedings of the 12th Python in Science Conference, pp. 13–20, Citeseer,

2013.

[118] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-

parameter Optimization,” in Advances in Neural Information Processing

Systems, pp. 2546–2554, 2011.

[119] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn:

Machine Learning in Python,” Journal of Machine Learning Research,

vol. 12, no. October, pp. 2825–2830, 2011.

[120] D. Müllner, “Modern Hierarchical, Agglomerative Clustering Algorithms,”

arXiv preprint arXiv:1109.2378, 2011.

[121] S. Meignier and T. Merlin, “LIUM SpkDiarization: An Open Source Toolkit

for Diarization,” in CMU SPUD Workshop, 2010.

[122] A. Larcher, K. A. Lee, and S. Meignier, “An Extensible Speaker Identifica-

tion Sidekit in Python,” in ICASSP 2016, IEEE International Conference

on Acoustics, Speech, and Signal Processing, pp. 5095–5099, IEEE, 2016.

[123] P.-A. Broux, D. Doukhan, S. Petitrenaud, S. Meignier, and J. Carrive,

“An Active Learning Method for Speaker Identity Annotation in Audio

Recordings,” in MMDA@ ECAI, pp. 23–27, 2016.

[124] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based clustering

based on hierarchical density estimates,” in Advances in Knowledge Discov-

ery and Data Mining (J. Pei, V. S. Tseng, L. Cao, H. Motoda, and G. Xu,

eds.), (Berlin, Heidelberg), pp. 160–172, Springer Berlin Heidelberg, 2013.

[125] M. Rouvier, G. Dupuy, P. Gay, E. el Khoury, T. Merlin, and S. Meignier,

“An Open-source State-of-the-art Toolbox for Broadcast News Diariza-

117

REFERENCES

tion,” in Interspeech 2013, 14th Annual Conference of the International

Speech Communication Association, 2013.

[126] R. Yin, H. Bredin, and C. Barras, “Speaker Change Detection in Broadcast

TV using Bidirectional Long Short-Term Memory Networks,” in Interspeech

2017, 18th Annual Conference of the International Speech Communication

Association, (Stockholm, Sweden), August 2017.

[127] S. H. Yella, A. Stolcke, and M. Slaney, “Artificial neural network features for

speaker diarization,” in SLT 2014, Spoken Language Technology Workshop,

pp. 402–406, IEEE, 2014.

[128] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

ICLR 2015, International Conference on Learning Representations, 2015.

[129] T. G. Dietterich, “Ensemble Methods in Machine Learning,” in Interna-

tional Workshop on Multiple Classifier Systems, pp. 1–15, Springer, 2000.

[130] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfit-

ting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958,

2014.

118

Titre : Étapes vers un système neuronal de bout en bout pour la tâche de segmentation et de regroupement
en locuteurs

Mots clés : segmentation et regroupement en locuteurs, détection des changements de locuteurs, segmen-
tation, LSTM, propagation d’affinité, partitionnement spectral

Résumé : Dans cette thèse, nous proposons de trai-
ter le problème de segmentation et regroupement en
locuteurs à l’aide d’approches neuronales.
Nous formulons d’abord le problème de la segmenta-
tion initiale (détection de l’activité vocale et des chan-
gements entre locuteurs) et de la re-segmentation
finale sous la forme d’un ensemble de problèmes
d’étiquetage de séquence, puis nous les résolvons
avec des réseaux neuronaux récurrents de type Bi-
LSTM (Bidirectional Long Short-Term Memory).
Au stade du regroupement des régions de pa-
role, nous proposons d’utiliser l’algorithme de pro-
pagation d’affinité à partir de plongements neuro-
naux de ces tours de parole dans l’espace vec-
toriel des locuteurs. Des expériences sur un jeu
de données télévisées montrent que le regroupe-
ment par propagation d’affinité est plus approprié
que le regroupement hiérarchique agglomératif lors-
qu’il est appliquée à des plongements neuronaux de
locuteurs. La segmentation basée sur les réseaux
récurrents et la propagation d’affinité sont également
combinées et optimisées conjointement pour former

une chaı̂ne de regroupement en locuteurs. Com-
paré à un système dont les modules sont optimisés
indépendamment, la nouvelle chaı̂ne de traitements
apporte une amélioration significative. De plus, nous
proposons d’améliorer l’estimation de la matrice de si-
milarité par des réseaux neuronaux récurrents, puis
d’appliquer un partitionnement spectral à partir de
cette matrice de similarité améliorée. Le système pro-
posé atteint des performances à l’état de l’art sur
la base de données de conversation téléphonique
CALLHOME.
Enfin, nous formulons le regroupement des tours
de parole en mode séquentiel sous la forme d’une
tâche supervisée d’étiquetage de séquence et abor-
dons ce problème avec des réseaux récurrents
empilés. Pour mieux comprendre le comportement
du système, une analyse basée sur une architec-
ture de codeur-décodeur est proposée. Sur des
exemples synthétiques, nos systèmes apportent une
amélioration significative par rapport aux méthodes
de regroupement traditionnelles.

Title : Steps towards end-to-end neural speaker diarization

Keywords : speaker diarization, speaker change detection, speech segmentation, LSTM, affinity propagation,
spectral clustering

Abstract : In this thesis, we propose to address spea-
ker diarization with neural network approaches.
We first formulate both the initial segmentation (voice
activity detection and speaker change detection) and
the final re-segmentation as a set of sequence labe-
ling problems and then address them with bidirectio-
nal Long Short-Term Memory (Bi-LSTM) networks.
In the speech turn clustering stage, we propose to
use affinity propagation on top of neural speaker em-
beddings. Experiments on a broadcast TV dataset
show that affinity propagation clustering is more sui-
table than hierarchical agglomerative clustering when
applied to neural speaker embeddings. The LSTM-
based segmentation and affinity propagation cluste-
ring are also combined and jointly optimized to form

a speaker diarization pipeline. Compared to the pipe-
line with independently optimized modules, the new
pipeline brings a significant improvement. In addition,
we propose to improve the similarity matrix by bidi-
rectional LSTM and then apply spectral clustering on
top of the improved similarity matrix. The proposed
system achieves state-of-the-art performance in the
CALLHOME telephone conversation dataset.
Finally, we formulate sequential clustering as a su-
pervised sequence labeling task and address it with
stacked RNNs. To better understand its behavior, the
analysis is based on a proposed encoder-decoder ar-
chitecture. Our proposed systems bring a significant
improvement compared with traditional clustering me-
thods on toy examples.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	1 Introduction
	1.1 Motivations
	1.2 Objectives
	1.3 Overview of the Thesis

	2 State of the Art
	2.1 Feature extraction
	2.1.1 Short-term features
	2.1.2 Dynamic features
	2.1.3 Prosodic features

	2.2 Modeling
	2.2.1 Gaussian Mixture Models (GMM)
	2.2.2 Hidden Markov Models (HMM)
	2.2.3 Neural networks
	2.2.3.1 Multilayer Perceptron (MLP)
	2.2.3.2 Convolutional Neural Network (CNN)
	2.2.3.3 Recurrent Neural Network (RNN)
	2.2.3.4 Encoder-decoder
	2.2.3.5 Loss function and optimization

	2.2.4 Speaker Modeling
	2.2.4.1 Probabilistic speaker model
	2.2.4.2 Neural network based speaker model

	2.3 Voice Activity Detection (VAD)
	2.3.1 Rule-based approaches
	2.3.2 Model-based approaches

	2.4 Speaker change detection (SCD)
	2.5 Clustering
	2.5.1 Offline clustering
	2.5.1.1 Hierarchical clustering
	2.5.1.2 K-means
	2.5.1.3 Spectral clustering
	2.5.1.4 Affinity Propagation (AP)

	2.5.2 Online clustering

	2.6 Re-segmentation
	2.7 Datasets
	2.7.1 REPERE & ETAPE
	2.7.2 CALLHOME

	2.8 Evaluation metrics
	2.8.1 VAD
	2.8.2 SCD
	2.8.2.1 Recall and precision
	2.8.2.2 Coverage and purity

	2.8.3 Clustering
	2.8.3.1 Confusion
	2.8.3.2 Coverage and purity

	2.8.4 Diarization error rate (DER)

	3 Neural Segmentation
	3.1 Introduction
	3.2 Definition
	3.3 Voice activity detection (VAD)
	3.3.1 Training on sub-sequence
	3.3.2 Prediction
	3.3.3 Implementation details
	3.3.4 Results and discussion

	3.4 Speaker change detection (SCD)
	3.4.1 Class imbalance
	3.4.2 Prediction
	3.4.3 Implementation details
	3.4.4 Experimental results
	3.4.5 Discussion
	3.4.5.1 Do we need to detect all speaker change points?
	3.4.5.2 Fixing class imbalance
	3.4.5.3 ``The Unreasonable Effectiveness of LSTMs''

	3.5 Re-segmentation
	3.5.1 Implementation details
	3.5.2 Results

	3.6 Conclusion

	4 Clustering Speaker Embeddings
	4.1 Introduction
	4.2 Speaker embedding
	4.2.1 Speaker embedding systems
	4.2.2 Embeddings for fixed-length segments
	4.2.3 Embedding system with speaker change detection
	4.2.4 Embedding system for experiments

	4.3 Clustering by affinity propagation
	4.3.1 Implementation details
	4.3.2 Results and discussions
	4.3.3 Discussions

	4.4 Improved similarity matrix
	4.4.1 Bi-LSTM similarity measurement
	4.4.2 Implementation details
	4.4.2.1 Initial segmentation
	4.4.2.2 Embedding systems
	4.4.2.3 Network architecture
	4.4.2.4 Spectral clustering
	4.4.2.5 Baseline
	4.4.2.6 Dataset

	4.4.3 Evaluation metrics
	4.4.4 Training and testing process
	4.4.5 Results
	4.4.6 Discussions

	4.5 Conclusion

	5 End-to-End Sequential Clustering
	5.1 Introduction
	5.2 Hyper-parameters optimization
	5.2.1 Hyper-parameters
	5.2.2 Separate vs. joint optimization
	5.2.3 Results
	5.2.4 Analysis

	5.3 Neural sequential clustering
	5.3.1 Motivations
	5.3.2 Principle
	5.3.3 Loss function
	5.3.4 Model architectures
	5.3.4.1 Stacked RNNs
	5.3.4.2 Encoder-decoder

	5.3.5 Simulated data
	5.3.5.1 Label generation y
	5.3.5.2 Embedding generation (x)

	5.3.6 Baselines
	5.3.7 Implementation details
	5.3.7.1 Data
	5.3.7.2 Stacked RNNs
	5.3.7.3 Encoder-decoder architecture
	5.3.7.4 Training and testing
	5.3.7.5 Hyper-parameters tuning for baselines

	5.3.8 Results
	5.3.9 Discussions
	5.3.9.1 What does the encoder do?
	5.3.9.2 Neural sequential clustering on long sequences
	5.3.9.3 Sequential clustering with stacked unidirectional RNNs.

	5.4 Conclusion

	6 Conclusions and Perspectives
	6.1 Conclusions
	6.2 Perspectives
	6.2.1 Sequential clustering in real diarization scenarios
	6.2.2 Overlapped speech detection
	6.2.3 Online diarization system
	6.2.4 End-to-end diarization system

	References

