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Résumé

Bien que l’apprentissage automatique ait récemment connu des avancées majeures,
les modèles actuels sont le plus souvent entraînés une fois pour toutes sur une tâche
cible, puis déployés dans l’environnement de production, et leurs paramètres sont
rarement (voire jamais) révisés. Cette approche affecte les performances dans le
nouvel environnement, car les données et les spécifications de la tâche peuvent
évoluer avec le temps et les besoins des utilisateurs. L’apprentissage continu pro-
pose une solution en entraînant des modèles au fil du temps, à mesure que de
nouvelles données sont disponibles. Cependant, il souffre d’un phénomène appelé
“oubli catastrophique”, qui dénote une perte de performance significative sur des
exemples déjà vus. De nombreuses études ont proposé différentes stratégies pour
contrer ce phénomène, mais la plupart des algorithmes reposent sur des données
étiquetées rarement disponibles en pratique. En revanche, l’adaptation continue
d’un modèle pré-entraîné en production, où les données sont généralement non
étiquetées et acquises au fil du temps, est un problème moins étudié.

Dans cette thèse, nous étudions l’adaptation continue pour les applications de
traitement de la langue écrite et parlée. Notre objectif principal est de con-
cevoir des systèmes autonomes et auto-apprenants capables d’exploiter les données
disponibles sur le terrain, afin de s’adapter aux environnements de production.
Pour ce faire, nous proposons d’exploiter des représentations adaptées à la tâche
cible. Cela contraste fortement avec les travaux récents sur le pré-entraînement
auto-supervisé, dont l’objectif est d’apprendre des représentations à usage général
telles que les plongements lexicaux. Nous pensons que les représentations adaptées
à la tâche sont plus faciles à interpréter et à manipuler par des algorithmes non
supervisés comme le partitionnement (ou "clustering" en anglais), qui sont moins
affectés par l’oubli.

Nous étudions d’abord l’apprentissage de ces représentations pour les tâches à
ensemble ouvert (pour la généralisation à de nouvelles classes) et les tâches à
ensemble fermé (pour la généralisation à de nouvelles instances des mêmes classes
d’apprentissage). Nous concluons que cette approche est mieux adaptée aux tâches

7



à ensemble ouvert, ce qui oriente nos recherches ultérieures dans deux directions.

D’une part, nous cherchons à mieux comprendre le transfert dans des scénarios
à ensemble fermé en étudiant l’adaptation supervisé et en continu des plonge-
ments lexicaux contextuelles à de nouvelles langues, dans des tâches d’étiquetage
de séquences. Bien que l’oubli soit présent, nous découvrons qu’il existe un niveau
élevé de transfert en avant : des langues passées vers les langues futures.

D’autre part, nous étudions l’utilisation des représentations du locuteur pour la
segmentation et le regroupement en locuteurs en flux, visant à déterminer “qui
parle quand” dans une conversation. Ce problème est non supervisé et à ensemble
ouvert, car de nouveaux locuteurs peuvent apparaître à tout moment. Dans ce
contexte, s’appuyer sur le partitionnement des représentations nous permet de
concevoir un système entièrement autonome et auto-apprenant qui ne nécessite
que peu ou pas d’intervention humaine experte. Puisque ce système repose sur
un modèle pré-entraîné, nous proposons également une méthode d’adaptation au
domaine en continu, avec laquelle il peut être progressivement adapté aux nouvelles
conversations du domaine cible.

Dans l’ensemble, nous pensons que notre travail, effectué dans une variété de
scénarios liés à la langue, constitue un pas important vers l’apprentissage autonome
en continu dans la phase de production. En particulier, nous améliorons notre
compréhension du transfert en avant et ouvrons la discussion sur l’utilisation de
représentations spécifiques à une tâche cible en montrant leur efficacité dans la
segmentation et regroupement en locuteurs en flux.
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Chapter 1

Introduction

“Everything in human life was a test. That
was why they all looked so stressed out.”

— Matt Haig, The Humans

1.1 Context

In recent years, machine learning has witnessed major breakthroughs that have
dramatically changed the field. Today, models can accurately identify objects
in scenes, transcribe speech, describe images or write stories, but despite these
enormous advances, many abilities that we consider marks of human intelligence
still seem elusive. In particular, one of the key missing pieces is the ability to learn
from and adapt to changing environments.

The lifecycle of a typical machine learning model can be divided in two phases:
the development phase where the model is trained on previously collected (and
generally labeled) data, and the production phase where the trained model is put
to work on new unseen examples. The event that marks the transition from the de-
velopment to the production phase is typically referred to as the deployment of the
model. In the development phase, the typical approach consists of a single-stage
training, where the model is trained once on a target task and then deployed, rarely
(if ever) revisiting or updating its parameters. Unfortunately, the performance of
a model after deployment usually worsens with time, as the data distribution,
task specifications, and even user needs may gradually change with respect to
those present in the training stage. In contrast, continual learning, sometimes also
called life-long learning, studies model training over time as new data becomes
available in a sequence of training stages, which solves the lack of flexibility of
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single-stage learning. However, a simple approach where the data for each train-
ing stage keeps growing with past examples is normally considered unacceptable,
as time and space complexity increases linearly with the (possibly infinite) amount
of training stages. As a result, continual training schemes are also typically de-
fined by a limited or forbidden access to previously seen examples, which causes
a phenomenon called catastrophic forgetting (French, 1999) that is defined as sig-
nificant performance loss on previously seen examples. It has been hypothesized
that the dynamics of gradient-based learning are to blame for this (Hadsell et al.,
2020), as the greedy gradient descent algorithm shifts model parameters towards
a (hopefully) optimal solution for the current set of training examples, completely
erasing the optimal solution for previous training stages. Although a wide variety
of strategies to avoid forgetting have been proposed over the years (Kirkpatrick
et al., 2017; Li and Hoiem, 2016; Zenke et al., 2017; Javed and White, 2019), most
algorithms still rely on labeled data, which is rarely available in practice.

In stark contrast to this, on-the-job or production data (i.e. the examples on which
the model is applied during the production phase) is not only characterized by
new examples appearing over time, but also by their lack of annotations. To make
matters worse, on-the-job data can also be scarce if the production environment
is overly specific. While often ignored in continual learning research (Kirkpatrick
et al., 2017; Li and Hoiem, 2016; Lopez-Paz and Ranzato, 2017), unsupervised
low-resource methods are essential to address both the lack of annotations and
data scarcity in the production phase. The field of active learning (Settles, 2009)
provides a partial solution by giving models the ability to interact with a human in
order to obtain labels for production data. However, it introduces the additional
problem of overhead: the model must wait for the human to provide answers,
which can be costly and time-consuming. Consequently, in order to avoid these
pitfalls, model functioning must be free from any expert human intervention (i.e.
autonomous), but also capable of learning from unlabeled data, as well as from its
own interactions with the environment.

Crucially, initial training in the development phase can also play a key role in
preparing a model for effective learning in new environments. The field of transfer
learning (Pan and Yang, 2010) investigates ways of training general-purpose mod-
els for easy reuse, which typically consist of two stages. The first pre-training stage
trains a model from scratch on a large corpus with a self-supervised objective, such
as predicting masked words or the next few seconds of speech. The goal of this
stage is to obtain a general-purpose model that can be adapted to many target
tasks with less training data. Thus, the second fine-tuning stage trains the result-
ing model again on a more specific (usually supervised) target task, after which
the model is normally deployed. This paradigm has recently led to the popularity
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of pre-training general-purpose vector representations of words (Peters et al., 2018;
Devlin et al., 2019) and even speech (Chung and Glass, 2020; Pascual et al., 2019),
also known as embeddings. A depiction of both the development and production
phases of single-stage, transfer and continual learning is shown in Figure 1.1.

Contrary to self-supervised embeddings, metric learning (Kaya and Bilge, 2019)
proposes to learn representations that can be compared with a simple distance
function, facilitating their interpretation and exploitation in unsupervised distance-
based algorithms such as clustering. Instead of being general-purpose, metric
learning embeddings are bound to a downstream task, as the distance between
representations is directly mapped to a key property of the underlying data (e.g.
speaker similarity when comparing speech). However, contrary to general-purpose
embeddings that heavily rely on the supervised fine-tuning stage, the manipula-
tion of representations based on distances does not rely on gradient-based learning.
Hence, it is reasonable to assume that this would be less prone to forgetting, which
is precisely why they can emerge as an attractive way to address continual learning
in the production phase.

1.2 Motivation

Machine learning applications for written and spoken language are becoming ubiq-
uitous, ranging from dialogue systems that help users navigate the information on
a website through natural language, to automatic meeting transcription from live
speech. These applications seem a natural candidate for continual learning after
model deployment, as a dialogue system may learn from new types of questions,
or a real-time meeting transcription system could adapt to the accent of a given
speaker, or even the low quality of their microphone. Unfortunately, applications
like these are rarely studied in the continual learning literature, and simpler set-
tings from computer vision are usually preferred. As a consequence, it is hard
to say if such systems are effective in significantly different language-related ap-
plications. As an example, consider two scenarios. The first one being an image
recognition model for different animal species, where each training stage intro-
duces new classes. The second one being a model that identifies speakers in a live
conversation, where new speakers can appear at any point in time. Given the task
definition, it is unclear if a continual learning system for the first case can also be
effective for the second, even if both deal with scarce and unlabeled production
data.

After an initial study on task-specific representations, our work branches into two
main research directions with their own target tasks. First, our study on writ-
ten language focuses on sequence labeling, which consists of predicting a class per
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word in a given sentence. This task can be helpful in a variety of scenarios, such as
detecting entities (e.g. names of people or organizations) or even the type of infor-
mation queried in a dialogue system. Second, we study spoken language through
the lens of speaker diarization, which consists of determining “who speaks when”
in a recorded conversation. This task is particularly useful to enhance transcrip-
tion systems and even to organize their output dialogues according to speakers,
both of which facilitate the adoption of transcription technologies in everyday life.
In particular, we are interested in adapting speaker diarization systems to new
conversations, allowing our work to span different continual learning scenarios.

1.3 Objective and contributions

In this work we attempt to better understand and improve continual learning
systems via the use of representations that are tailored to and continually improved
for a given target task. The recent rise of large pre-trained models allows us to take
generic models as a starting point and study methods for progressive adaptation
to various environments and conditions. To put it succinctly, we are interested in
designing autonomous learning systems able to leverage scarce on-the-job data to
adapt to the new environments they are deployed in.

Continual Learning 

Task-specific Representations 

Continual Adaptation of
Contextual Word Embedding

Streaming Speaker Diarization

Continual Adaptation of
Speaker Segmentation 

Continual Adaptation of
Speaker Embedding

Unsupervised

Supervised

Ongoing

Ch.3

Ch.4

Ch.5

Ch.6

Figure 1.2: Scientific contributions of this work.

In this context, our contributions can be summarized as depicted in Figure 1.2.
We first study ways of learning task-specific representations to serve as a knowl-
edge basis for continual adaptation. Next, we explore two very different axes of
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continual adaptation: supervised and unsupervised. The supervised axis consists
in understanding the continual improvement of recently proposed contextual word
embeddings to different languages, while the second, unsupervised axis is more
fine-grained, and focuses on autonomous streaming speaker diarization for the
adaptation to a live conversation. Finally, given that the latter relies heavily on a
pre-trained speaker segmentation model, we investigate how to extend continual
adaptation to it as well.

The rest of the manuscript is structured in the following way. In Chapter 2 we dis-
cuss the background and previous work on transfer learning and continual learning.
In Chapter 3, we present our first contribution on task-specific representations: the
systematic comparison of several metric learning loss functions, which spans both
written and spoken language tasks. Next, following the results on the written lan-
guage task from Chapter 3, in Chapter 4 we take a step back from metric learning
to present our second contribution, where we investigate the continual adapta-
tion of contextual word embeddings to new languages for the task of supervised
sequence labeling. In Chapter 5 we propose a system for streaming speaker diariza-
tion that is fully autonomous and self-adaptive by leveraging the representations
built in Chapter 3. Later, in Chapter 6 we present our last contribution, which
focuses on the continual adaptation of the speaker segmentation model that is the
basis of the streaming system proposed in Chapter 5. We investigate how to adapt
this model to a new domain where conversations appear sequentially. Finally, we
conclude and discuss future research directions in Chapter 7.

1.4 Publications

Some of the work presented in this manuscript has been the subject of the following
publications:

• Hervé Bredin, Ruiqing Yin, Juan M. Coria, Gregory Gelly, Pavel Kor-
shunov, Marvin Lavechin, Diego Fustes, Hadrien Titeux, Wassim Bouaziz,
and Marie-Philippe Gill. pyannote.audio: Neural Building Blocks for Speaker
Diarization. In IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Spain, 2020.

• Juan M. Coria, Sahar Ghannay, Sophie Rosset, and Hervé Bredin. A Met-
ric Learning Approach to Misogyny Categorization. In Proceedings of the 5th
Workshop on Representation Learning for NLP, Online, 2020. Association
for Computational Linguistics.

• Juan M. Coria, Hervé Bredin, Sahar Ghannay, and Sophie Rosset. A Com-
parison of Metric Learning Loss Functions for End-to-End Speaker Verifica-
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tion. In Statistical Language and Speech Processing, Online, 2020. Springer
International Publishing.

• Juan M. Coria, Hervé Bredin, Sahar Ghannay, and Sophie Rosset. Overlap-
Aware Low-Latency Online Speaker Diarization Based on End-to-End Local
Segmentation. In IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), Online, 2021.

• Juan M. Coria1, Mathilde Veron1, Sahar Ghannay, Guillaume Bernard,
Hervé Bredin, Olivier Galibert, and Sophie Rosset. Analyzing BERT Cross-
Lingual Transfer Capabilities in Continual Sequence Labeling. In Proceed-
ings of the First Workshop on Performance and Interpretability Evaluations
of Multimodal, Multipurpose, Massive-Scale Models, Online, 2022. Interna-
tional Conference on Computational Linguistics.

• Juan M. Coria, Hervé Bredin, Sahar Ghannay, and Sophie Rosset. Contin-
ual Self-Supervised Domain Adaptation for End-to-End Speaker Diarization.
In IEEE Spoken Language Technology Workshop (SLT), Qatar, 2022.

• Juan M. Coria, Hervé Bredin, Sahar Ghannay, Sophie Rosset, Khaled
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A Python Library for Real-Time Speaker Diarization. Submitted to The
Journal of Open Source Software, 2022.
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Chapter 2

Related work

“Knowledge is finite. Wonder is infinite.”
— Matt Haig, The Humans

In this chapter, we dive deeper into the background related to the main research
directions in this thesis. In particular, we first discuss the importance of learned
representations in machine learning and how they became one of the most popular
methods to transfer knowledge in neural networks. We define the concept of trans-
fer learning, and specifically sequential transfer, where training is divided into a
general-purpose pre-training stage and a fine-tuning stage to a target downstream
task, and we explore the advantages and inconveniences of this approach. Finally,
we define continual learning and its relationship to transfer learning. We discuss
how the evaluation of a continual learning model differs from other approaches,
and we categorize and review previous work attempting to solve the catastrophic
forgetting problem.

The chapter is structured in the following way. In Section 2.1, we define representa-
tions in the context of machine learning, reviewing their journey from hand-crafted
features to neural representations. In Section 2.2, we define transfer learning and
discuss its most popular variant: sequential transfer learning, in particular through
general-purpose representations. Then, in Section 2.3 we introduce the concept of
metric learning, an alternative to general-purpose representations capable of learn-
ing task-specific representations with the properties of intra-class compactness and
inter-class separability. Next, in Section 2.4 we discuss continual learning and its
core difficulty: catastrophic forgetting. We discuss ways to measure performance
changes across training stages, and we explore previous studies attempting to de-
sign systems that learn without forgetting. Finally, we conclude the chapter in
Section 2.5.
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2.1 From hand-crafted to neural representations

In computer science, numerical representations are ubiquitous. At the lowest level,
all information is encoded discretely as ones and zeros, but higher level represen-
tations allow us to ignore unnecessary details to manipulate data in more abstract
and meaningful ways. In this context, we can define a representation as a mathe-
matical structure describing a specific set of characteristics of a piece of data. For
example, an image may be represented as a 3-dimensional tensor of red, green and
blue color intensity, a word as a vector of discrete characters (with each character
encoded as an integer), or an audio recording as a vector of air pressure levels at
different points in time.

Although this generally facilitates the communication between humans and ma-
chines, not all representation types are suitable for all applications. In fact, many
machine learning algorithms, and in particular gradient descent, rely on contin-
uous numerical representations to optimize the parameters of a model. This can
be problematic for data that is normally represented discretely, such as text. But
even continuous representations such as audio or images as real vectors may be too
high-dimensional to process efficiently and too noisy to extract complex informa-
tion from. For instance, it could be difficult to detect a face in millions of pixels,
or someone’s voice in a vector of 29 million audio samples (10 minute recording
sampled at 48Khz).

In their definition of representation learning, Bengio et al. (2013) explain this com-
plexity as the combination of multiple factors of variation in the data generation
process that may not be fully covered in the training set and hence be a source of
errors. For example, a speaker’s voice may be recorded with microphones of dif-
ferent qualities, or in rooms with different types of reverberation or noise. Thus,
in this example, a model focusing on speaker detection should learn to disentangle
the noise (e.g. reverberation or microphone quality) from the signal (e.g. the voice
and its identity). To this end, a variety of approaches exist to extract discrimina-
tive (e.g. between speakers) and invariant (e.g. to reverberation) representations,
ranging from manual engineering to fully data-driven methods like transfer learn-
ing.

In the context of machine learning, we can define a model as a function f with
parameters θ that are optimized, or trained, to output a prediction y given a
numerical representation x, or features, of a piece of data, where x and y can take
a variety of forms depending on the task that f is trained to solve. In the early
days of machine learning, the most common way of training a model consisted
in carefully crafting the representation x that was thought most meaningful for
the task at hand, as shown in Figure 2.1. Some notable examples of this are
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feature engineering

abstract internal
representation

hand-crafted
representation

Hand-crafted
representations 

Learned
representations 

Figure 2.1: Comparison between hand-crafted and neural representations. Feature
engineering requires human intervention to design a representation function, which
can be costly and time-consuming. Alternatively, a representation function fe (for
encoding) can be learned from data, but its black-box nature forces f to rely on
an additional function fp (for prediction).

part-of-speech (POS) tags (Florian et al., 2003) or prefixes and suffixes (Chieu
and Ng, 2002) in natural language processing. In the domain of audio and speech
processing, well-tested hand-crafted features like spectrograms and Mel Frequency
Cepstral Coefficients (MFCC) are still used successfully today (Snyder et al., 2018;
Yoshioka et al., 2018; Fujita et al., 2019).

However, feature engineering is often time consuming and requires expert knowl-
edge in areas like linguistics or signal processing. As noted by Ravanelli and Bengio
(2018), these features are engineered from our limited perception and understand-
ing, providing no guarantee that they are well suited for a given task. To make
matters worse, each task may have its own set of optimal features to be discovered
from trial and error, making the whole endeavour extremely costly.

In contrast, neural networks leverage back-propagation (Rumelhart et al., 1986)
and gradient descent to learn internal hidden representations with increasingly
complex levels of abstraction directly from the training data. As depicted in Fig-
ure 2.1, the most complex representations (those of the last layer), obtained from
the encoding function fe, are then decoded by a final jointly trained prediction
layer fp to output a prediction for the target task. With the advent of deep learn-
ing (LeCun et al., 2015) and the availability of large annotated corpora, delegating
feature engineering to the models themselves became a reliable alternative. This al-
lowed inputs x to be replaced by lower-level representations xraw that do not require
costly human efforts to obtain. Using neural networks to learn representations from
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raw data like images or audio (LeCun et al., 2015) has even outperformed hand-
crafted features in a variety of tasks like image classification (Okafor et al., 2016),
or speaker identification and verification (Ravanelli and Bengio, 2018). However,
contrary to their hand-crafted counterpart, neural representations are generally
difficult to interpret. In fact, neural networks are generally considered “black box”
algorithms, which means that once trained, it is extremely difficult to explain how
they reach a given conclusion. As a result, these representations rely heavily on
the fp function that is trained on top of them to solve a classification or regression
task.

2.2 Transfer learning

In recent years, the availability of large corpora has allowed machine learning
practitioners to train larger models with increased performance, but the sheer size
of these corpora make manual annotation increasingly costly. Hence, it is crucial
to understand how to effectively exploit large quantities of unlabeled data.

The field of transfer learning studies ways to capture and reuse acquired knowledge
from one task to facilitate the learning of a second one (Pan and Yang, 2010;
Ruder, 2019). Assuming that the internal parameters of neural networks capture
such knowledge and encode it in internal representations, a considerable effort
has been made to train general-purpose models that can later be adapted to new
more specific tasks (Peters et al., 2018; Pascual et al., 2019; Mikolov et al., 2013;
Desplanques et al., 2020).

As noted in previous studies (Pan and Yang, 2010; Ruder, 2019), transfer learning
can manifest in a variety of ways depending on the type of knowledge that is
transferred (e.g. language, domain, task, etc.), the type of supervision, or even
the amount of data available for the downstream task (e.g. few-shot or zero-shot
transfer). However, in the context of this work it is useful to separate transfer
learning into joint and sequential. Consider a set S of two corpora D1,D2 ∈ S
sharing a set of characteristics, such as task or domain of application (e.g. both D1

and D2 target the named entity recognition task in textual sentences). On the one
hand, joint transfer learning consists in training a randomly initialized model m0

on the concatenation of the entire S at the same time. Provided that D1 and D2

are sufficiently similar, updating the model to correctly predict a given x1 ∈ D1

can potentially shift model parameters closer to an optimal solution for a given
x2 ∈ D2 and vice-versa. However, this type of transfer is intensive in computing
resources and often requires access to a large S.

On the other hand, sequential transfer learning is defined in two stages. The first
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pre-training stage consists in training a model m0 from scratch on the initial D1.
Although not a requirement, this typically corresponds to a generic task with a
large amount of unlabeled data and a self-supervised objective, which is usually
derived from the structure of the data itself. For example, in textual sentences it
can be the prediction of a masked word (known as masked language modeling, or
MLM for short) or predicting whether two sentences are contiguous in a document
(next sentence prediction, or NSP for short) (Devlin et al., 2019). The second fine-
tuning stage continues training for model m1 (resulting from the first stage) on
the remaining corpus D2, which usually corresponds to a more specific downstream
task with labeled (and less) data. A typical example of this is the popular BERT
(Bidirectional Encoder Representations from Transformers) model (Devlin et al.,
2019) in natural language processing, where D1 is the concatenation of English
Wikipedia and BooksCorpus (Zhu et al., 2015) and the model is pre-trained using
the MLM and NSP objectives. Later, the model is fine-tuned to a variety of
supervised tasks separately with less available data, such as sentiment classification
or semantic textual similarity, each playing the role of a D2.

Joint transfer Sequential transfer

solution space solution space

pre-training fine-tuning

Figure 2.2: Parameter shifts in joint and sequential transfer learning based on the
explanation of catastrophic forgetting by Kirkpatrick et al. (2017). Training jointly
on D1 and D2 at the same time allows gradient-descent to find parameters in a
solution space that is common to both corpora. In contrast, sequential transfer
aims at shifting parameters closer to a possible solution for D2, essentially finding
a good “initialization” for it, but depending on further training. Notice that the
sequential scenario is also prone to forgetting, as training on D2 moves model
parameters past the solution space for D1, decreasing its associated performance.

To highlight the key differences between joint and sequential transfer learning,
consider the example shown in Figure 2.2. Joint transfer attempts to learn model
parameters that constitute a solution for both D1 and D2 at the same time, while
sequential transfer first learns a solution for D1 that is a good initialization for D2,
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facilitating the work of the subsequent fine-tuning stage that shifts parameters to
fit D2.

Sequential transfer learning has proven to be a reliable technique to improve learn-
ing efficiency and performance on D2 (Peters et al., 2018; Devlin et al., 2019;
Pascual et al., 2019), in particular when the unlabeled D1 is orders of magnitude
larger than D2. Moreover, it fragments the development phase in a way that allows
general-purpose pre-trained models to be distributed to third parties not having
access to the same amount or quality of training data, or even to the same com-
putational resources. The fact that sequential transfer is so effective is one of our
main motivations to study continual learning of representations.

While transfer learning restricts |S| = 2, continual learning can be seen as a
special form of sequential transfer learning where S is a sorted list (instead of an
unsorted set) with |S| ≥ 2. However, as shown in Figure 2.2, the fine-tuning stage
is allowed to shift model parameters out of the solution space of D1 as long as
an acceptable solution for D2 is found. Although not a problem for the scope
of transfer learning, this represents a great difficulty in continual learning, which
aims at incrementally improving performance on the entire S instead of only on
D2. This phenomenon is normally referred to as catastrophic forgetting, and will be
discussed in more detail in Section 2.4. Moreover, as depicted in Figure 2.3, given
a general-purpose pre-training stage on D0, sequential transfer learning restricts
fine-tuning to a single downstream Di, which is then deployed to work on Di-like
data. In contrast, the goal of continual learning is to transfer knowledge to and
during the production phase, allowing a single model to work on any type of data
seen in the past. As a consequence, the inference time and space complexity needed
to work with multiple downstream Di in transfer learning is O(|S|), whereas for
continual learning it is O(1).

Given its success to capture knowledge in the underlying training data, sequential
transfer is often used to learn efficient and meaningful numerical representations,
also known as embeddings, that require less data and less training in the fine-tuning
stage. In speech processing, training models to produce embeddings containing dis-
criminative speaker qualities has been widely used for speaker verification (Snyder
et al., 2018; Desplanques et al., 2020) and speaker diarization (Anguera et al., 2012;
Diez et al., 2018). In NLP, word embeddings (Mikolov et al., 2013; Pennington
et al., 2014) have been successfully transferred to a great variety of tasks, such as
sentiment classification or named entity recognition.

In the early days of embedding learning, model weights m1 were usually discarded,
and the learned word representations were extracted and stored. These were then
used to represent text as a sequence of word embeddings that could eventually
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Figure 2.3: Relying on transfer learning to adapt to new production data requires
to increase the number of production models and inference time by the number
of fine-tuning corpora in order to avoid forgetting. In contrast, continual learning
reduces these costs to O(1) by adapting a unique model during the production
phase.

be fine-tuned to the downstream task if required, alongside with a task-specific
model. Aside from the performance benefits, the use of word embeddings also
gained popularity because of their ability to encode high-level information that
was hard to encode manually.

However, the benefits of these static word embeddings are limited when applied in
different contexts than seen during training. For instance, the word “bank” may
refer to a banking institution, but it could also be used to denote a “river bank”.
A single one-size-fits-all embedding for this word would need to somehow encode
this ambiguity, provided that it has been seen by the model in the training data,
which is subject to be (and often is) incomplete.

This is one of the main motivations behind contextual word embeddings (Peters
et al., 2018; Devlin et al., 2019), which are able to represent this ambiguity by
producing word embeddings that vary according to the sentence in which the word
is used. In other words, given a vocabulary V and the set of all possible sentences
S, while a static embedding function fstatic : V → Rd maps a single word to a
vector of dimension d, a contextual embedding function fcontextual : (V ,S) → Rd

maps a word and its context sentence to a vector of dimension d. Contrary to a
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finite vocabulary V , since the number of possible sentences in S is infinite, it is
common to reuse and fine-tune model parameters m1 instead of fixed word vectors.

2.3 Metric learning

Today, the best performing representations are typically obtained by pre-training
a general-purpose neural network on a large unlabeled corpus. Although these
neural embeddings tend to reduce costs and achieve better performance than their
hand-crafted counterpart, one aspect that remains unclear is how to interpret
them.

Interpreting embeddings has been attempted before. Early studies on static word
embeddings (Mikolov et al., 2013; Pennington et al., 2014) have shown that they
display a form of additive compositionality. More formally, given words w1 and
w2, the embedding fstatic(w1) + fstatic(w2) would be close to an embedding whose
associated word is a semantically meaningful composition of w1 and w2. As a result,
this makes it possible to reason about semantic content with simple mathematical
operations, a famous example being king−man + woman ≈ queen.

Additionally, this means that a well-defined mathematical distance metric like
the euclidean distance should be loosely correlated with the semantic similarity
between two words. For example, the embedding for man would be closer to
woman than to moon. This surprising property of static word embeddings is
emergent, as the objective function does not specifically enforce it during training,
and it has been the subject of several research studies (Gittens et al., 2017; Jatnika
et al., 2019).

In contextual word embeddings with Transformer models (Vaswani et al., 2017)
there is also evidence supporting a correlation between word embedding distance
and semantic similarity at different levels of the architecture (Reif et al., 2019).
For example, the representations of “a die” (as a noun) are closer together than
those of “to die” (as a verb). However, further studies are required to better
understand how this contextual representation space is formed and how it can be
exploited. Since Transformer models are based on the concept of attention, it is
also common to look at the activations of these layers in order to understand the
information encoded in an embedding, but it remains unclear how to manipulate
this information more effectively than an appended trained neural layer.

Similarly to static word embeddings, some tasks like face recognition, speaker
verification, or speaker diarization, can often benefit from enforcing a correlation
between a complex definition of similarity and a simple mathematical distance
function in order to manipulate embeddings easily during inference.
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In particular, considering a face or a speaker as a class, intra-class compactness (i.e.
low distance between same-class embeddings) and inter-class separability (i.e. high
distance between embeddings from different classes) are often desirable properties
that improve interpretability by mapping a complex and abstract property, like
the identity of a voice in a recording, to a simpler mathematical one like the
cosine distance. Additionally, this allows well-known distance-based unsupervised
algorithms like clustering to work directly on such abstract concepts.

Following this hypothesis, the goal of metric learning is to find a pair (f, d) of
representation function f and distance function d with the following ideal property.
Given a sample xa (e.g. an utterance) belonging to a class (e.g. a speaker), any
sample xp belonging to the same class should be closer to xa than any sample xn

belonging to a different one:

d(f(xa), f(xp)) < d(f(xa), f(xn)) (2.1)

Metric learning techniques aim at simplifying the distance function d all the way
down to the most simple distance function (e.g. euclidean or cosine distance),
delegating all the work to the representation function f (usually a trained neural
network) that should ensure intra-class compactness and inter-class separability.
Figure 2.4 depicts this concept graphically, where the distance between learned
representations can be compared to address a given task.

To better understand how the representation space is constructed, Figure 2.5 shows
an example in two dimensions using the angular distance as the choice for d. In
this example, the distance θij between f(xi) and f(xj) is small because samples xi

and xj both belong to class 1, while the distance between f(xl) and f(xj) is large

prediction

Figure 2.4: Given training samples xi and xj, the neural network f produces
representations f(xi), f(xj) ∈ Rm such that the distance d(f(xi), f(xj)) between
them is small if they belong to the same class (compactness) and large otherwise
(separability).
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because xl belongs to class 2. Internally, some metric learning techniques rely on
centroids ck that are trained jointly with the representation function f and can be
seen as a canonical representation of each class.

f (xi)

f (xj)

f (xk)

f (xl)

c1

c2

θij

θic1

Class 1

Class 2

Figure 2.5: Metric learning approaches aim at making representations of similar
classes close to each other, while separating those from different ones as much as
possible. Some methods rely on jointly trained centroids that act as attractors for
representations belonging to the same class.

The properties of intra-class compactness and inter-class separability are typically
encouraged during training by modifying the loss function in a specific way. Popu-
lar techniques from the literature are reviewed in more detail in Chapter 3, where
we perform a systematic comparison between several metric learning loss functions.

2.4 Continual learning

Compared to learning in humans, single-stage learning seems counter-intuitive and
even inefficient, as we are constantly learning and revisiting previous knowledge
with every interaction with our environment. Single-stage learning assumes that
problems are stationary and that training and production examples are indepen-
dent and identically distributed (i.i.d.). Assuming that the distribution of training
and production data is identical may be acceptable for a small subset of problems,
but this is rarely the case in most practical scenarios. A common approach to deal
with this training-production mismatch is to rely on joint transfer by interleaving
development and production phases, where each development phase trains a new
model with the entire data available up to that moment. As shown in Figure 2.2
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(page 31), this solves the problem by shifting model parameters towards a sub-
space that constitutes an acceptable solution to the task associated with initial and
new training data. Unfortunately, this back-and-forth between development and
production is increasingly costly. As new examples are collected in production, the
cost of development phases keeps raising in terms of computing resources, manual
annotation and engineering labor.

Continual learning (Hadsell et al., 2020) denotes the ability of machine learning
systems to acquire knowledge and improve their performance over time through a
flow of data. This flow is generally presented to the model in windows that are
accessible one at a time, and where access to previous windows is limited or even
forbidden in order to keep training costs within bounds. Whereas transfer learning
is defined by a set of corpora S, where |S| = 2, in continual learning the flow of
data can be considered a sequence of corpora Ŝ = (D1, . . . ,DL), where |Ŝ| = L and
L ≥ 2. In this context, the windows to which the model has sequential and limited
access are represented by each Di. As an example, each of these windows can be
as small as a few seconds of audio or as big as multiple hour-long recordings.

As mentioned before, transfer learning typically separates training in two different
and well-defined stages: a pre-training stage on a large unlabeled corpus D1 and
a fine-tuning stage on a smaller downstream corpus D2, where the associated task
of D1 is usually different and more generic than D2. In contrast, training stages
in continual learning typically share a set of common characteristics and differ
only by a main aspect that is the focus of improvement for the continually trained
model. To facilitate our discussion, we refer to this main differing aspect as the
adaptation axis, which can manifest in the form of varying tasks (e.g. first dog-cat
image recognition and later bird-mammal), domains (e.g. named entity recognition
on scientific, then financial, later news documents), or an incremental set of classes
(e.g. speaker identification where new and old speakers can appear at any time),
among others.

Apart from the immediate advantages of a continual learning agent, like constant
adaptation to a changing problem, it also has the potential of improving learning
efficiency and transfer across all Di by leveraging past knowledge (Hadsell et al.,
2020). However, contrary to transfer learning, which is only interested in the per-
formance of the downstream D2, continual learning is a form of incremental learn-
ing, meaning that the model should accumulate (and not replace) the knowledge
it acquires across training stages. However, as depicted in Figure 2.2 (page 31),
the main issue that arises when training a model on the sequence Ŝ is known as
catastrophic forgetting (French, 1999), where model parameters change drastically
to suit the current Di, losing the knowledge acquired for any previous Dj<i. Much
of the existing continual learning work attempts to prevent catastrophic forget-
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ting by constraining neural networks in different ways. The hope is to guarantee
the preservation of previously learned parameters or previously given predictions,
either with manual or learned algorithms (Kirkpatrick et al., 2017; Robins, 1995;
Javed and White, 2019).

The rest of this section is structured as follows. We first define in Section 2.4.1
common metrics used in continual learning to measure performance beyond task-
specific performance metrics like accuracy or F1 score. In subsequent sections, we
follow the categorization initially introduced by Hadsell et al. (2020) to explore the
techniques that have been proposed in the past to address catastrophic forgetting.

2.4.1 Forgetting and transfer

Given that the focus is on measuring performance changes over time, model eval-
uation is usually a challenging endeavor in continual learning. A simple way to
evaluate incremental learning is to use a task-specific metric (e.g. accuracy) on
a test set Stest after training on each Di, where Stest contains held-out examples
from all Di ∈ Ŝ. In this context, the goal of the learner is to increase its per-
formance on Stest with each training stage, effectively accumulating knowledge.

ev
al
ua

tio
n

training

Figure 2.6: Performance matrix com-
monly used for continual learning
evaluation.

However, this method has two significant
drawbacks. First, it does not provide a way
to measure forgetting and could be mislead-
ing if Stest is not built carefully. For ex-
ample, performance on Stest could increase
after learning Di because there is a large
number of held-out examples from Di in
Stest. Second, although convenient in ex-
perimental setups, it assumes that Stest can
be known in advance, which is not often the
case in practice.

A more informative approach that is com-
monly used (Lopez-Paz and Ranzato, 2017;
Pomponi et al., 2020) consists in comput-
ing a performance matrix P ∈ RL×L as de-
picted in Figure 2.6, where Pij is the per-
formance on the Di test set after training
on the Dj training set (with higher values
being better).

This matrix is independent from the target task and metric, and it shows a broader
picture of how performance fluctuates across the training stages. To measure dif-
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ferent continual performance metrics, it is sometimes useful to split P into various
sections. First, the diagonal diag(P ) corresponds to the performance on a given
Di immediately after training on it, which is generally high as there is no room
for forgetting. Second, the upper triangular matrix (excluding diag(P )) represents
the performance on all past Di, hence being of interest to measure forgetting. Fi-
nally, a third section of P is the lower triangular matrix (also excluding diag(P )),
showing performance on all future Di. As with Stest, the latter is rarely accessible
in real use cases but it is sometimes useful in controlled experiments to measure
transfer to new unseen data without further training, a phenomenon known as
zero-shot transfer.

However, using an entire matrix to compare models can sometimes be challenging
to interpret and lead to ambiguity. As a result, it is also common practice to define
metrics that are computed from P . Typically, we measure forgetting on a past
Di as the difference in performance at two moments: after it is first shown to the
model (Pii) and after the training sequence has ended (PiT ):

forgetting(Di) = Pii − PiT (2.2)

This is often averaged over all rows to obtain a single value spanning the entire
sequence (Lopez-Paz and Ranzato, 2017). Because this metric usually ignores the
performance fluctuations that happen between the beginning and the end of the
training sequence Ŝ (i.e. the columns of P between i and T ), some studies choose
to average all performance differences between columns as well (Pomponi et al.,
2020). However, as we explain in Chapter 4, averages may not always provide an
accurate vision of forgetting and transfer.

On the other hand, matrix P also allows to measure transfer between future and
past Di. These types of transfer are known as forward and backward transfer
respectively (Hadsell et al., 2020). More concretely, better performance on a given
Di relative to learning Di in isolation is called forward transfer, as it represents
the transfer from past training stages to new ones. This is defined as:

forward(Di) = Pii − base i (2.3)

where base i is the performance on Di learned in isolation. Other studies have also
defined forward transfer using Pi i−1 (Lopez-Paz and Ranzato, 2017), essentially
looking at a kind of zero-shot forward transfer where the model should perform
well on Di before actually seeing any of its examples.
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Finally, backward transfer is defined as the improvement on previously seen ex-
amples from Dj<i thanks to the acquisition of new knowledge from Di, and is
equivalent to negative forgetting:

backward(Di) = PiT − Pii (2.4)

As with forgetting, both forward and backward transfer metrics are often averaged
across all Di ∈ Ŝ (Lopez-Paz and Ranzato, 2017).

2.4.2 Memory-based methods

When thinking about learning without forgetting, it is natural to consider the exis-
tence of a long-term memory. One of the first attempts at solving the catastrophic
forgetting problem, named rehearsal or replay (Robins, 1995), consists in dynam-
ically building an external memory buffer with previously seen examples, which
are then shown to the model again, or “replayed”, when training on new examples.
As shown in Figure 2.7 (page 42), replay does not restrict parameter changes dur-
ing training, and instead saves past information in the buffer to include in future
training stages. The motivation behind this idea is that by replaying examples
from old training stages, model parameters are forced to stay in a subspace that
represents a solution for both new and previous data.

Although the simplicity of this approach is attractive, using a memory buffer
introduces a set of additional difficulties, such as determining the buffer size. A
small buffer may leave out useful examples that should not be forgotten, but
a buffer that is too large may consume more computing resources. Regardless of
size, it is also impossible for a memory buffer to scale to infinity without forgetting,
as a buffer of size B cannot store examples from B + 1 training stages. Moreover,
one must devise a strategy to decide which examples to keep and which examples
to remove. Finally, it is worth noting that this technique relies on the availability
of previously seen examples, which may not be the case if data cannot be stored
due to privacy-related or legal concerns.

Several studies have attempted to address the shortcomings of replay while follow-
ing the same principle. In generative replay (Shin et al., 2017; Rao et al., 2019;
Sun et al., 2020), a generative model is trained to produce synthetic examples
to fill the buffer instead of relying on past data. Although this alleviates much
of the issues mentioned before, like needing access to previous data, generative
models are often difficult to train and may be more resource hungry than other
approaches.
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Latent replay (Pellegrini et al., 2020) attempts to find a middle ground by stor-
ing and replaying activations of middle layers, effectively splitting the model in
two parts, where the lower part of the model (e.g. a feature extraction layer)
is trained with a slower learning rate than the upper part. This reduces storage
and computational costs significantly, but keeps the difficulties associated with the
management of an external buffer. Additionally, stored latent representations are
subject to a slow “aging” effect as new training stages keep morphing the repre-
sentation space. This means that recomputing the buffer is necessary from time
to time to prevent divergence.

A method based on embedding regularization (Pomponi et al., 2020) follows a
similar approach, adding a penalization term to the loss function so that specific
middle-layer representations are consistent with those from examples stored in the
memory buffer. Another approach called Gradient Episodic Memory (GEM) (Lopez-
Paz and Ranzato, 2017) uses the buffer to constrain gradients to point in the same
direction as previous Dj<i during training on the new Di.

2.4.3 Constraint-based methods

This family of approaches is rooted in the stability-plasticity dilemma (Grossberg,
1987; Abraham and Robins, 2005). The term stability denotes the fact that model
parameters remain unchanged, hence keeping previously acquired knowledge in-
tact. Conversely, the term plasticity refers to the capability of drastic change in
these parameters, allowing learning to occur. According to this view, stability and
plasticity are opposing properties of a model that need to be carefully balanced in
order to retain knowledge while allowing learning.

In this context, we can categorize gradient descent as an algorithm with full plas-
ticity but no stability, since it allows parameters to change without restriction.
In neural networks and deep learning, this premise has been the basis for mul-
tiple works attempting to keep catastrophic forgetting under control by avoiding
drastic changes to weights (i.e. neural network parameters) deemed important to
previous training stages. Various strategies have been proposed in order to deter-
mine which particular parameters should be protected from modifications. Given
learned weights w(t−1) after training on t − 1 tasks, and Ωi the importance of a
given parameter wi, these methods learn a new task t using a regularized loss
function of the form:

L(w) = Lt(w) + λ
∑
i

Ωi

(
wi −w

(t−1)
i

)2

(2.5)

where Lt is the loss of task t and λ is a hyper-parameter balancing stability and
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Figure 2.7: Existing strategies to prevent catastrophic forgetting. Memory-based
techniques rely on an external buffer that is progressively filled and mixed with
new training data. Since a buffer introduces additional challenges (like devising
a replacement strategy when full), constraint-based methods progressively freeze
crucial parameters in order to keep model predictions from changing. However,
this may limit future learning and backward transfer. Instead, modular approaches
introduce new parameters at each training stage, raising spatial complexity from
O(1) to O(|Ŝ|). Finally, meta-learning approaches propose a data-driven approach
where the model is trained to learn without forgetting. Since meta-training is
essentially single-stage, this approach is vulnerable to changes in implicit assump-
tions during training.
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plasticity. A depiction of such an algorithm is presented in Figure 2.7, where
we can see model weights being progressively frozen after each training stage. A
famous example of constraint-based algorithms is Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017), which uses an Ω proportional to the diagonal
of the Fisher information matrix. Arguing that this computation may be too
expensive, other studies have tried to improve EWC by estimating weight impor-
tance from gradients in an online fashion, like Synaptic Intelligence (SI) (Zenke
et al., 2017) and Memory Aware Synapses (MAS) (Aljundi et al., 2018), while
others have proposed to determine the importance at the level of neurons instead
of parameters (Paik et al., 2020).

One of the main difficulties of these approaches is that, since there is a fixed
number of model parameters, increasingly constraining changes may result in a
completely frozen model that is incapable of learning (i.e. with full stability and
no plasticity). As noted by Lopez-Paz and Ranzato (2017), contrary to memory-
based methods, an additional disadvantage of enforcing stability in this way is
that backward transfer (i.e. performance improvements on Dj<i) cannot happen
because the modification of previously used parameters is highly limited.

2.4.4 Modular methods

Modular approaches to continual learning consist in dynamically altering the ar-
chitecture of a model to account for new training stages without interfering with
existing parameters. In this context, previously learned parameters are considered
an acceptable solution for past training stages and their modification is minimized
or even forbidden.

A naive application of this principle consists in using a frozen pre-trained model
as a common main architecture, appending new layers on top of it at each new
training stage, as shown in Figure 2.7. Since new layers are trained from scratch
and then frozen, training time is constant with respect to the number of training
stages, but the required space grows linearly and can be problematic in the long
term or in low-resource conditions, similarly to our example on the complexity of
transfer learning in Figure 2.3. To make matters worse, freezing parameters also
hinders backward and forward transfer across training stages.

In a similar manner, Terekhov et al. (2015) propose to attach a new set of param-
eters to each main architecture layer (or to a few specific ones) instead of adding
layers on top. These attached parameters, called “blocks”, are also created in each
training stage, trained from scratch, and then frozen in order to preserve their
behavior. A simplified example of this concept is shown in Figure 2.8, where each
block layer receives the output from all previous layers and sends its own output
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to the next block layer. Contrary to the naive method introduced above, this type
of architecture does allow for forward transfer, although backward transfer is still
highly limited.

main
architecture

block

learnable

frozen

Figure 2.8: Block modular architecture as proposed by Terekhov et al. (2015).
Each block layer receives the output from all previous layers, but its own output
is only connected to the following block layer.

Claiming that these modular architectures may add an excessive number of pa-
rameters that require large amounts of training data, an alternative method called
Learning without Forgetting (LwF) (Li and Hoiem, 2016) proposes to ensure that
predictions for old tasks remain consistent by relying on a knowledge distilla-
tion (Hinton et al., 2015) penalty in the loss function. As shown in Figure 2.9,
knowledge distillation can be defined as a teacher-student approach in which a
student model ms is trained to match the outputs ŷ of a teacher model mt, as if
they were ground-truth labels. Similarly to the naive method, LwF uses appended
layers on top of the main architecture. However, contrary to the naive approach,
model parameters are never frozen, leaving room for both backward and forward
transfer.

Instead of replaying old examples, LwF takes a snapshot mi−1 of the model before
training stage i and records its output ŷ(j<i) of the appended layers for training
stages j using the data of training stage i. Then, the model mi (initially a copy
of mi−1) is trained on the current training stage with its corresponding loss func-
tion, but adding a loss penalty whenever its output ŷ(j<i)

s of the layers j appended
in the past differs from ŷ(j<i).

As mentioned before, one of the main problems of modular architectures for con-
tinual learning is their linearly growing cost with respect to the amount of training
stages. Some approaches (Draelos et al., 2017; Yoon et al., 2018; Rao et al., 2019)
attempt to solve this issue by relying on a dynamic expansion approach, in which
new parameters are added only when they are needed. The decision to expand
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Figure 2.9: The teacher-student approach of knowledge distillation.

the model can be based on several metrics, such as the reconstruction error in
autoencoder models (Draelos et al., 2017) or the value of a classification loss func-
tion (Yoon et al., 2018). Although this reduces the amount of parameter additions,
the cost still remains linear and potentially prohibitive for large numbers of train-
ing stages.

2.4.5 Meta-learning

Similarly to how hand-crafted representations gave way to neural representations
that are automatically learned from data, recent studies suggest that it is possible
to train models to learn continually and discover how to avoid forgetting.

This data-driven approach is based on previous work on meta-learning, or learning
to learn (Vanschoren, 2019). The goal of non-continual meta-learning algorithms
like “model-agnostic meta-learning” (MAML) (Finn et al., 2017) is to automatically
discover inductive biases that lead to a model quickly learning a new task from a
handful of examples (i.e. few-shot learning). In other words, it attempts to find
an initialization of model parameters such that learning a new task from those
parameters only requires a few examples and training iterations. Put simply, meta-
learning algorithms for few-shot learning can be defined as two nested training
loops. The first inner loop trains the current model initialization on a few set of
examples from a selected target corpus, while the second outer loop repeats this
process for a large number of corpora, optimizing the initial model parameters at
each iteration.

In the context of continual learning, a straightforward alternative is to modify
the inner loop to train on a sequence of corpora Di (as shown in Figure 2.7),
and modify the loss function in the outer loop to encourage few errors on the
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entire sequence, effectively learning a (hopefully) optimal initialization of model
parameters to learn without forgetting. However, this can quickly prove a difficult
endeavour because of the amount of computational resources needed.

To solve this, recent work (Javed and White, 2019) has proposed an online ap-
proach in which each Di is reduced to a single example. However, they found that
learning a model initialization was ineffective in reducing the catastrophic for-
getting problem. Instead, they propose an online-aware meta-learning algorithm
(OML) to learn a representation function f that favors low forgetting in a subse-
quent prediction function g. More formally, given a sequence of inputs [x1, . . . , xL]
and ground-truth labels [y1, . . . , yL], the inner loop consists in training g (from
scratch) on each pair (f(xi), yi) in order using a task-specific loss function, while
the outer loop updates the parameters of f with a loss function that penalizes er-
rors in the entire sequence. Interestingly, they also found that the representations
learned in f where sparse, which has been thought to reduce forgetting in neural
networks for a long time (French, 1991). Indeed, sparse internal representations
eventually lead to updates in fewer parameters, which (if partitioned correctly)
could reduce the interference between them.

An alternative approach (Beaulieu et al., 2020) was recently proposed to improve
OML by leveraging its representation sparsity. They suggest that it may be more
effective to learn a modulation function f (a neural network) to modify the internal
representations of a continually trained prediction network g. More formally, the
inner loop is modified to train g on each pair (xi, yi), where g(xi) = gp(f(xi) ·
ge(xi)). In this context, we can think of ge as a feature extraction or encoding
layer, and of gp as a prediction layer. The approach, called “a neuro-modulated
meta-learning algorithm” (ANML), is motivated by the fact that f may learn to
“block” certain gradient paths during back-propagation (thanks to the sparsity
of f(xi)), encouraging less parameter interference and hence less forgetting. A
diagram comparing all of the mentioned approaches is shown in Figure 2.10 for
convenience.

Although meta-learning approaches seem a promising direction in continual learn-
ing research, they still have two major disadvantages. First, given their computa-
tional cost, they are currently limited to simple scenarios in which sequences are
short and training stages are small (e.g. only one example per training stage).
Second, since they learn to avoid forgetting from data, they may be prone to
overfitting to specific sequences or types of data. More generally, as with all data-
driven approaches, they are subject to biases and assumptions in the training data
that may not hold later in the production phase.
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Figure 2.10: Architectural differences between MAML, OML and ANML. While
MAML learns the initialization of the entire model for few-shot learning, OML
learns a representation function for continual learning in the prediction network.
In contrast, ANML learns a modulation network to modify the internal represen-
tations of the prediction network during continual training.

2.5 Conclusion

Throughout this chapter, we have introduced, defined and discussed a variety of
concepts from three research areas that are key to this thesis: neural representa-
tions, transfer learning and continual learning.

In the rest of the manuscript, we heavily rely on many of these concepts to investi-
gate ways in which models for spoken and written language can progressively learn
from new data, even well after their initial development phase. In other words,
we put a special focus on the production phase of these machine learning models,
where data is usually unlabeled, and available progressively as time passes. In
particular, transfer and continual learning are two subjects that appear regularly
to help introduce more complex ideas.
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On the one hand, in Chapter 3 and Chapter 5 we study and exploit task-specific
neural representations, especially for speaker embeddings, which are crucial in
the context of speaker recognition applications. On the other hand, the studies
presented in Chapter 4, Chapter 5 and Chapter 6 dive deeper into continual learn-
ing for language-related applications, while borrowing key concepts from transfer
learning as they are described in this chapter.

The background work specific to the various tasks and applications we address
throughout the manuscript is presented and discussed in the corresponding chap-
ters. Previous work on speaker verification and misogyny categorization is pre-
sented in Chapter 3. Sentence labeling, and in particular slot filling and named
entity recognition are discussed in Chapter 4, while speaker diarization is discussed
in Chapter 5 and Chapter 6.
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Chapter 3

The quest for task-specific
representations

“If we didn’t have concept cells we wouldn’t
have representations of concepts,
irrespective of specific details, we wouldn’t
be able to think.”

— Rodrigo Quian Quiroga

We begin our studies by attempting to learn representations that are tailored to a
specific task. In particular, we focus on the speaker verification and misogyny cate-
gorization tasks to make a systematic comparison of metric learning loss functions,
whose goal is to encourage models to learn such representations.

The chapter is structured as follows. First, we introduce the problem we address
in Section 3.1. In Section 3.2, we define the loss functions that we compare in
the study. Next, along sections 3.3 and 3.4, we describe the tasks that we address
along with their respective corpora, and we present our experiments and results.
Finally, we discuss our conclusions with respect to the results obtained on each
task.

The work presented in this chapter has been the subject of the two following
scientific publications:

• Juan M. Coria, Hervé Bredin, Sahar Ghannay, and Sophie Rosset. A Com-
parison of Metric Learning Loss Functions for End-to-End Speaker Verifica-
tion. In Statistical Language and Speech Processing, Online, 2020. Springer
International Publishing.
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3.1 Introduction

Today, one of the most popular methods for learning representations of data is
transfer learning with large neural network models, whose training scheme is di-
vided in two stages: the pre-training stage and the fine-tuning stage. The initial
pre-training stage consists in training a model from scratch using a large corpus.
Since annotations are unavailable due to the size of the training set, this is gen-
erally achieved by devising general-purpose and self-supervised tasks that require
a high level understanding of the underlying data. For example, the masked lan-
guage modeling (MLM) task (Devlin et al., 2019) consists in predicting a word
from the input sentence that has been masked. In the field of speech processing,
the autoregressive predictive coding (APC) task (Chung and Glass, 2020) consists
in predicting future frames of the audio input. Once the model is optimized for
the chosen general-purpose task, any task-specific layers are discarded, resulting
in a model that can produce complex and high-level representations, also known
as embeddings. However, since the interpretability of pre-trained self-supervised
embeddings is limited, further training is needed to solve a particular task. Con-
sequently, the final fine-tuning stage consists in training the pre-trained represen-
tation model on a more specific downstream task, for which a small but labeled
corpus is typically available.

One of the difficulties of using these embeddings to solve the continual learning
problem is that they are subject to catastrophic forgetting (French, 1999), as they
heavily rely on the fine-tuning stage. In contrast, metric learning investigates ways
to learn neural representations that can be compared with a simple and well-defined
distance function such as the euclidean distance. Although these representations
can be refined if needed, they do not rely on further learning, which makes them
an interesting candidate to achieve continual learning with limited forgetting.

Despite its name, the goal of metric learning is to map a pre-defined distance
function d to an intrinsic property of the underlying data, such as semantic or
speaker similarity. The goal is to obtain a mapping f from an input example xi to
a representation space Rm with the following property: given an anchor sample xa

belonging to a class, any positive sample xp belonging to the same class should be
closer to xa than any negative sample xn belonging to a different one:
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d(f(xa), f(xp)) < d(f(xa), f(xn)) (3.1)

Going one step further, metric learning aims at achieving intra-class compactness
and inter-class separability, which means that class clusters should be as compact
and distant from each other as possible. This concept is depicted in Figure 3.1,
where d is defined as the euclidean distance.

prediction

Figure 3.1: Given training samples xi and xj, the neural network f produces
representations f(xi), f(xj) ∈ Rm such that the distance d(f(xi), f(xj)) between
them is small if they belong to the same class (compactness) and large otherwise
(separability).

However, since mapping f needs to exploit properties of the training data that are
relevant to the target task, embeddings learned with metric learning techniques
are generally tailored to a specific task instead of being general-purpose. In order
to learn the representation function f from data, the typical approach is to train a
neural network with a modified loss function that penalizes the model whenever the
intra-class compactness and inter-class separability requirements are not satisfied.

A number of loss functions have been proposed to train such representation func-
tions. While these approaches were mostly introduced for computer vision (Hadsell
et al., 2006) and facial recognition in particular (Schroff et al., 2015; Liu et al.,
2017; Wen et al., 2016; Deng et al., 2019), they have been rapidly adopted in
other language-related domains, like speaker verification (Bredin, 2017b; Chung
et al., 2018), language identification (Gelly and Gauvain, 2017) and sentence em-
bedding (Reimers and Gurevych, 2019).

In this chapter, we attempt to learn task-specific representations using metric
learning techniques. We make a systematic comparison of several metric learning
loss functions from the literature focusing on two multi-class classification tasks:
misogyny categorization from tweets in written language, and speaker verification
from short audio extracts in spoken language. By choosing these two tasks, we
evaluate the resulting embeddings on both unseen examples of a given class set
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(closed-set misogyny categorization) and unseen classes (open-set speaker verifica-
tion).

Our results shine light on our understanding of metric learning as well as on
its applicability to the continual learning problem. In particular, we show (like
others did before us for face recognition (Srivastava et al., 2020)) that in speaker
verification the additive angular margin loss is better with respect to all considered
criteria. More generally, margin-based loss functions lead to representations that
can be compared directly without heavy back-end computations. Furthermore, we
set new state-of-the-art performance for the misogyny categorization task, and we
provide empirical evidence that metric learning may not constitute an advantage
over a simple cross entropy loss on closed-set classification.

3.2 Metric learning loss functions

This section defines the loss functions considered in the study and divides them
in two families: the ones relying on classification with cross entropy loss, and the
ones that rely on a pre-defined notion of similarity between examples.

3.2.1 Classification-based

The first family of loss functions is derived from the cross entropy loss LCE, initially
introduced for multi-class classification:

LCE = − 1

N

N∑
i=1

log

[
exp(σiyi)∑K
k=1 exp(σik)

]
(3.2)

where N is the number of training examples (here, audio segments or textual
sentences xi), K the number of classes (here, speakers or misogyny categories) in
the training set, yi the class of training sample xi, and σi is the output of a linear
classification layer with weights C ∈ Rm×K and bias b ∈ RK :

σi = f(xi) · CT + b (3.3)

We can facilitate the comparison with other metric learning loss functions thanks
to the geometric interpretation of the euclidean dot product, which states that
given vectors x, z ∈ Rm and the angle θxz between them, the following equality
holds:
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x · z = ∥x∥ ∥z∥ cos θxz (3.4)

Hence, we rewrite Equation 3.3 as follows:

∀k σik = ∥f(xi)∥ · ∥ck∥ · cos θick + bk (3.5)

where θick is the angular distance between the representation f(xi) of training
sample xi, and ck the kth row of matrix C. Furthermore, by removing the bias
parameter, we can interpret the minimization of the cross entropy loss as the
maximization of the cosine similarity between the representation and the row of
the weight matrix C associated to its class:

∀k σik = ∥f(xi)∥ · ∥ck∥ · cos θick (3.6)

In this context, the kth row of matrix C can then be seen as a canonical repre-
sentation, or centroid, of the kth class. If we choose d to be the cosine distance
d(f(xi), f(xj)) = 1− cos(θij), maximizing the cosine similarity between f(xi) and
cyi while minimizing its distance to other ck seems an adequate training objective
to achieve intra-class compactness and inter-class separability. This is the idea
behind the congenerous cosine loss (Liu et al., 2017), which forces the model to
rely only on the cosine between between f(xi) and ck:

∀k σik = α · cos θick (3.7)

where the scaling hyper-parameter α further penalizes errors and favors correct
predictions. As depicted in Figure 3.2, this simplification enforces the desired
properties of metric learning with the help of class centroids that are jointly trained
to attract the embeddings from their associated class.

norm = 1

Figure 3.2: The congenerous cosine loss is a geometrical reinterpretation of classi-
fication with cross entropy.
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norm = 1

Figure 3.3: In additive angular margin loss, the angular distance between f(xi)
and its centroid cy is penalized to achieve stronger intra-class compactness.

The additive angular margin loss (Deng et al., 2019) goes one step further by
introducing a margin to penalize the angular distance between f(xi) and cyi :

∀k σik =

{
α · cos(θick +m) if yi = k

α · cos θick otherwise
(3.8)

where m is the margin. As shown in Figure 3.3, this loss encourages embeddings to
be closer to their centroids more explicitly by artificially augmenting their distance
by the margin.

Finally, the center loss (Wen et al., 2016) takes a different approach by adding
a term to the cross entropy loss to penalize the distance between a representa-
tion f(xi) and an external centroid γyi ∈ Rm of its class yi that is jointly trained
but not part of the neural network:

L = LCE +
λ

2

N∑
i=1

1− cos θ2iγyi (3.9)

As depicted in Figure 3.4, while the congenerous cosine and additive angular mar-
gin loss are restricted to rely on the cosine distance (because of their derivation
from cross entropy), center loss is capable of optimizing embeddings for any differ-
entiable distance function, as the centroid matrix is external. This property grants
center loss a superior flexibility.

3.2.2 Contrast-based

While classification-based loss functions assume that the class of each training
sample is known, this second family of loss functions relies solely on same/different
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congenerous
cosine loss

(a) Embedding model using congenerous cosine loss.

center loss

(b) Embedding model using center loss.

Figure 3.4: Comparison of congenerous cosine loss (a) and center loss (b). In
center loss, the centroid matrix γ is external to the classification layer and C rows
cannot be interpreted as centroids.

binary annotations: given a pair of training samples (xi, xj), the pair is said to be
positive when yi = yj and negative otherwise.

Figure 3.5: In contrastive loss, embeddings considered similar (yi = yj) are encour-
aged to be closer together, while those considered different (yi ̸= yj) are encouraged
to be distant from each other.

As shown in Figure 3.5, the contrastive loss (Hadsell et al., 2006) aims at making
representations of positive pairs P closer to each other, while pushing negative
pairs N farther away than a positive margin m ∈ R+:
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L =
∑

(xi,xj)∈P

d(f(xi), f(xj))
2 +

∑
(xi,xj)∈N

max(m− d(f(xi), f(xj)), 0)
2 (3.10)

where d is the cosine distance between f(xi) and f(xj). The effect of this formula
can be visualized in Figure 3.6, where the loss encourages the distance of positive
pairs to be low and the distance of negative pairs to be at least equal to m.

0 m

d(f (xi), f (xj))

0

co
nt

ra
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iv
e
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ss

yi = yj

yi 6= yj

Figure 3.6: Behavior of the contrastive loss for both positive (green) and negative
(red) pairs. Notice that the loss value is the lowest when the distance between
positives is low, and when the distance between negatives is higher or equal to the
margin m.

The triplet loss (Schroff et al., 2015) is defined in a similar way, but relies on
triplets (xa, xp, xn) ∈ T , such that ya = yp and ya ̸= yn:

L =
∑

(xa,xp,xn)∈T

max(cos θan − cos θap +m, 0) (3.11)

This loss function aims at making the representation of positive sample xp closer to
the anchor sample xa than the representation of any other negative sample xn by
a positive margin m ∈ R+. Figure 3.7 shows a simplified example of this behavior
in two dimensions.

Because positive pairs P , negative pairs N and triplets T need to be sampled from
the training set, they bring an additional computational cost that may slow down
the training process. Morever, many tuples may satisfy intra-class compactness
and inter-class separability early during training. Since these tuples constitute
a weak training signal, they may cause convergence issues (Schroff et al., 2015;
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Figure 3.7: Given an anchor f(xa), a positive example f(xp) and a negative exam-
ple f(xn), the triplet loss brings the anchor and the positive together and pushes
the negative away in a single optimization step.

Hermans et al., 2017), especially if they constitute the majority of training exam-
ples. This problem is usually addressed with careful filtering in a process known
as mining, which makes the whole process even more costly without any guarantee
of training stability. Figure 3.8 shows several examples of easy and hard embed-
ding pairs in two dimensions. The goal of mining algorithms is to select hard and
meaningful examples to train the representation model more effectively.

easy
positive

hard
positive

hard
negative

easy
negative

class 1
class 2
class 3
class 4

Figure 3.8: Easy and hard embedding pairs in two dimensions. Easy pairs are
either negatives that are sufficiently distant or positives that are sufficiently close,
while hard pairs are either close-together negatives or distant positives.

To circumvent these issues, we use a slightly modified version of the triplet loss in
our experiments:
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LT =
∑

(xa,xp,xn)∈T

sigmoid(α · (cos θan − cos θap)) (3.12)

where α plays the same role as in Equations 3.7 and 3.8. This idea was first intro-
duced by Gelly and Gauvain (2017), and can be interpreted as an approximation of
the area under the ROC curve (Mingote et al., 2020). We hypothesize that the use
of sigmoid may force all triplets to provide a normalized training signal, making
large errors saturate to 1. Getting rid of the positive truncation also ensures that
positive pairs keep getting closer and negatives pairs farther apart, reducing the
utility of the margin.

Note that while classification-based loss functions can only be used in a fully
supervised setup, contrast-based loss functions that only rely on same/different
labels can also be used in self-supervised scenarios (Pascual et al., 2019; Ravanelli
et al., 2020) by exploiting prior knowledge about the data. A simple example of
this concept could be the extraction of positive pairs from audiobook data, which
is likely to contain single-speaker reading sessions.

3.3 Speaker verification experiments

In this section, we define the task of speaker verification. We introduce the corpus
and model architecture on which we rely, and finally we present our experiments
and results.

3.3.1 The speaker verification task

Given an utterance x and a claimed identity a, speaker verification aims at de-
ciding whether to accept or reject the identity claim. It is a supervised binary
classification task usually addressed by comparing the test utterance x to the
enrollment utterance xa pronounced by the speaker a whose identity is claimed.
Speaker identification is the task of determining which speaker (from a predefined
set of speakers a ∈ S) has uttered the sequence x. It is a supervised multi-class
classification task addressed by looking for the enrollment utterance xa the most
similar to the test utterance x. After a preliminary speech segmentation step,
speaker diarization aims at grouping speech turns according to the identity of the
speaker. A diagram summarizing the difference between these three tasks can be
seen in Figure 3.9.

Given that the definition of speaker verification is not tied to a set of pre-defined
speaker identities (a property called open-set), it is imperative for trained models
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same different

Speaker
diarization 

Figure 3.9: Comparison between speaker identification, speaker verification and
speaker diarization.

to generalize to speakers never seen during training. This is typically addressed
by training a mapping capable of projecting utterances to a representation space
where embeddings from different identities are easily separable, assuming that the
model can disentangle speaker identities from other acoustic information. Once
the mapping is learned, a score representing the likelihood of two utterances be-
longing to the same speaker is estimated and a prediction is made based on a fixed
threshold.

The x-vector approach (Snyder et al., 2018) is no exception to this framework. Its
goal is to learn a representation function f(x) = n(h(x)), which is the composition
of a hand-crafted feature extraction step h (e.g. filter banks or MFCC) and a
neural network n trained for closed-set speaker recognition on a large collection of
utterances from a large number of speakers. However, contrary to metric learning,
its comparison function d is the composition of several post-processing steps.

First, a linear discriminant analysis (LDA) transform l and probabilistic LDA
(PLDA) scoring p (Ioffe, 2006) are trained to increase the discriminant power of
the embeddings, effectively boosting inter-class separability.

Second, a normalization function s for the predicted scores is estimated based
on the mean and standard deviation of the scores with respect to an additional
set of data, which is commonly referred to as a cohort. Score normalization is a
fairly common practice that aims to reduce the effect of domain mismatch between
training and test utterances, for example when they are recorded using different
microphones (Rosenberg et al., 1992). In the x-vector approach, the authors choose
to use the adaptive s-norm score normalization strategy (Matejka et al., 2017),
which has been shown effective in a variety of scenarios. Instead of using a fixed
cohort, this strategy is considered adaptive because it selects the top k highest
(most positive) scores relative to each utterance in the test pair to compute the
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mean and standard deviation.

Finally, the combination of these post-processing steps l, p and s leads to a distance
function defined as:

d(f(xi), f(xj)) = s(p(l(f(xi)), l(f(xj)))) (3.13)

Although most metric learning losses were designed for face verification and re-
identification (Schroff et al., 2015; Liu et al., 2017; Deng et al., 2019), speaker
verification suffers from much of the same difficulties. In the same way that face
representations should be invariant to pose, lighting, or facial expression, utter-
ances from a single speaker might differ in noise, phonetic content, or mood, among
others. Achieving intra-class compactness and inter-class separability is in fact
highly desirable in order for speaker embeddings to be robust to these variability
factors. Moreover, an added benefit of metric learning is its ability to remove the
need for costly post-processing steps like the LDA and PLDA (i.e. the back-end
of the speaker embedding model). Recent work in speaker verification (Garcia-
Romero et al., 2019) has even shown that a simple cosine distance scoring with a
metric learning loss can perform equally or better than a PLDA scoring on top of
the same architecture.

3.3.2 The VoxCeleb corpora

Our experiments on speaker verification are conducted using the VoxCeleb1 (Na-
grani et al., 2017) and VoxCeleb2 (Chung et al., 2018) corpora, which contain
recordings of single-speaker English utterances that were automatically extracted
from Internet videos.

VoxCeleb1 VoxCeleb2

Number of speakers 1251 6112
Number of male/female speakers 690/561 3761/2351
Duration (in hours) 352 2442
Number of utterances 153,516 1,128,246
Average number of utterances per speaker 116 185
Average utterance duration (seconds) 8.2 7.8

Table 3.1: VoxCeleb corpora as described by Chung et al. (2018).

Although refined for VoxCeleb2, the pipeline for the extraction of videos and ut-
terances follows the same principle in both corpora. After selecting a list of n can-
didate speakers, the top k YouTube videos for each speaker are downloaded, where
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the search term used is the speaker name with the word “interview” appended (to
maximize the probability of finding videos with speech). Finally, a face tracking
and recognition system identifies the faces in each frame of the video, followed by
an active speaker detection step that determines when the target person is speak-
ing based on the audio and mouth motion. Although the data is collected in a
fully automated way, the authors make sure to reduce the number of false positives
by setting conservative thresholds for the speaker detection and face recognition
systems, raising their precision to 1 at the expense of recall.

The resulting corpora can be considered fairly balanced in terms of gender, eth-
nicity, accent, profession and age. Moreover, utterances are extracted from videos
spanning a variety of acoustic environments, ranging from professional studios to
outdoor stadiums. Additional information about the composition of these corpora
is shown in Table 3.1.

3.3.3 Model architecture

An additional contribution of our study on speaker verification is a step towards the
definition of a truly (front) end to (back) end neural speaker verification approach.
On the back end of the original x-vector approach, every one of LDA transform l,
PLDA scoring p and adaptive s-norm score normalization s needs its own (ideally
disjoint) set of training data, making the approach quite complex and data-hungry.
This is why we define our architecture with only the cosine distance for scoring.

Some end-to-end architectures in the literature avoid PLDA as well (Zhang and
Koishida, 2017; Li et al., 2018; Wan et al., 2018) but still rely on hand-crafted
features. Therefore, on the front-end, we combine SincNet (Ravanelli and Bengio,
2018) trainable feature extraction with the x-vector network architecture to build
a fully trained representation function f that processes the waveform directly and
does not rely on hand-crafted features: f(x) = n(h(x)) becomes f(x) = n(x). Sinc-
Net features have proven to outperform handcrafted features for some tasks (Pas-
cual et al., 2019; Ravanelli et al., 2020) and have been used in conjunction with
an angular margin loss in (Chagas Nunes et al., 2019) for speaker recognition on
the simple telephone corpus TIMIT (Garofolo et al., 1993), which contains 3s-long
(on average) speech recordings of 630 different speakers.

To summarize, the network architecture used in this set of experiments combines
SincNet trainable feature extraction (Ravanelli and Bengio, 2018) with the stan-
dard x-vector architecture (Snyder et al., 2018) to build a fully end-to-end speaker
verification system. Both SincNet and x-vector use the configuration proposed in
their respective papers (except for the SincConv layer of SincNet that uses a stride
of 5 for efficiency).
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Figure 3.10: End-to-end model architecture combining SincNet trainable features
with the standard TDNN x-vector architecture.
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As depicted in Figure 3.10, the network takes the waveform as input and returns
512-dimensional speaker embeddings. In practice, we use a 3s-long sliding window
with a 100ms step to extract a sequence of speaker embeddings that are then
averaged to obtain just one speaker embedding per file. These average speaker
embeddings are then simply compared with the cosine distance.

3.3.4 Evaluation

We evaluate our speaker verification model with the equal error rate (EER), defined
as the value at which the false positive rate (i.e. different speakers classified as the
same) equals the false negative rate (i.e. same speakers classified as different). The
EER can be explained more simply with the help of the detection error trade-off
(DET) curve (Martin et al., 1997), which relates false positives and false negatives
at multiple decision thresholds in logarithmic scale, as depicted in Figure 3.11.
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false positive rate

1%

20%

90%

99%

fa
lse

 n
eg

at
iv

e 
ra

te

FPR = FNR

system 1
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Figure 3.11: Detection error trade-off curves for two verification systems. The
equal error rate is shown as a dot over the system’s curve. Note that each point
forming these curves corresponds to a different threshold value. FPR and FNR
denote false positive and false negative rates, respectively.

As a result, the EER can be interpreted as the best compromise between false
positives and false negatives when both are equally important for the target appli-
cation. Since a lower EER is better, system 2 in Figure 3.11 would be considered
better than system 1.

3.3.5 Training protocol

The whole VoxCeleb 2 development set (5994 speakers) serves as our training set.
The VoxCeleb 1 development set (1211 speakers) is split into two parts: 41 speakers
(whose name starts with U, V, or W) serve as our development set (1000 trials per
speaker), the remaining 1170 speakers are used as training data for adaptive s-norm
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score normalization. Final evaluation is performed on the official VoxCeleb 1 test
set, containing a total of 40 speakers and 37720 trials (equally distributed between
same/different speakers).

The optimal hyper-parameters for each loss function are selected with a grid search
by training the model with each configuration for 20 hours and evaluating it on
the development set. The configuration with the best performance is selected and
used for further training for a total of 200 hours. Once training is completed, we
choose the model with the best performance on the development set. Finally, we
apply the resulting model on the VoxCeleb 1 official test set (40 speakers) and
report the equal error rate and corresponding 95% confidence interval computed
with the FEERCI package (Haasnoot et al., 2018).

Contrary to other normalization strategies, the adaptive s-norm score normaliza-
tion selects a subset of its training data to compute the mean and variance. In
fact, only the top k highest scores (in our case lower distances) are selected for
each speaker. This is why we report the equal error rate after adaptive s-norm
score normalization with a cohort size k tuned on the development set.

3.3.6 Implementation details

All models were trained on a GPU (NVIDIA Tesla V100) with stochastic gradient
descent using a fixed learning rate selected during the initial hyper-parameter grid
search: we tried 10−3, 10−2, and 10−1. Mini-batches were built by stacking 3s audio
chunks extracted randomly from the training set, making sure each speaker was
equally represented.

Following lessons learned by others (Mclaren et al., 2018), on-the-fly augmentation
was used by dynamically adding random background noise from the MUSAN (Mu-
sic, Speech and Noise) corpus (Snyder et al., 2015) with a random signal-to-noise
ratio between 10 dB and 20 dB. This corpus contains 60 hours of speech (discarded
in our experiments), 42 hours of music and 6 hours of background noise (e.g. dial
tones, car diling, footsteps, rain, etc.).

For classification-based loss functions, the batch size was fixed to 128 (from 128
different speakers). For contrast-based loss functions that expect pairs (or triplets)
of training samples, a fixed number of audio chunks from a fixed number of different
speakers were stacked to build mini-batches, before forming all possible pairs (or
triplets) for each batch. Both numbers were added to the set of hyper-parameters
for these loss functions: we tried 20 and 40 for the number of speakers per batch,
2 and 3 for the number of audio chunks per speaker.
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3.3.7 Results and discussion

-19% -19%
-9%

-10%

-17%
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-11%

Figure 3.12: Speaker verification equal error rate on the official test set of Vox-
Celeb 1 (lower is better), with and without adaptive s-norm score normalization.
Relative improvement brought by score normalization is reported with curved ar-
rows at the top. 95% confidence intervals are depicted as vertical error lines.
Performance of the x-vector baseline (Snyder et al., 2018) is shown for reference.

Performance. Figure 3.12 summarizes the performance of the proposed end-to-
end speaker verification architecture when trained with each loss function. We
report the equal error rate on the test set of VoxCeleb 1. The provided 95% confi-
dence intervals show that additive angular margin loss significantly outperforms all
other loss functions. When combined with adaptive s-norm score normalization,
it is even competitive with respect to the x-vector baseline performance reported
by Snyder et al. (2018), that relies on hand-crafted features (and for which we
could not compute confidence intervals without access to the system’s output).

Speaker embedding robustness. A closer look at the relative improvement
brought by the score normalization step shows that additive angular margin loss
and contrastive loss are the only ones for which the difference is not statistically
significant. This suggests that the use of a margin leads to representations that
are both better (in terms of performance) and more robust to domain mismatch.
In particular, the latter is an extremely relevant property that could facilitate
continual adaptation to new domains without the need for further fine-tuning.

Training time. Despite training each variant for 200 hours each on the speaker
verification task, some of them were still improving on the development set when
the time limit was reached: the congenerous cosine loss and the contrast-based
(contrastive and triplet) losses. A closer look at convergence time with respect to
the amount of data seen by each model is presented in Table 3.2. We observe that
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Loss function Epochs Audio chunks Time(in millions)

Cross entropy 208 30 60h
Center 240 35 70h
Additive angular margin 560 81 160h
Triplet 680 98 >200h
Congenerous cosine 709 102 >200h
Contrastive 846 122 >200h

Table 3.2: Convergence time for each loss on speaker verification in terms of ex-
amples seen and training time. The contrastive loss, congenerous cosine loss and
triplet loss need more training time and examples to converge.

the difference in training time is also correlated to the amount of audio chunks
seen, which shows that in general this slower convergence is due to the need for
more training examples rather than implementation differences. While the relative
slowness of the contrastive loss and triplet loss can be explained by the lack of
previous tuple mining, we are still unsure as to why congenerous cosine is so slow.

Loss function Hyper-parameter Value

Cross entropy learning rate 10−1

Congenerous cosine learning rate 10−1

α 10

Additive angular margin
learning rate 10−2

α 10
m 0.05

Center learning rate 10−1

λ 1

Contrastive
learning rate 10−1

m 0.2
other 3 chunks × 20 spk

Triplet
learning rate 10−2

α 10∗

other 3 chunks × 40 spk

Table 3.3: Best hyper-parameter configurations per loss for speaker verification.
Hyper-parameters m, α and λ are loss-specific (see Section 3.2). Values marked
with ∗ were not tuned.

Optimal hyper-parameters. Table 3.3 shows the best hyper-parameters found
for each of the considered loss functions. In particular, we observe that additive
angular margin loss works best with a lower margin than contrastive loss. This
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is consistent with the margin’s role, serving as an upper bound for the distance
between an embedding and its centroid, while the margin in contrastive loss serves
as a lower bound for the distance between two negatives.

3.4 Misogyny categorization experiments

In this section, we define the task of misogyny categorization. We introduce the
corpus and model architecture used in our experiments, and we present and discuss
the results we obtain.

3.4.1 The misogyny categorization task

The term misogyny is defined as hatred towards women. Hate speech of this na-
ture is unfortunately common in social Internet interactions, and current language
models are generally unable to accurately detect and classify it.

One of the goals of the IberEval 2018 (Fersini et al., 2018b) and Evalita 2018 (Fersini
et al., 2018a) evaluation campaigns was to address misogyny on tweets. Included
tasks were identification (binary classification: misogynous or not), categorization
over five different misogyny types (multi-class sentence classification), and target
identification (binary classification: to an individual or a group).

As shown in Figure 3.13, our study focuses on classifying misogyny using an addi-
tional class for the absence of misogyny, as we consider it suitable to study textual
sentence representations. This corresponds to the misogyny categorization part of
subtask B of the Evalita 2018 campaign.

Misogyny
categorization

   
  Just got my Twitter account!

Some User
@username0

no misogyny
derailing
discredit
dominance
sexual harassment
stereotype 

Figure 3.13: The misogyny categorization task (Evalita 2018 subtask B (Fersini
et al., 2018a)).

However, no participant has proposed a model trained with a metric learning objec-
tive. The best system (Ahluwalia et al., 2018) uses a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) with word embeddings of size 100 for the identi-
fication task, and ensemble methods with feature engineering for category and
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target classification. They achieve a macro F1 score of 36.1 on the misogyny cat-
egorization part of sub-task B, which is the one we address as well. A different
architecture (Caselli et al., 2018) uses a multi-layer character bidirectional LSTM
for categorization, obtaining a macro F1 score of 14.1.

Our motivation for the use of metric learning is that it might help to reduce the
natural intra-class variability within misogyny categories, making representations
robust to variation factors like writing style, irony, insults, etc.

3.4.2 The AMI corpus

Category Description Example

derailing “to justify women abuse, “if rape is real why aren’t more people
rejecting male responsibility” reporting it? just another feminist lie”

discredit “slurring over women with
“this b*** is a s***”

no other larger intention”

dominance “to assert the superiority of men “#didyouknow the male brain is 3.4 times larger
over women to highlight gender inequality” than the female brain? #maledominance”

sexual “sexual advances, harassment of
“come on box I show you my c*** darling”harassment a sexual nature, etc.”

stereotype “a widely held but fixed and “these people are hysterical. it’s like a commercial
oversimplified image or idea of a woman” for why men should never marry [. . . ]”

Table 3.4: Misogyny categories as described by the corpus authors (Fersini et al.,
2018a) along with examples found in the training set.

The automatic misogyny identification (AMI) task and corpus were proposed in
the context of the IberEval 2018 (Fersini et al., 2018b) and Evalita 2018 (Fersini
et al., 2018a) evaluation campaigns. The corpus consists of an ensemble of tweets
with three different types of annotations: misogyny (binary), misogyny category
(multiclass) and target (active or passive).

In our experiments, we focus exclusively on misogyny categorization, which con-
tains a total of 5 categories, plus an additional category for non misogynous tweets.
A description of misogyny categories according to the definitions given by Fersini
et al. (2018a) can be found in Table 3.4.

In order to collect misogynous tweets, the authors rely on three approaches. First,
a search of relevant keywords often used to express misogyny (e.g. b***h, w**re,
etc.). Second, monitoring the accounts of potential victims of misogyny, like public
feminist figures. Third, using the history of accounts that have publicly declared
hate against women in their profiles. Finally, collected tweets are manually labeled
and submitted to a gold standard for quality control. The corpus is available in
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English, Spanish and Italian, but we choose to work only on English for simplicity,
which contains a total of 5000 tweets.

3.4.3 Model architecture

We experiment with two different encoder architectures. The first one is a single-
layer bidirectional long short-term memory (LSTM) model (Hochreiter and Schmid-
huber, 1997) with output size 768 and word embeddings of size 300 obtained from a
word2vec continuous bag of words (CBOW) model (Mikolov et al., 2013) trained on
2-billion-word Wikipedia dumps. The second one is the standard monolingual un-
cased bidirectional encoder representations from Transformers (BERT) model (De-
vlin et al., 2019) from the huggingface library (Wolf et al., 2019) pre-trained on
English Wikipedia and BooksCorpus (Zhu et al., 2015).

To obtain a sentence embedding from the model, we perform a max pooling over
the hidden states of the last layer, leaving us with sentence embeddings of size
768 on both models. When optimizing classification-based loss functions, a lin-
ear classification layer is jointly trained with the sentence encoder. Both model
architectures can be visualized in Figure 3.14.

3.4.4 Training protocol

As the corpus does not provide a development set, one was constructed from
the training set following the same class distribution. The final training set is
composed of 3200 tweets, and the development and test sets of 800 and 1000
tweets respectively. The distribution of classes is described in detail in Table 3.5.

class training development test

derailing 74 18 11
discredit 811 203 141
dominance 118 30 124
sexual harassment 282 70 44
stereotype 143 36 140
non misogynous 1,772 443 540

total 3,200 800 1,000

Table 3.5: Number of sentences per class for each subset of the AMI corpus. Note
that classes are greatly imbalanced.

Furthermore, since different losses rely on different hyper-parameters, we perform
a hyper-parameter search including learning rates, margins m, scalings α, and λ
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Figure 3.14: Bidirectional LSTM (Hochreiter and Schmidhuber, 1997) and
BERT (Devlin et al., 2019) used in our misogyny categorization experiments.
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(introduced in Section 3.2). The values we have experimented with are shown in
Table 3.6. Each configuration is trained on the training set for 60 epochs and
validated using a KNN classifier on the development set. As we deal with a rather
small corpus, the best configuration for each loss and each architecture is then
trained and validated from scratch 10 times to reduce the effect of randomness.
Reported results are the mean macro F1 score and standard deviation on the test
set over these 10 runs.

Hyper-parameter Values

learning rate {10−2, 10−3, 10−4, 10−5, 10−6}•
{10−4, 10−5, 10−6, 10−7}◦

m {0.02, 0.05, 0.25, 0.5, 0.75}
α {0.01, 0.1, 1, 10, 100, 1000}
λ {0.01, 0.1, 1, 10, 100, 1000}

Table 3.6: Values tested during initial hyper-parameter search, totaling 486 con-
figurations. Each one of m, α and λ are loss hyper-parameters (see Section 3.2).
Values with • are LSTM only and values with ◦ are BERT only.

In all experiments we use the cosine distance to compare embeddings, as congen-
erous cosine loss and additive angular margin loss can only be optimized in this
way. We evaluate the models with the macro F1 score of a KNN classifier with
K = 10 fit with all sentence embeddings from the training set. However, the a
priori probability of a random embedding being assigned to a given class may be
affected by the high class imbalance. For example, it may be more likely to find a
random embedding closer to a non-misogynous embedding than to a discredit one
(see Table 3.5).

To circumvent this issue, we compute the prediction ŷ for a given embedding as:

ŷ = argmax
c

vc
N train

c

(3.14)

where vc is the number of votes for class c, and N train
c the number of samples from

c in the training set. We believe this simple classifier to be a better measure for
representation quality, as it relates to the separability and compactness properties
that we expect from a metric learning model.
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3.4.5 Implementation details

In both models, sentences are pre-tokenized using the TweetTokenizer from the
NLTK toolkit (Bird et al., 2009) in order to correctly deal with Twitter-specific
tokens like hashtags, mentions, and even emojis. During this process we also
remove handles and URLs.

When training BERT, we do a second pass of tokenization with BERT’s pre-trained
tokenizer based on WordPiece (Devlin et al., 2019), which relies on subwords in-
stead of full words. For example, the tokenization of “this chapter” using Word-
Piece could be [this, chap, ##ter] instead of [this, chapter], where “##” denotes
the continuation within a word.

Finally, we use a batch size of 32 sentences and RMSprop as optimizer, reducing
the learning rate by half every 5 epochs if no improvement is detected.

3.4.6 Results and discussion

cross
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Figure 3.15: Misogyny categorization test F1 scores for each architecture and
loss function (higher is better). Scores are calculated as the mean of 10 runs
and standard deviation is shown as error bars. The baseline of the Evalita 2018
winner (Ahluwalia et al., 2018) is shown for reference.

Performance. Our main results are summarized in Figure 3.15. With a fixed
architecture, it is clear that all loss functions perform equally on this task, with
the exception of LSTM with contrastive and triplet loss. As the LSTM encoder is
rather shallow (4.4M parameters) in comparison to BERT (110M parameters), it is
possible that contrast-based losses need larger models to perform competitively. In
contrast, our fine-tuned BERT outperforms the Evalita winner baseline (Ahluwalia
et al., 2018) with a macro F1 score of 40.5, setting new state-of-the-art for misogyny
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categorization, with the added benefit of providing embeddings comparable with
a simple cosine distance.

Open-set vs closed-set. The fact that almost all losses perform equally well on
misogyny categorization shows that, contrary to both our initial hypothesis and the
results obtained on speaker verification, metric learning models perform no better
than cross entropy in this case. This is also in stark contrast to other findings on
face verification (Srivastava et al., 2020). One possible explanation is that the AMI
dataset may not contain enough examples or classes for these models to exploit.
However, another factor might be responsible for this behavior. One of the key
characteristics of AMI with respect to speaker or face verification is the closed-set
nature of the problem. An open-set task is evaluated with unseen classes, while
a closed-set task is evaluated with unseen instances of the training classes. We
hypothesize that open-set verification tasks are more suitable for metric learning
than closed-set tasks, meaning that the power of metric learning might in fact
lie in generalizing to unseen classes rather than unseen class instances. The fact
that verification tasks more closely resemble the training objective than exact class
prediction could provide an explanation for this.

Optimal hyper-parameters. As a final note, the results of hyper-parameter
optimization (shown in Table 3.7) suggest that congenerous cosine loss and center
loss hyper-parameters could be more sensitive to architecture changes than other
losses, as they are the only ones whose best configurations differ across architec-
tures within the same task. Perhaps not surprisingly, we also observe that, as in
speaker verification, additive angular margin loss works better with lower margins.

Loss function Hyper-parameter AMI LSTM AMI BERT

Cross entropy learning rate 10−3 10−5

Congenerous cosine learning rate 10−3 10−5

α 10 100

Additive angular margin
learning rate 10−3 10−5

α 100 100
m 0.05 0.05

Center learning rate 10−4 10−5

λ 1000 0.1

Contrastive learning rate 10−4 10−6

m 0.25 0.25

Triplet learning rate 10−4 10−6

α 1000 1000

Table 3.7: Best hyper-parameter configurations per loss for misogyny categoriza-
tion models. Hyper-parameters m, α and λ are loss-specific (see Section 3.2).
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3.5 Conclusion

In this chapter, we performed a systematic comparison of several metric learning
loss functions representing different strategies towards achieving intra-class com-
pactness and inter-class separability in neural representations.

Overall, no matter the comparison criterion (performance, robustness, or training
time), the additive angular margin loss is always better than the other loss func-
tions that were considered in speaker verification experiments. If we had to find
one drawback, this would be the fact that it can only be used in a fully supervised
learning scenario (contrary to its closest competitor: the contrastive loss). On
the other hand, contrary to what we thought, none of the considered losses can
outperform the regular cross entropy on the task of misogyny categorization.

After extensive experiments on both speaker and sentence embedding, we reach
the following conclusions. First, metric learning approaches may be better suited
to open-set classification tasks, where the model must generalize to unseen classes
(like new speakers or faces), instead of generalizing to new examples from the
same classes. This motivates the subject of the next chapter, where we study the
continual adaptation of contextual word embeddings to new languages in sequence
labeling tasks.

Second, on open-set speaker verification, margin losses like additive angular margin
loss encourage models to learn representations with better intra-class compactness
and inter-class separability, as evidenced by the achieved performance based solely
on the cosine distance. This seems to confirm our initial hypothesis that exploiting
task-specific representations can constitute an advantage in some continual learn-
ing applications, which motivates our decision to leverage metric learning speaker
embeddings for streaming speaker diarization in Chapter 5.

Our results on speaker verification also suggest that additive angular margin em-
beddings may be more robust to domain mismatch, an extremely relevant property
when considering continual learning during the production phase.
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Chapter 4

Continual word embedding
adaptation

“What matters is not how much we
remember, but how we remember.”

— Rodrigo Quian Quiroga,
The Forgetting Machine

In the previous chapter we sought to obtain sentence representations tailored to
the task of misogyny categorization with the properties of intra-class compactness
and inter-class separability. Although our motivation was to leverage sentence
embeddings for continual adaptation, we learned that such representations may
not be particularly suited to closed-set tasks like misogyny categorization.

In this chapter we take a step back from our initial hypothesis to study continual
adaptation for the closed-set task of sequence labeling, where the goal is to predict
a class for each word in a sentence. Instead of explicitly enforcing geometric prop-
erties, we perform a wide range of experiments to better understand the transfer
capabilities of contextual word embeddings as they are progressively adapted to
new languages.

Continual adaptation is a highly desirable property of language models because
they may need to be updated with new user requirements or previously unavail-
able information. For example, a model trained to answer questions based on news
articles may be regularly updated with the latest available information. In partic-
ular, we consider the progressive adaptation to new languages to be an extremely
relevant problem applicable to a multitude of natural language processing tasks.
For instance, the same question-answering model may be progressively deployed
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in multiple countries as it gains popularity.

Finally, our study is also motivated by the fact that the relationship between
contextual word embeddings from large Transformer models (Vaswani et al., 2017)
and catastrophic forgetting has not received as much attention as other simpler
problems in the continual learning literature.

The chapter is structured as follows. Through sections 4.2 to 4.4, we describe
the target tasks and their corpora, as well as the model architecture we work
with and the metrics we rely on to measure transfer and forgetting. Our main
research question concerning the existence of cross-lingual transfer is addressed in
Section 4.5, and in Section 4.6 we perform extensive experiments to understand
how such transfer is affected by the training sequence. Finally, in Section 4.7 we
investigate whether lost performance (due to forgetting) can be recovered and at
what cost.

This work is the result of a collaboration with Mathilde Veron, another PhD
student at the LISN laboratory, whose work focuses on life-long learning in the
context of task-oriented dialogue systems.

This chapter has been the subject of the following scientific publication:

Juan M. Coria1, Mathilde Veron1, Sahar Ghannay, Guillaume Bernard, Hervé
Bredin, Olivier Galibert, and Sophie Rosset. Analyzing BERT Cross-Lingual
Transfer Capabilities in Continual Sequence Labeling. In Proceedings of the First
Workshop on Performance and Interpretability Evaluations of Multimodal, Multi-
purpose, Massive-Scale Models, Online, 2022. International Conference on Com-
putational Linguistics.

4.1 Introduction

In the previous chapter, we experimented with a popular pre-trained Transformer-
based (Vaswani et al., 2017) language model called BERT (Devlin et al., 2019) for
sentence embedding. These model architectures have proven to perform extremely
well on several natural language processing (NLP) tasks, often achieving state-
of-the-art performance (Raffel et al., 2020; Brown et al., 2020). They are pre-
trained with a self-supervised objective on large text corpora and rely on knowledge
transfer for fine-tuning to a downstream task. Multilingual versions of these models
have also been trained, and they have demonstrated high cross-lingual transfer as
well (K et al., 2020; Wang et al., 2020; Conneau et al., 2020; Xue et al., 2021a).

1Equal contribution, order is alphabetical.

76

https://aclanthology.org/2022.mmmpie-1.3/
https://aclanthology.org/2022.mmmpie-1.3/


Given NLP tasks ta expressed in language a and tb expressed in language b, cross-
lingual transfer can be defined as the performance improvement on tb thanks to
the knowledge acquired while learning ta. Similar to our previous categorization
of transfer learning (see Section 2.2), this can be defined as joint or sequential.
Although large pre-trained models like BERT rely on sequential transfer in the
task axis (from pre-training to fine-tuning), multilingual versions typically rely on
a mix of joint and sequential transfer in the language axis, as shown in Figure 4.1.
However, although joint training maximizes cross-lingual transfer, it assumes that
data in all languages is available, which may not be the case in practice.

English
data 

Spanish
data 

Chinese
data 

pre-training
(e.g. MLM) 

fine-tuning 
(e.g. NER) 

English
data 

Spanish
data 

sequential cross-task transfer

joint cross-lingual transfer

unlabeled

labeled
sequential

cross-lingual
transfer

joint cross-lingual transfer

Figure 4.1: Mix of transfer styles present in large multilingual language models.
While pre-training and fine-tuning tasks are generally different, multilingual train-
ing is often a mix of joint and sequential transfer. In this example, fine-tuning on S
jointly after pre-training on D0 can be seen as joint transfer between English and
Spanish, but also as sequential transfer from Chinese (in D0) to English and Span-
ish (in S). We use mi to denote the model resulting from training stage i.

Given the raising interest in these models to transfer knowledge between languages,
it is of great importance to better understand the phenomenon of cross-lingual
transfer as well as its limits. In the context of our study, we rely on a pre-training
stage on a large D0 consisting of a mix of multiple languages, but study continual
adaptation in the fine-tuning stage using S: the sorted sequence of monolingual
corpora D1≤i≤L from L different languages. To do this, we analyze the cross-lingual
capabilities of multilingual BERT on two sequence labeling tasks, where each word
of a sentence must be associated to a specific label.

Sequence labeling regroups various NLP tasks like named entity recognition (NER),
part-of-speech (POS) tagging, text chunking and slot-filling. We focus our study on
two of these tasks using two multilingual corpora: MultiATIS++ for slot-filling (Xu
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et al., 2020) and MultiCoNER for NER (Malmasi et al., 2022a,b). Experimenting
on different corpora allows us to identify which observations may generalize to
other tasks and data, and which ones may be task-specific.

While most cross-lingual transfer studies about slot-filling or NER focus either on
joint training or sequential training with source and target languagesD1 andD2 (Xu
et al., 2020; Schuster et al., 2019; Arkhipov et al., 2019; Mueller et al., 2020; Wang
et al., 2020) (e.g. English → Spanish), our main contribution is a study with
special focus on continual cross-lingual transfer, where the target task remains the
same and the adaptation axis is defined over the sequence of languages S (e.g.
Spanish → English → Italian → . . . ).

We believe this experimental setup to be interesting not only as a novel way of
studying cross-lingual transfer but also because it is better suited to practical
scenarios. As a matter of fact, adaptation to new data over time is a highly
desirable feature of most NLP models: oftentimes, collecting data and annotating
it is expensive, which makes training data scarce or incomplete in the development
phase. Additionally, requirements might also evolve with time based on the needs
of users. This means that the model needs to adapt sequentially as training data
becomes available in production. An example of this could be a dialogue system
that is gradually deployed in different countries. Unfortunately, naive solutions
to adapt a pre-trained model are costly, as they require either re-training from
scratch or maintaining many distinct models.

As discussed in Chapter 2, training a model on a sequence S of corpora Di in
multiple training stages is at the heart of continual learning (Hadsell et al., 2020),
where the goal is to improve performance on both past and new data. In this
chapter, we refer to S and the order of Di as a training sequence for simplicity. An
example of this is depicted in Figure 4.2.

Single-stage training schemes assume that training examples (in this case anno-
tated sentences) are independent and identically distributed (i.i.d.), which does
not usually hold when data becomes available sequentially. Moreover, access to
previous data is not allowed2, as this represents a linear use of resources with re-
spect to the length of S, which can in theory be infinite. In this context, measuring
transfer is generally divided in two: forward and backward (Hadsell et al., 2020;
Lopez-Paz and Ranzato, 2017; Arora et al., 2019), defined in our case as improve-
ment on future and already acquired languages respectively. Note that forgetting
can also be defined as negative backward transfer, as it represents the loss of pre-
viously acquired knowledge. While previous studies on continual learning tend to

2As we have discussed in Section 2.4, access to previous data is sometimes allowed if limited,
for example in memory-based techniques (see Section 2.4.2)
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Figure 4.2: A training sequence across 4 languages. For each language in the
given order, we train the model on its training set, select the best epoch on the
development set and then test on all test sets independently. We use mi to denote
the model resulting from training on language at position i. Model m0 denotes
the initial pre-trained model.

focus on the domain axis for the slot-filling task (Lee, 2017; Madotto et al., 2021),
or on the class axis for the NER task (Monaikul et al., 2021; Xia et al., 2022), we
concentrate on the adaptation axis over languages.

Similar work also investigates cross-lingual transfer of multilingual BERT fine-
tuned on sequence labeling tasks, namely NER and POS-tagging (Liu et al., 2021).
They focus on preserving masked language modeling performance and cross-lingual
ability after fine-tuning on one of the two tasks on English only. In stark contrast,
our work focuses on fine-tuning on a single task over a sequence of many languages
(i.e. it is language-incremental and not task-incremental) and addresses use cases
where |S| > 2.

4.2 Sequence labeling

The goal of sequence labeling tasks is to predict the correct label for each word
in a sentence, which makes it appropriate to identify concepts or entities. In our
study, the set of labels to predict is the same across languages so that the task
remains unchanged over the continual learning process. In other words, we restrict
our study to closed-set sequence labeling problems.

Sequences are typically labeled using the IOB format (Ramshaw and Marcus,
1995), where labels consist of a prefix (B, I or O) and an optional type that
categorizes the identified concept. While O indicates that the word is not part
of a concept (O for outside), B (for beginning) and I (for inside) indicate that it
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is the beginning or continuation of a concept, thus allowing the identification of
multi-word concepts (e.g. “New York”). An example of this labeling scheme is
shown in Figure 4.3.

Find Denverme cheapest

O B-cost_relativeOO

one

B-round_trip

way

I-round_trip

fare I can get from

O O O O O

Boston

B-fromloc.city_name

to

O B-toloc.city_name

the

Figure 4.3: Slot-filling IOB (Ramshaw and Marcus, 1995) labels for an utterance
of MultiATIS++ (Xu et al., 2020) in English. Label “O” (from outside) denotes
that no concept is mentioned, “B” (from beginning) denotes the first word of a
concept and “I” (from inside) the continuation of a concept. Different slot types
are shown in different colors.

Given the possibility of class imbalance, sequence labeling tasks are usually evalu-
ated using the slot micro F1 score (Tjong Kim Sang and Buchholz, 2000). Contrary
to the macro averaging strategy that computes the individual F1 scores of each
class and then averages them, the micro F1 score computes the average across all
predictions independently of the class.

In the following sections 4.2.1 and 4.2.2 we present the corpora we use in our ex-
periments: MultiATIS++ (Xu et al., 2020) for slot-filling in natural language un-
derstanding for task-oriented dialogue systems, and MultiCoNER (Malmasi et al.,
2022a) for complex and ambiguous named entity recognition. In the rest of the
chapter and for both corpora we denote the train, dev and test sets of a given
language i with a subscript (e.g. train i).

4.2.1 The MultiATIS++ corpus

The MultiATIS++ multilingual corpus derives from the Air Travel Information
System (ATIS) corpus (Hemphill et al., 1990), consisting of user utterances asking
for flight information. This corpus is built for the slot-filling task, which is related
to task-oriented dialogue systems. It enables the system to identify the impor-
tant concepts mentioned by the user that are needed to successfully continue the
dialogue. These concepts are related to the system’s domain (in this case flight
information queries) and to the tasks that the system should perform (e.g. listing
flights from Boston to Atlanta).

MultiATIS++ is the manual translation of the original English (EN) ATIS sen-
tences into 6 different languages: Spanish (ES), Portuguese (PT), German (DE),
French (FR), Chinese (ZH) and Japanese (JA). It also includes two additional
languages: Hindi (HI) and Turkish (TR), that were added as part of MultiATIS
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show me the first class fares

O O B-fromloc.city_name O B-toloc.city_name

from Boston to Denver
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bana Boston ' dan Denver ' a first class fiyatlari goster
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me montrer les tarifs en première classe de Boston à Denver

B-fromloc.city_name O B-toloc.city_nameOB-class_type I-class_typeO O O O O

English

French

Turkish

Figure 4.4: A labeled sentence extracted from MultiATIS++ (Xu et al., 2020)
alongside its French and Turkish translations.

in (Upadhyay et al., 2018). An example of a labeled English sentence translated
into different languages is shown in Figure 4.4.

Contrary to the translations added in MultiATIS++, the number of utterances of
Hindi and Turkish translations are not as many as for the other languages. More
details on the composition of this corpus are shown in Table 4.1.

Language Utterances Labelstrain dev test

German (DE) 4,488 490 893 84
English (EN) 4,488 490 893 84
Spanish (ES) 4,488 490 893 84
French (FR) 4,488 490 893 84
Japanese (JA) 4,488 490 893 84
Portuguese (PT) 4,488 490 893 84
Chinese (ZH) 4,488 490 893 84
Hindi (HI) 1,440 160 893 75
Turkish (TR) 578 60 715 71

Table 4.1: Number of sentences per subset and number of unique labels (not
counting B and I prefixes as different classes) in MultiATIS++ (Xu et al., 2020).

4.2.2 The MultiCoNER corpus

The MultiCoNER corpus was proposed as part of the SemEval 2022 Task 11 (Mal-
masi et al., 2022a,b) and focuses on the named entity recognition task. While it is
usually a generic task consisting in identifying entities like people, organizations
or dates in written text, MultiCoNER focuses on ambiguous and complex entities
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it was republished by MIT Press
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in 1971 and is
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Figure 4.5: Labeled sentences extracted from MultiCoNER (Malmasi et al., 2022a)
in English, Spanish and Chinese. “CORP” denotes an organization, “PER” denotes
a person, and “PROD” denotes a product. Sentences with multiple types of entities
are also found in the corpus.

in short and low-context settings. The entities defined in this corpus are “person”,
“location”, “group”, “organization”, “product” and “creative work”. Some examples
of annotated sentences in the corpus are shown in Figure 4.5.

Language Utterances
train dev test

Bengali (BN) 15,300 800 133,119
German (DE) 15,300 800 217,824
English (EN) 15,300 800 217,818
Spanish (ES) 15,300 800 217,887
Farsi (FA) 15,300 800 165,702
Hindi (HI) 15,300 800 141,565
Korean (KO) 15,300 800 178,249
Dutch (NL) 15,300 800 217,337
Russian (RU) 15,300 800 217,501
Turkish (TR) 15,300 800 136,935
Chinese (ZH) 15,300 800 151,661

Table 4.2: Number of sentences per subset in MultiCoNER (Malmasi et al., 2022a).

MultiCoNER also aims at stimulating research on multilingual models, as it con-
tains annotations in 11 languages. Due to time and computing limitations, we
restrict experiments on MultiCoNER to contain 9 languages as well, while target-
ing a maximum language overlap with MultiATIS++. As a result, the languages
used in our experiments are Bengali (BN), German (DE), English (EN), Span-
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ish (ES), Hindi (HI), Korean (KO), Dutch (NL), Turkish (TR) and Chinese (ZH).
Further details about the composition of MultiCoNER are shown in Table 4.2.

4.3 Model architecture and training

x12 

WordPiece 
encoding

x12

Add & LayerNorm

Feed Forward

Add & LayerNorm

contextual
word

embeddings

Attention Head

x2
Feed Forward

dim = 768

O B-city O B-city I-city

from Boston to New York

Figure 4.6: BERT (Devlin et al., 2019) for sequence labeling.

We use the multilingual BERT (Devlin et al., 2019) base model, consisting of
12 multi-head attention layers with 12 heads and hidden size of 768 (177M pa-
rameters). This model was trained on large Wikipedia dumps from 104 different
languages using masked language modeling and next sentence prediction objec-
tives.

In order to train the model for sequence labeling, we append a two-layer feed-
forward classifier with hidden size 768 and ReLU (rectified linear unit) activa-
tion (Nair and Hinton, 2010). The input of the classifier are the last-layer hidden
states of each word (i.e. the contextual word embeddings) after applying dropout
with p = 0.1. A diagram of the full architecture is shown in Figure 4.6.

Following (Xu et al., 2020), we train on MultiATIS++ using the Adam opti-
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mizer (Kingma and Ba, 2015) with a learning rate of 10−5 and a batch size of 32
utterances for 50 epochs (unless stated otherwise), selecting the checkpoint with
the highest slot F1 on the corresponding dev set. We train the model on Multi-
CoNER the same way, except for the learning rate (optimized on dev and set to
5 × 10−5) and the number of epochs, which is set to 15. We evaluate the model
on all test i sets for every language i using the slot micro F1 score calculated with
the seqeval library (Nakayama, 2018).

4.4 Measures of transfer

Cross-lingual transfer is defined as the performance improvement of a model on a
particular language based on knowledge of other languages. This can take several
forms depending on the training structure. In an i.i.d. context, where all data is
available from the start, we think of transfer in terms of joint training. If training
on language i and j jointly (multilingual) yields better performance on j than
training only on j (monolingual), then there is transfer from i to j.

ev
al
ua

tio
n

training

Figure 4.7: Performance matrix used to
measure backward and forward transfer.

However, continual learning adds a dif-
ferent dimension. When training on a
language sequence we can identify two
types of transfer: forward and back-
ward (Hadsell et al., 2020; Lopez-Paz
and Ranzato, 2017). Forward trans-
fer denotes the performance and learn-
ing efficiency improvement on a given
language thanks to previously acquired
knowledge of other languages. Con-
versely, backward transfer denotes the
performance improvement on a previ-
ously acquired language when learning
a new one. More formally, and simi-
larly to Lopez-Paz and Ranzato (2017),
given a sequence S = (D1, . . . ,DL) of L
monolingual corpora Di from L differ-
ent languages, we define the perfor-

mance matrix P ∈ RL×L, where Pij is the performance of language i after learning
language j.

In this context, backward transfer of language i is defined as:

84



BTi = PiL − Pii (4.1)

Note that negative backward transfer is equivalent to forgetting, as it denotes
performance loss on previous languages. Since P11 is equivalent to monolingual
performance mono1 (obtained after training exclusively on D1), we facilitate our
discussion by defining the backward transfer of the first language after learning
language j:

BT1j = P1j −mono1 (4.2)

Conversely, we define forward transfer as:

FTmono
i = Pii −monoi (4.3)

where monoi denotes monolingual performance on language i (obtained after train-
ing exclusively on Di). By comparing performance to a different reference like
multilingual, we can measure how close forward transfer is to the joint transfer
topline:

FTmulti
i = Pii −multii (4.4)

where multii denotes the multilingual performance on language i (obtained after
training on the entire S jointly). These definitions will be particularly useful when
examining the effect of the training sequence in Section 4.6.

4.5 Cross-lingual transfer

Before diving into the continual learning setting, we first measure transfer when
training the model on all languages at once (i.e. joint transfer). Then, having
this frame of reference, we investigate transfer when training the model on the S
language sequence (i.e. continual transfer).

4.5.1 Joint transfer

In order to measure transfer in unstructured i.i.d. training, we train the model
on all languages together (multilingual) and compare the performance we obtain
with monolingual training. Note that multilingual training corresponds to con-
catenating all train i for training and all dev i for validation. We report the mean
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and standard deviation of test slot F1 per language across 5 runs to reduce the
effect of randomness.

Training DE EN ES FR PT ZH JA HI TR

Monolingual 94.4 (0.2) 95.6 (0.1) 88.9 (0.4) 93.2 (0.1) 90.3 (0.6) 93.3 (0.4) 93.1 (0.4) 82.4 (0.5) 71.3 (0.9)
Multilingual 95.0 (0.2) 96.0 (0.2) 90.4 (0.4) 94.0 (0.3) 91.4 (0.2) 93.6 (0.2) 93.0 (0.1) 87.2 (0.3) 85.2 (0.6)
Joint transfer +0.6 +0.4 +1.5 +0.8 +1.1 +0.3 -0.1 +4.8 +13.9

Table 4.3: Slot F1 performance on MultiATIS++ on test i sets for monolingual
and multilingual experiments. Reported values are the average of 5 runs with
standard deviation shown in parenthesis. Joint transfer denotes the difference
between multilingual and monolingual performance.

Results on MultiATIS++ are reported in Table 4.3. We observe that multilingual
is always stronger than monolingual, which confirms the existence of joint cross-
lingual transfer. The only exceptions to this are Chinese and Japanese, whose joint
transfer values (0.3% and -0.1% respectively) are not significant when compared to
the standard deviation. European languages (German, English, Spanish, French
and Portuguese) show modest but visible gains from transfer, whereas Asian lan-
guages (Chinese and Japanese) do not seem to benefit from it. However, transfer
for the two low-resource languages (Hindi and Turkish) is outstanding, with an
absolute 4.8% and 13.9% improvement.

As noted by Do et al. (2020), MultiATIS++ translations keep the same (unrealis-
tic) slot values for particular labels (e.g. American departure city and destination
city in Turkish utterances). We suspect this may be the reason why transfer is
particularly high in this corpus. The fact that the corpus contains less training
data for Hindi and Turkish than for the other languages might also explain why
joint transfer is much higher for these two languages. This is an interesting result
for continual adaptation in production, as it shows that languages with little data
have a high potential for performance gains from transfer.

Training BN DE EN ES HI KO NL TR ZH

Monolingual 41.6 (3.2) 64.1 (0.8) 61.3 (0.6) 59.0 (0.8) 43.1 (1.2) 56.7 (0.7) 61.4 (0.9) 45.7 (0.7) 57.6 (0.8)
Multilingual 44.9 (1.6) 66.9 (0.4) 64.4 (0.7) 63.8 (0.4) 46.4 (1.2) 59.4 (0.8) 66.5 (0.5) 50.6 (1.0) 58.2 (1.0)
Joint transfer +3.3 +2.8 +3.1 +4.8 +3.3 +2.7 +5.1 +4.9 +0.6

Table 4.4: Slot F1 performance on MultiCoNER on test i sets for monolingual
and multilingual experiments. Reported values are the average of 5 runs with
standard deviation shown in parenthesis. Joint transfer denotes the difference
between multilingual and monolingual performance.

Table 4.4 shows our experimental results on MultiCoNER. Monolingual perfor-
mance is much lower than in MultiATIS++ even if the set of labels to predict is
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also smaller, which suggests that MultiCoNER may indeed be more difficult than
MultiATIS++. Although the corpus is not parallel (i.e. a sentence in a language
might not be found in another), we observe significant joint cross-lingual transfer
(except for Chinese whose 0.6% improvement is negligible). This is interesting
considering that only a maximum of 8% of entity mentions appearing in the test
set of a given language are common to those appearing in the train set of other
languages.

Corpus Training Model Cost Data Cost
Time Space Space

MultiATIS++
Monolingual ≤224K 1.6B ≤4K
Multilingual 1.7M 178M 33K
Continual ≤224K 178M ≤4K

MultiCoNER
Monolingual 765K 1.6B 15K
Multilingual 6.9M 178M 138K
Continual 765K 178M 15K

Table 4.5: Costs of learning a new language according to training scheme and
corpus. Model time cost is measured in iterations, while model space cost is the
model size measured in number of parameters. Data space cost is the number of
training sentences stored in memory at the same time.

However, multilingual training assumes that all languages are available at once. As
mentioned before, this is not always true in practice, since utterances may be scarce
and annotations expensive. Moreover, given N the maximum number of utterances
per language and L the number of languages, training on a new language has time
cost O(LN), as the whole model needs to be trained from scratch. A naive solution
is to use multiple monolingual models, raising however the space cost to O(LN).
Reducing both costs to O(N) motivates our decision to structure training as a
sequence. To put this costs in the context of our experiments, Table 4.5 shows
the time and space costs of adding an Lth language with each training scheme and

train set

select

dev set

Spanish Chinese

train train

test

train set

select

dev set
train

Hindi

train set

select

dev set
train

English

train set

select

dev set

test set test set test set test set

Figure 4.8: A training sequence of 4 languages.
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corpus. For example, notice that a single model (composed of 178M parameters)
is stored in the continual and joint multilingual training schemes, while L = 9
models (1.6B parameters) need to be stored in the monolingual case (one for each
language).

4.5.2 Continual transfer

Given a training sequence (a list of languages in a given order), our continual
learning experiments consist in training the model on train i (and validating on
dev i) for each language i in the given order, as depicted in Figure 4.8. Although
having all language data at once is not required and the language addition cost is
the lowest, this approach is prone to forgetting previously learned languages.

Sequence sampling

In the experiments of this section, we report for both forward and backward trans-
fer the average performance per language. The experiments consist of 3 sequences
per language and per transfer type repeated 5 times to reduce the effect of ran-
domness, making a total of 54 sequences and 270 experiments. These 3 sequences
per language are selected through a semi-random iterative procedure described in
Figure 4.9, which relies on the Kendall rank correlation coefficient τ (Abdi, 2007)
to ensure a high level of variability.

After randomly sampling a sequence to constitute the initial base set, each iteration
consists of three steps: 1) we sample N random sequences with the same first
language (for backward transfer experiments) or last language (for forward transfer
experiments), 2) we compute the average Kendall rank correlation coefficient τ
between each sequence and the base set, and 3) we rank the sequences according
to τ and append the one with the lowest τ to the base set. This process is repeated
until the base set contains the desired amount of sequences (3 sequences in our
case).

Forward and backward cross-lingual transfer

We first investigate whether forward transfer exists in continual training by looking
at the average PLL performance (e.g. m4 evaluated on English in Figure 4.10)
against monolingual and multilingual. Notice that we look at the performance of
the last language, as this allows us to measure whether the model leverages past
knowledge to learn a new language. This also has the advantage of isolating the
effect of forward transfer from that of backward transfer. For a fair comparison,
when sampling sequences we also make sure that each language appears at the end
of the sequence the same number of times.
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Figure 4.9: Sequence sampling algorithm based on the Kendall rank correlation
coefficient τ computed between sequences of language indices. After choosing a
randomly sampled sequence for the initial base set, we sample N random sequences
with the same first/last language (depending on the target transfer metric), which
are then ranked according to their average τ with respect to the base set. The
sequence with the lowest correlation is then appended to the base set. This process
is repeated until the base set is filled with 3 sequences.
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Figure 4.10: To measure forward transfer, we look at the performance PLL. In this
example, this is equivalent to obtaining P44 by evaluating model m4 on English.
Involved elements are marked in red.
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Figure 4.11: To measure backward transfer, we look at the performance P1L.
In this example, this is equivalent to obtaining P14 by evaluating model m4 on
Spanish. Involved elements are marked in red.

Similarly, we look at backward transfer by comparing the average P1L performance
(e.g. m4 evaluated on Spanish in Figure 4.11) against monolingual, making sure
that each language appears at the beginning of the sequence the same number of
times. This way we can determine whether the initial performance P11 (equal to
monolingual) improves with the introduction of new languages to the model. We
also look at the performance of the first language in order to isolate the effect of
backward transfer from that of forward transfer.

Notice that whether we focus on the first or the last language, we always look at
the performance at the end of the training sequence so that the comparison to
multilingual is fair.

Results

Our results on MultiATIS++ are reported in Table 4.6. We observe that continual
training benefits from cross-lingual forward transfer, as FTmono

1L is always positive
and higher than the standard deviation (except for Japanese). In fact, PLL is gen-
erally closer to multilingual than to monolingual performance. However, although
transfer is present in language L, the performance of the first language P1L suf-
fers from the opposite effect, even falling under monolingual performance. Our
results show that, contrary to what we expected from the identical slot values
of MultiATIS++ (e.g. American departure city and destination city in Turkish
utterances), the naturally occurring cross-lingual transfer completely vanishes in
previous languages.

Similar observations can be made from continual experiments on MultiCoNER,
whose results are presented in Table 4.7. Although forward transfer is high in
general, it is also lower than the standard deviation for Bengali, Hindi and Ko-
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Training DE EN ES FR PT ZH JA HI TR

Monolingual 94.4 (0.2) 95.6 (0.1) 88.9 (0.4) 93.2 (0.1) 90.3 (0.6) 93.3 (0.4) 93.1 (0.4) 82.4 (0.5) 71.3 (0.9)
Multilingual 95.0 (0.2) 96.0 (0.2) 90.4 (0.4) 94.0 (0.3) 91.4 (0.2) 93.6 (0.2) 93.0 (0.1) 87.2 (0.3) 85.2 (0.6)

Continual (PLL) 94.9 (0.2) 95.9 (0.1) 89.9 (0.5) 93.9 (0.3) 91.3 (0.3) 93.9 (0.3) 93.1 (0.3) 85.6 (0.7) 84.0 (0.6)
FTmono

1L +0.5 +0.3 +1.0 +0.7 +1.0 +0.6 +0.0 +3.2 +12.7
Continual (P1L) 94.0 (0.7) 95.5 (0.2) 89.2 (0.5) 91.4 (1.7) 88.4 (4.9) 92.0 (1.0) 91.7 (0.7) 80.5 (1.8) 68.1 (3.5)
BT1L -0.4 -0.1 +0.3 -1.8 -1.9 -1.3 -1.4 -1.9 -3.2

Table 4.6: Slot F1 performance on MultiATIS++ on test i sets for monolingual,
multilingual and continual experiments. The latter are calculated as the average
of the first (P1L) or last (PLL) language (indicated by the column) at the end of
the sequence. See Equations 4.2 and 4.3 for the definition of BT1L and FTmono

1L .
Reported values are the average of 5 runs with standard deviation shown in paren-
thesis.

Training BN DE EN ES HI KO NL TR ZH

Monolingual 41.6 (3.2) 64.1 (0.8) 61.3 (0.6) 59.0 (0.8) 43.1 (1.2) 56.7 (0.7) 61.4 (0.9) 45.7 (0.7) 57.6 (0.8)
Multilingual 44.9 (1.6) 66.9 (0.4) 64.4 (0.7) 63.8 (0.4) 46.4 (1.2) 59.4 (0.8) 66.5 (0.5) 50.6 (1.0) 58.2 (1.0)

Continual (PLL) 43.4 (1.8) 66.0 (0.6) 63.0 (0.6) 62.1 (0.9) 44.2 (1.0) 57.0 (0.7) 64.6 (0.6) 50.1 (0.8) 56.2 (1.3)
FTmono

1L +1.8 +1.9 +1.7 +3.1 +1.1 +0.3 +3.2 +4.4 -1.4
Continual (P1L) 31.7 (4.5) 50.9 (1.5) 52.5 (2.6) 51.1 (2.3) 32.2 (2.4) 43.2 (2.4) 55.4 (3.4) 37.4 (1.9) 40.0 (2.8)
BT1L -9.9 -13.2 -8.8 -7.9 -10.9 -13.6 -6.0 -8.3 -17.6

Table 4.7: Slot F1 performance on MultiCoNER on test i sets for monolingual,
multilingual and continual experiments. The latter are calculated as the average
of the first (P1L) or last (PLL) language (indicated by the column) at the end of
the sequence. See Equations 4.2 and 4.3 for the definition of BT1L and FTmono

1L .
Reported values are the average of 5 runs with standard deviation shown in paren-
thesis.

rean, and even negative for Chinese. As in MultiATIS++, the negative backward
transfer values also confirm the presence of forgetting in the first language learned.

Overall, we can see that continual training benefits from forward transfer, although
still not performing as well as the multilingual topline. At the same time, forgetting
is clearly present in the first language.

4.6 Effect of the training sequence

In order to better understand the effect of the training sequence on cross-lingual
transfer, we first look at measures of forward transfer at each position relative
to monolingual and multilingual. Secondly, we study the impact of the training
sequence length on backward transfer measured on the first language. This analysis
is conducted only on MultiATIS++ due to time and computational constraints.
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The results of this section are presented in the form of box plots. As shown in
Figure 4.12, the boundaries of each box constitute the 25th and 75th percentiles,
denoted as Q1 and Q3 respectively. We also show the median as an orange line
and the mean as a green dot. The boundaries of the whiskers are computed in
a standard manner: Q1 − 1.5 IQR and Q3 + 1.5 IQR, where IQR = Q3 − Q1 is
the interquartile range. Note that the whiskers can be asymmetrical because the
boundaries need to be represented by a data point. In our figures, we choose
the closest data point that is within the ideal boundaries described above (which
is common practice). Finally, any values outside of the whiskers are considered
outliers.
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Figure 4.12: Anatomy of a box plot as presented in this section.

Effect of language position on forward transfer

When considering forward transfer, Figure 4.13a shows that apart from the first
position (equal to monolingual), the model consistently benefits from transfer at
any point in the sequence, as performance is higher than monolingual. Interest-
ingly, due to some outlier languages (generally Hindi and Turkish), we observe
that the means are poor estimates of the distribution when measuring FTmono

i .
This is an indicator that commonly used continual transfer metrics might over- or
underestimate real performance when transfer is not uniformly distributed among
languages. Indeed, these metrics usually consist of averages across the adaptation
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Figure 4.13: Distributions of forward transfer on test i relative to (a) monolingual
and (b) multilingual for different positions i in the sequence. We average over 54
sequences and 5 runs. Note that forward transfer is 0 when performance is equal
to (a) monolingual and (b) multilingual. Outliers not shown for readability.

axis (Lopez-Paz and Ranzato, 2017). In Figure 4.13b, we also observe that per-
formance gets closer to multilingual as the sequence advances, although it rarely
outperforms it.

Effect of sequence length on backward transfer

As per backward transfer, Figure 4.14 shows that performance of the first language
is in general worse than monolingual for any given sequence length. In particular,
we observe that performance loss is not strictly monotonic, which means that
measuring forgetting between the beginning and the end of the sequence may not
be sufficient to explain how the model forgets. Note that a sequence of L = 7 would
have shown less forgetting than a sequence of L = 5 in this particular example.
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Figure 4.14: Distributions of first-language backward transfer BT1j = P1j−mono1
(higher is better) on test1 for different sequence lengths j. We average across 54
sequences and 5 runs. Note that BT1j = 0 if performance is equal to monolingual.
Outliers not shown for readability.

Furthermore, as hinted by the results from P1L and PLL, we observe that backward
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transfer deteriorates as forward transfer improves with the length of the sequence.
Since negative backward transfer (i.e. forgetting) tends to be linked to a loss
of previously acquired knowledge, it is surprising that new language performance
keeps increasing while the performance of known languages decreases.

The “progressively-improving initialization” hypothesis

Our results seem to indicate that the preserved knowledge that facilitates the ac-
quisition of a new language in multilingual BERT for slot-filling is not the same
knowledge that preserves previous language performance. This might be explained
by a progressive shift of model parameters towards a better multilingual initial-
ization for the ATIS task that might however fail to constitute a sufficiently good
solution for previous languages.

This hypothesis is depicted with an example in two dimensions in Figure 4.15, and
it motivates the experiments of the next section.

language 
solution space

Figure 4.15: Hypothesis on the progressive parameter shift towards a better mul-
tilingual initialization depicted in two dimensions. Model parameters mi are ob-
tained after training on data Di for language i, while mmulti is obtained after joint
multilingual training. Colored regions represent solution spaces for each Di, where
parameters closer to the center of region i obtain better performance on language
i. As the training sequence progresses, parameters move to the new solution space,
reducing their distance to mmulti after each training stage. However, models mi

never reach the optimal multilingual solution mmulti.
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4.7 Performance recovery

Given that forward transfer does not seem to be affected by forgetting, in this
section we investigate whether performance lost as a result of forgetting can be
recovered quickly after continual training. In other words, and using Figure 4.15
as a visual example, we attempt to determine how quickly model mL (the model
at the end of training sequence) can reach monolingual optimum m1, and even the
multilingual optimum mmulti.

The ability to recover is especially interesting for MultiCoNER, where forgetting
is considerably higher, but we still conduct experiments on both corpora. To in-
vestigate if this is possible, we set out to confirm whether the model is in fact
shifting towards a better multilingual initialization. To do this, we compare the
multilingual performance of the initial m0 (consisting of pre-trained BERT and a
randomly initialized classifier) against mL. In particular, we train both models
on all languages jointly (multilingual) and on each language individually (mono-
lingual) for different numbers of epochs and evaluate on each language. Notice
that mL is taken from our continual P1L experiments. The results are presented
in tables 4.8 and 4.9.

Training Model Epochs DE EN ES FR PT ZH JA HI TR

Multilingual

m0 (rnd clf)
1 82.7 (1.2) 83.6 (0.7) 78.2 (0.3) 80.7 (0.7) 79.4 (0.5) 83.5 (0.7) 82.7 (1.0) 79.6 (0.7) 69.8 (1.5)
5 94.7 (0.2) 95.3 (0.2) 89.9 (0.2) 93.2 (0.2) 90.7 (0.2) 94.0 (0.2) 93.2 (0.5) 85.9 (0.3) 83.6 (0.7)
50 95.0 (0.2) 96.0 (0.2) 90.4 (0.4) 94.0 (0.3) 91.4 (0.2) 93.6 (0.2) 93.0 (0.1) 87.2 (0.3) 85.2 (0.6)

mL
1 94.8 (0.3) 95.9 (0.2) 89.7 (0.6) 93.8 (0.3) 91.2 (0.4) 93.6 (0.5) 93.3 (0.3) 85.7 (0.9) 82.8 (1.3)
5 94.9 (0.2) 95.9 (0.2) 90.0 (0.5) 93.9 (0.3) 91.3 (0.4) 93.7 (0.4) 93.3 (0.3) 86.0 (0.8) 83.4 (1.0)

mL (rnd clf) 1 93.1 (0.5) 93.7 (0.5) 87.9 (0.5) 91.1 (0.5) 88.5 (0.6) 92.6 (0.5) 92.3 (0.6) 83.4 (0.8) 80.8 (1.3)
5 94.8 (0.2) 95.8 (0.2) 89.9 (0.5) 93.6 (0.3) 91.1 (0.4) 93.7 (0.4) 93.3 (0.3) 86.3 (0.6) 84.1 (0.8)

Monolingual

m0 (rnd clf) 50 94.4 (0.2) 95.6 (0.1) 88.9 (0.4) 93.2 (0.1) 90.3 (0.6) 93.3 (0.4) 93.1 (0.4) 82.4 (0.5) 71.3 (0.9)

mL

1 95.1 (0.2) 95.8 (0.2) 90.2 (0.4) 93.6 (0.4) 91.2 (0.4) 93.5 (0.5) 93.4 (0.2) 86.3 (0.6) 79.1 (1.5)
5 95.0 (0.2) 95.8 (0.2) 90.0 (0.4) 94.0 (0.2) 91.3 (0.2) 93.8 (0.4) 93.4 (0.2) 86.7 (0.4) 81.6 (0.8)
10 95.1 (0.2) 95.8 (0.2) 90.0 (0.5) 93.9 (0.3) 91.3 (0.4) 93.8 (0.4) 93.4 (0.2) 86.7 (0.4) 82.2 (0.9)

Table 4.8: Slot F1 performance on test i sets for MultiATIS++ fast recovery ex-
periments. Model mL monolingual performance is averaged over 3 sequences (the
P1L experiment ones starting with the language in question), while mL multilin-
gual is averaged over all 27 sequences from P1L experiments. Both m0 and mL

experiments are averaged over 5 runs (standard deviation in parenthesis).

On the multilingual qualities of mL

The comparison between m0 and mL shows two interesting results. On the one
hand, we observe that even one epoch of multilingual training for mL achieves
better performance than the monolingual baseline (m0 monolingual trained on the
maximum number of epochs) and is even close to the multilingual topline (m0
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Training Model Epochs BN DE EN ES HI KO NL TR ZH

Multilingual

m0 (rnd clf)
1 36.2 (1.4) 63.1 (0.8) 61.6 (0.6) 60.5 (0.6) 40.5 (1.4) 56.9 (0.4) 63.5 (0.7) 45.5 (0.6) 53.1 (2.4)
5 43.0 (1.1) 66.6 (1.0) 63.9 (0.2) 63.7 (0.6) 45.4 (1.5) 58.9 (0.7) 66.3 (0.7) 49.7 (1.4) 57.7 (1.5)
15 44.9 (1.6) 66.9 (0.4) 64.4 (0.7) 63.8 (0.4) 46.4 (1.2) 59.4 (0.8) 66.5 (0.5) 50.6 (1.0) 58.2 (1.0)

mL
1 42.7 (1.7) 65.8 (0.7) 63.6 (0.7) 63.0 (0.8) 44.8 (1.4) 58.8 (1.0) 65.9 (0.8) 49.8 (1.0) 56.7 (1.3)
5 43.8 (1.4) 66.4 (0.6) 64.1 (0.5) 63.5 (0.6) 45.4 (1.1) 59.2 (0.8) 66.4 (0.5) 50.6 (0.9) 57.6 (1.2)

mL (rnd clf) 1 42.6 (1.8) 65.5 (0.7) 63.3 (0.6) 62.7 (0.8) 44.7 (1.3) 58.7 (0.8) 65.7 (0.7) 49.6 (1.2) 56.6 (1.4)
5 43.7 (1.4) 66.3 (0.6) 63.9 (0.6) 63.4 (0.7) 45.2 (1.1) 59.1 (0.8) 66.2 (0.6) 50.4 (1.0) 57.6 (1.1)

Monolingual
m0 (rnd clf) 15 41.6 (3.2) 64.1 (0.8) 61.3 (0.6) 59.0 (0.8) 43.1 (1.2) 56.7 (0.7) 61.4 (0.9) 45.7 (0.7) 57.6 (0.8)

mL
1 41.8 (2.4) 65.5 (0.7) 63.7 (0.8) 61.6 (0.5) 44.2 (1.1) 57.6 (0.4) 64.6 (0.7) 49.5 (1.0) 56.0 (0.9)
5 43.6 (1.8) 66.5 (0.5) 64.0 (0.6) 62.4 (0.6) 45.4 (0.7) 57.9 (0.5) 65.0 (0.8) 50.7 (0.7) 58.3 (0.9)

Table 4.9: Slot F1 performance on test i sets for MultiCoNER fast recovery experi-
ments. Model mL monolingual performance is averaged over 3 sequences (the P1L

experiment ones starting with the language in question), while mL multilingual is
averaged over all 27 sequences from P1L experiments. Both m0 and mL experi-
ments are averaged over 5 runs (standard deviation in parenthesis).

multilingual trained on the maximum number of epochs)3. This means that mL is
capable of achieving good multilingual performance with very little training, hence
counteracting the effect of forgetting. On the other hand, we also observe that
mL multilingual performance is greatly superior to m0 multilingual after a single
training epoch. This is partly expected, as the classifier is initialized randomly in
m0, but it shows that the model is capable of retaining knowledge from previous
languages, although it is not clear whether that knowledge is preserved in the
classifier or in BERT.

On the localization of retained knowledge

We dive deeper into this question by training mL with a randomly initialized
classifier (see “mL (rnd clf)” in tables 4.8 and 4.9) so that no classifier has any
previous knowledge. Surprisingly, we observe that performance is still greatly
superior to m0 multilingual after a single epoch. However, performance is not
as high as mL multilingual (although slightly in MultiCoNER), which keeps its
continually trained classifier. This indicates that most of the knowledge retained
from previous languages is localized in BERT, and that the knowledge stored in the
classifier may be corpus-dependent instead. Because of this, our results show that
the widely adopted strategy of freezing parameters to protect previous knowledge
(see constraint-based continual learning methods in Section 2.4.3) may in fact be
counterproductive, as it is likely to hinder forward transfer, and hence recovery
capabilities.

3Except for Chinese on MultiCoNER, which is not surprising, as joint transfer is negligible.
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From a progressively-improving initialization to fast recovery

Overall, these results lead us to think that for the sequence labeling task, con-
tinual training over a language sequence does indeed shift model parameters to a
better multilingual initialization. As a result, we explore the possibility to lever-
age this phenomenon in order to quickly recover lost language specificities (due to
forgetting) for both corpora. To do this, we train mL on the first language of the
sequence a second time (i.e. as if it were an (L + 1)th language) and evaluate on
the first language only (see “mL monolingual” rows in tables 4.8 and 4.9).

When comparing mL monolingual to m0 monolingual (equal to first language per-
formance P11), we see that the performance of the first language can be recovered
and even improved with as little as a single training epoch4. These results are
outstanding for MultiCoNER considering the high forgetting that we previously
observed. On MultiATIS++, mL monolingual even achieves 50-epoch m0 multilin-
gual performance in most cases after only one epoch, with the remaining languages
still showing a large improvement. In particular, Hindi and Turkish improve an
absolute 3.9% and 7.8% from m0 monolingual respectively.

Note that for MultiATIS++ increasing the number of recovery epochs for the first
language does not bring considerable improvements. The only exception to this
observation is Turkish, which might be explained by the small size of its training
set. However, performance still improves after 5 epochs in MultiCoNER, getting
closer to the multilingual topline. Surprisingly, mL monolingual is even on par
with the multilingual topline for Turkish and Chinese.

Although the cost of adding a language remains O(N), the ability to recover all
languages raises costs to O(LN), making it expensive to use in practice. The
design of a strategy taking full advantage of these recovery capabilities to limit
forgetting with lower costs is left for future work.

4.8 Conclusion

In this chapter, we have presented an analysis of cross-lingual transfer in continual
learning for sequence labeling using multilingual BERT (Devlin et al., 2019) as well
as the MultiATIS++ (Xu et al., 2020) and MultiCoNER (Malmasi et al., 2022a)
corpora for slot-filling and named entity recognition respectively.

In practical low resource scenarios where data and annotations are scarce (e.g. a
dialogue system progressively deployed in multiple countries), it may be difficult
or even impossible to implement either a monolingual or multilingual fine-tuning

4Except for Chinese on MultiCoNER, which is not surprising, as joint transfer is negligible.
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approach. This is mainly due to the high time and space complexity, and to the
fact that not all language data might be available at once. In a continual learning
setting where languages are learned in sequence, these costs are the lowest, but
the phenomenon of forgetting appears, decreasing previous-language performance.

After extensive experiments conducted on a large array of sequences with languages
arranged in different orders, we reach the following conclusions.

Relationship between transfer and forgetting. The joint cross-lingual trans-
fer typically observed in pre-trained Transformer-based models like multilingual
BERT is almost entirely retained in the form of forward transfer, but the model
still fails to retain its performance on previously learned languages. This high
forward transfer may be linked to a progressive shift of model parameters towards
a better multilingual initialization, that still fails to reach optimal multilingual
performance on all languages at the same time.

Model parameters and acquired knowledge. Most knowledge from past lan-
guages seems to be stored in the contextual word embedding model BERT and not
in the task-specific classifier that we appended to it. This suggests that morphing
the representation space may allow for more effective forward transfer than learn-
ing to exploit fixed pre-trained general-purpose embeddings. Moreover, it shows
that relying on partial or total parameter freezing (like constraint-based and some
modular approaches to continual learning) may in fact be counterproductive and
hinder forward transfer.

Performance recovery. The high occurring forward transfer allows the model
to quickly recover lost performance (due to forgetting) in an astoundingly short
number of epochs, and even achieve joint multilingual performance. We believe
future approaches to address catastrophic forgetting could take advantage of this
phenomenon. However, it remains unclear if it is possible to reduce the associated
time and space costs to turn this into a viable alternative.

Finally, we also find that current continual learning metrics may need to be adapted
in order to better estimate the distribution of transfer across the adaptation axis.
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Chapter 5

Autonomous streaming speaker
diarization

“Quintessence of learning: being able to
adapt to unpredictable conditions as quickly
as possible.”

— Stanislas Dehaene, How We Learn

Despite the valuable insights from the previous chapter, one of the key missing
pieces in our study was the ability to learn from unlabeled data, which is far more
commonly found in the production phase. In this chapter, we take a step in this
direction by leveraging the metric learning representations obtained in Chapter 3
to adapt a modular streaming speaker diarization system to a live conversation in
real time.

The chapter is structured as follows. In Section 5.1, we introduce the task of
speaker diarization and our motivations. In Section 5.2, we discuss previous work,
and in particular the recent end-to-end speaker diarization method that consti-
tutes one of the main pillars of our approach. Next, in Section 5.3, we introduce
the modular speaker diarization system that we propose and describe its build-
ing blocks. In Section 5.4, we present the incremental clustering algorithm we
propose to continually refine speaker representations as the target conversation
progresses. We also present our experimental protocol and discuss the results we
obtain. Finally, in Section 5.5, we conclude the chapter with our final remarks.

This chapter has been the subject of the following scientific publication:

Juan M. Coria, Hervé Bredin, Sahar Ghannay, and Sophie Rosset. Overlap-
Aware Low-Latency Online Speaker Diarization Based on End-to-End Local Seg-
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mentation. In IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), Online, 2021.

5.1 Introduction

It is hard to deny that speech recognition applications have gained substantial
traction in recent years. Machine learning systems capable of transcribing speech
with astonishing performance are now widely available as full-fledged services and
products. Some of these are even capable of real-time processing, effectively pro-
ducing high-quality transcriptions as people speak.

Speaker diarization, the task of determining “who speaks when” in an audio record-
ing, has traditionally been considered a pre-processing step to improve speech
recognition systems (Park et al., 2022). However, it is also crucial for generating
metadata and summaries, searching content, and organizing transcriptions in an
easily readable format. In particular, online speaker diarization, where a system
must recognize speakers in a streaming fashion as the conversation takes place,
is extremely challenging and represents one of the major unsolved problems in
modern diarization.

not yet happened

audio stream

prediction

past

?

past not yet happened

current 
buffer

?

current
output

short
future

context

Figure 5.1: At any point in time t, an online speaker diarization system only has
access to audio in the past. The latency λ, defined as the delay relative to t for
which the system outputs a prediction, can be chosen to be the duration λstep of
the step (i.e. the “refresh rate” of the input buffer) plus the duration λcontext of
a short extract of local future context (to provide useful additional information).
Predictions in different colors denote different speakers.
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As depicted in Figure 5.1, the main difficulty lies in the fact that future audio
is inaccessible at a given point in time t of the conversation. This means that
contrary to offline diarization, where the entire conversation is available from
start to finish, known speakers may need to be re-identified and new speakers may
need to be detected.

In theory, a true online speaker diarization system should process a single audio
sample at a time. However, due to the limits of currently available computational
resources, this input is typically defined as a short audio buffer updated every λstep

seconds. This introduces the concept of the algorithmic latency λ, defined as the
delay relative to t for which the system outputs a prediction. In order to have
the maximum responsiveness, one could set λ = λstep, but in some cases it is
also possible to allow a certain delay λcontext to provide a peek of the immediate
future audio (with respect to the current prediction). This local future context
may provide additional useful information for the system to exploit at the expense
of responsiveness. In this sense, the algorithmic latency is defined as λ = λstep +
λcontext. It is worth noting that the real time latency is an additional variable at
play that contributes to the responsiveness perceived by the user. This latency
is defined as the time for the entire system to compute a prediction for a single
state of the buffer, and it is highly dependant on both the implementation and the
hardware. As a consequence, it is kept out of our study.

In the context of our work, online speaker diarization is an excellent candidate
for continual adaptation in the production phase, as conversations might differ
in language, microphone quality, or acoustic conditions, among others. In fact, a
diarization system could learn from unlabeled audio (collected as time passes) in a
target conversation in production to adapt to its specific conditions and maximize
performance in full autonomy.

In order to recognize the various speakers in a conversation, diarization systems
have typically relied on speaker embeddings (Madikeri et al., 2015; Snyder et al.,
2018) to cast the comparison of speaker identities as a simpler scoring function.
This allows to extract multiple embeddings from a recording and discover speakers
through clustering (Diez et al., 2018; Lin et al., 2019). In Chapter 3, we have seen
that metric learning techniques can provide a reliable way to compare speakers
using a simple function like the cosine distance. We found this technique to be
particularly useful in open-set problems, where the model is confronted with new
classes in the production phase, instead of new instances of the same classes. Since
speaker diarization does not restrict speakers to a fixed set, it can be considered
an open-set problem as well.

For all these reasons, in this chapter we choose to study the problem of online
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speaker diarization. More specifically, we propose a modular system with a low and
adjustable latency that leverages incremental clustering of the speaker embeddings
that we trained in Chapter 3. Furthermore, our study puts a special focus on the
possibility of improving internal speaker representations as the conversation takes
place, which opens the possibility for autonomous unsupervised learning.

5.2 Related work

In this section, we discuss relevant background work in speaker diarization. We
also define the most common metric with which speaker diarization systems are
evaluated: the diarization error rate.

5.2.1 Multi-stage approaches

Most dependable diarization systems consist of a cascade of several steps (Anguera
et al., 2012; Diez et al., 2018) as depicted in Figure 5.2: voice activity detection
to discard non-speech regions, speaker embedding (Madikeri et al., 2015; Snyder
et al., 2018) to obtain discriminative speaker representations, and clustering (Diez
et al., 2018; Lin et al., 2019; Landini et al., 2020) to group speech segments by
speaker identity. The main limitation of this family of multi-stage approaches
lies in the handling of overlapped speech, which is known to be one of its major
weak points (Anguera et al., 2012). In fact, common approaches simply ignore
the problem, or address it a posteriori as a final post-processing step based on
a dedicated overlapped speech detection module (Otterson and Ostendorf, 2007;
Bullock et al., 2020; Horiguchi et al., 2021; Bredin and Laurent, 2021).

5.2.2 End-to-end approaches

A new family of approaches has recently emerged, rethinking speaker diarization
completely. Named end-to-end diarization (EEND), the main idea of this approach
is to train a single neural network (in a permutation-invariant manner) to ingest
an audio recording and produce the overlap-aware diarization output directly (Fu-
jita et al., 2019; Fujita et al., 2019). Despite being competitive with multi-stage
approaches, the main limitation of the overlap-aware end-to-end methods is the
strong assumption that the number of speakers is upper bounded or even known a
priori. While reasonable for some particular use cases (e.g. one-to-one phone con-
versations), this assumption does not hold in many other situations (e.g. physical
meetings or conference calls).

One solution to this problem is to augment end-to-end approaches with mecha-
nisms to automatically estimate the number of speakers. For instance, EEND-
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Voice Activity Detection

Speaker Embedding

Speaker Clustering

Overlapped Speech Detection

Speech Labeling

Figure 5.2: Multi-stage speaker diarization consists of voice activity detection,
speaker embedding and clustering. In some cases, an overlapped speech detection
module is added as well.

EDA (Horiguchi et al., 2020) extends EEND (Fujita et al., 2019; Fujita et al.,
2019) with a recurrent encoder-decoder network to generate a variable number
of attractors, which can be considered similar to speaker centroids. Multi-stage
approaches usually do not suffer from this limitation, as they rely on a clustering
step for which a growing number of techniques exists to accurately estimate the
number of speakers (Park et al., 2019).

Following Fujita et al. (2019) and Bredin and Laurent (2021), end-to-end speaker
diarization (also called segmentation) is modeled as a multi-label classification
problem. In our case, we use model m from Bredin and Laurent (2021), which
is trained to ingest a 5s audio chunk x and produce speaker activity probabilities
m(x) = {s1, . . . , sF} as depicted in Figure 5.3, where F is the number of output
frames and sf ∈ [0, 1]Kmax , with Kmax the estimated maximum number of different
speakers in an input.

Since the diarization error rate is not affected by speaker naming (more on this
in Section 5.2.4), any permutation of speakers in the output is essentially equiv-
alent. In order to avoid any unwanted association of speakers to output indices,
model gradients are computed on the speaker permutation that minimizes the bi-
nary cross entropy loss. This strategy, initially proposed in the context of source
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Figure 5.3: The speaker segmentation model m takes an input x and outputs
speaker activity probabilities m(x). Predictions ŷ are obtained by binarizing m(x)
with a fixed threshold θ. Different output colors denote different speakers.

separation (Yu et al., 2017; Kolbæk et al., 2017) and later adapted to speaker
diarization (Fujita et al., 2019), is known as permutation-invariant training, and
its loss function is defined as:

L(y,m(x)) = min
perm∈P

LBCE(perm(y),m(x)) (5.1)

where y is the reference annotation for x, LBCE is the frame-wise binary cross
entropy loss and P the set of all possible speaker permutations of y.

Since the optimal permutation of speakers (the one with lowest LBCE) can be
defined as a one-to-one assignment problem, it is normally determined using the
Hungarian algorithm (Kuhn, 1955), whose time complexity is O(K3

max). Conse-
quently, in the interest of accelerating the training process, it is convenient to
choose a low value for Kmax. In a speaker count analysis performed by Bredin and
Laurent (2021) on the composite training set made of DIHARD III (Ryant et al.,
2020b), VoxConverse (Chung et al., 2020) and the AMI meeting corpus (Carletta,
2007) (described in more detail in Section 5.4.4), the authors found that 99% of
all 5s audio chunks contained 4 speakers or less. For this reason, we also choose
to set Kmax = 4.
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5.2.3 Online speaker diarization

As mentioned in the introduction, the primary focus of our study is low-latency
online speaker diarization, which differs from its offline counterpart in several ways.
In particular, while the latter assumes that the whole audio sequence is available
at once (and hence can rely on multiple passes over the entire recording to output
its final prediction), the former ingests a possibly infinite audio stream and can
only afford a short delay between when it receives a buffer of audio and when it
outputs the corresponding prediction (without the option to correct it afterwards).

These additional constraints make state-of-the-art multi-stage approaches like VBx
(Landini et al., 2022) unfit for this setting, as they heavily rely on the possibility to
pass several times over the audio sequence. EEND-like approaches are not suitable
either because they expect large chunks of audio (30 seconds or more), leading to a
prohibitively high latency. One notable exception is FlexSTB (Xue et al., 2021b)
that astutely relies on an adaptive internal buffer to both simulate large audio
chunks and support low (1s) latency.

5.2.4 Evaluation

Speaker diarization is typically evaluated using the diarization error rate (DER).
This metric is defined as the sum of three types of error: false alarm (FA), missed
detection (Miss), and speaker confusion (Conf). False alarm and missed detection
are complementary error metrics defined as the duration of non-speech labeled as
speech, and of speech labeled as non-speech, respectively. In case of correct speech
detection, speaker confusion represents the duration of speech that is labeled with
an incorrect speaker. More formally, the DER is defined as follows:

DER =
FA+Miss + Conf∑S

s duration(s)
(5.2)

where S is the set of all speech segments in the ground truth (irrespective of the
speaker). In this context, note that false alarm errors can lead to a DER > 1. A
visual explanation of the different error types is shown in Figure 5.4.

Since the speaker sets between the ground truth and the prediction can differ, the
calculation of the DER is always preceded by a speaker mapping step in which
both speaker sets are aligned. A common method to solve this alignment is to use
the well-known Hungarian algorithm (Kuhn, 1955) to find the one-to-one mapping
with minimal speaker confusion. This mapping procedure is depicted in Figure 5.4
on simple prediction and ground truth labels.
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Figure 5.4: Computation of the diarization error rate (DER). First, a mapping
between prediction and ground-truth speakers is computed to find a common la-
beling scheme. Second, the DER is determined using false alarm (FA), missed
detection (Miss) and speaker confusion (Conf) errors.

In order to account for human errors in the annotation process, some evaluation
protocols in the literature employ what is commonly known as a forgiveness collar,
which is a short duration (e.g. 250ms on each side) around the ground truth
segment boundaries that is ignored when computing the DER.

5.3 Building blocks

In our work, we propose to combine the best of both worlds (Kinoshita et al., 2021)
and meet half-way between multi-stage and overlap-aware end-to-end diarization.
To this end, we design a multi-stage pipeline where overlapped speech is a first-
class citizen in every single step.

As depicted in Figure 5.5, we address online speaker diarization as the iterative
interplay between two main steps: segmentation and incremental clustering. Ev-
ery few hundred milliseconds (referred to as the step), the segmentation module
first performs a fine-grained overlap-aware diarization of a 5s rolling buffer (small
enough to reasonably estimate an upper bound on the local number of speak-
ers Kmax). This local diarization is then ingested by the incremental clustering
module that relies on speaker embeddings to map local speakers to the appropri-
ate global speakers (or create new ones), before updating its own internal state. As
we will see in Section 5.4.3, since the step constitutes a lower bound for the latency
of the entire system, we choose to use a step of 500ms, which allows our approach
to work in scenarios requiring up to half the latency of the current state-of-the-art
system FlexSTB (Xue et al., 2021b).

In this section, we describe the two main building blocks on which our online
system is based: speaker segmentation and overlap-aware speaker embedding ex-
traction.
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Figure 5.5: Proposed online speaker diarization approach.

5.3.1 Speaker segmentation

Our method relies on the speaker segmentation model introduced by Bredin and
Laurent (2021) and summarized in Section 5.2.2. However, our work addresses a
very different problem with radically different constraints. While Bredin and Lau-
rent (2021) perform local offline speaker diarization of extremely short 5s chunks
of audio, we address online speaker diarization of (possibly infinite) audio streams.
Hence, our work extends Bredin and Laurent (2021) with a mechanism to track
speakers over the duration of a conversation, with a latency much lower than 5s
and real-time processing.

The segmentation step is the direct application of this neural network, which is
used to obtain a fine-grained local speaker diarization. As shown in Figure 5.6,
speakers whose activity probability exceeds a tunable threshold τactive at least once
during the chunk constitute the set of local speakers, and any inactive speakers
are simply discarded. Active speaker probabilities are then passed unchanged (i.e.
with continuous values between 0 and 1) to the incremental clustering step. In
particular, it means that overlapping speech (i.e. when two or more speakers have
high activity probabilities simultaneously) is handled from the very beginning of
the pipeline. This is in contrast with most dependable speaker diarization ap-
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Figure 5.6: Binarization of the local segmentation output with τactive.

proaches that handle overlapping speech as a post-processing step (Landini et al.,
2020; Bredin and Laurent, 2021). This early detection of overlapping speech will
prove very useful for the incremental clustering module.

5.3.2 Overlap-aware speaker embedding

Like most recent speaker diarization systems, we rely on neural speaker embeddings
to represent and compare speakers. We use the same model architecture as in our
speaker verification experiments from Chapter 3 (illustrated in Figure 5.7), which
is based on the canonical x-vector architecture, trained to ingest a short audio
extract and produce a single speaker embedding.

Contrary to this design choice, one of the requirements of our proposed system is to
be able to extract multiple embeddings from the rolling buffer (one per speaker). A
simple solution is to exploit the predicted speaker segmentation to split the rolling
buffer into single-speaker areas and extract embeddings from those regions. How-
ever, extracting meaningful information from very short audio can be extremely
challenging.

This is why we propose to modify the statistics pooling layer (Snyder et al., 2018)
(see Figure 5.7) to return the concatenation of weighted mean µk and weighted
standard deviation σk for each active speaker k (instead of the regular mean µ and
standard deviation σ):
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Figure 5.7: End-to-end speaker embedding model architecture (derived from x-
vector) that we used in Chapter 3.

µ =

∑
f xf

F
−→ µk =

∑
f wfk · xf∑

f wfk

(5.3)

σ2 =

∑
f (xf − µ)2

F − 1
−→ σ2

k =

∑
f wfk · (xf − µk)

2(∑
f wfk

)
−

∑
f wfk

2∑
f wfk

where xf is the output of frame f of the last time-delay neural network (TDNN)
layer. One straightforward option is to derive wfk from the speaker activity proba-
bilities sfk obtained from the segmentation model and set wfk = sfk directly. This
way, the final (pooled) speaker embedding mostly relies on frames where the seg-
mentation model is confident that speaker k is active. This generates exactly one
embedding per active speaker in the current buffer, even when split into multiple
speech turns (e.g. the green speaker in Figure 5.8).

However, as explained by Bredin and Laurent (2021), the segmentation model is
also very good at detecting overlapped speech regions (where two or more speak-
ers are active simultaneously). Therefore, another option is to make the speaker
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Figure 5.8: Effect of Equation 5.4 with γ = 3 and β = 10. Top row is the actual
output sf of the segmentation model on a 5s excerpt of file DH_DEV_0007 from
DIHARD III. Bottom row depicts weights wf used for statistics pooling. Both low
confidence and overlapped speech regions are weighed down.

embedding focus on frames where it is confident that speaker k is the only active
speaker:

wf =
(
sf · softmax

k
(β · sf )

)γ

(5.4)

The effect of this transformation is illustrated in Figure 5.8. The use of softmax
weighs down frames where two or more speakers are active, and the exponent
γ > 1 weighs down frames where the segmentation model is not confident about
the activity of a speaker. Embeddings extracted with this weighing scheme are
called overlap-aware speaker embeddings in the rest of the chapter.

This entire procedure is illustrated in Figure 5.9. To summarize, we exploit infor-
mation from the speaker segmentation model to compute per-speaker statistics,
allowing the extraction of multiple embeddings from a single rolling buffer.

5.4 Proposed continual learning approach

In this section, we describe the various sub-components that constitute our incre-
mental clustering approach. As mentioned previously, our goal is to progressively
refine speaker representations as time passes in order to better recognize the speak-
ers in the target conversation. Finally, we describe the experimental protocol we
use to assess the effectiveness of our approach, and we present and discuss the
results we obtain.

5.4.1 Constrained incremental clustering

Because the segmentation model is trained in a permutation-invariant manner
and applied locally to the rolling buffer, one cannot guarantee that one particular
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Figure 5.9: Extraction of overlap-aware speaker embeddings. The speaker activity
probabilities are used to calculate the weighted mean and standard deviation per
speaker in the statistics pooling layer of the speaker embedding model.

speaker consistently activates the same index over time. Figure 5.10 illustrates
this limitation for two states of the rolling buffer: despite being only 500ms apart
from each other and therefore having most of their audio content in common,
notice how both active speakers are swapped. In this section, we describe how we
use incremental clustering to circumvent this limitation by tracking speakers (and
detecting new ones) over the whole duration of the audio stream.

Given the initial content of the rolling buffer, the segmentation and embedding
steps are combined to extract one embedding for each active speaker in the first 5s
of the audio stream. These speaker embeddings {c1, . . . , cK} are stacked to form
the initial centroid matrix C with shape K ×D where K is the number of active
speakers so far, and D is the dimension of the speaker embeddings.

Every few hundred milliseconds (in our case 500ms), the rolling buffer is updated,
and the segmentation and speaker embedding steps are combined to extract one
embedding for each of the Kbuffer ≤ Kmax locally active speakers. These Kbuffer

speaker embeddings are then compared to the current state of the centroid matrix
C to find the optimal mapping m∗ between local and global speakers. Denoting
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Figure 5.10: Real output sf of the segmentation model on two consecutive posi-
tions of the 5s rolling buffer in file DH_DEV_0001 from DIHARD III. Because of
permutation-invariant training, green and red speakers are swapped.

d (c, e) the distance between centroid c and local speaker embedding e, one option
is to assign the kth local speaker to the closest centroid:

m∗(k) = argmin
c∈C

d(c, ek) (5.5)

Yet, this simple option does not take full advantage of the output of the seg-
mentation model, as two local speakers might end up being assigned to the same
centroid. This would be in contradiction to the output of the segmentation model
that already chose to discriminate local speakers. Therefore, we add the constraint
that any two local speakers cannot be assigned to the same centroid, while keeping
the objective of minimizing the overall distance between local speakers and their
assigned centroids:

m∗ = argmin
m∈M

∑
k

d(m(k), ek) (5.6)

where M is the set of mapping functions between local speakers and centroids
with the following property:

k ̸= k′ =⇒ m(k) ̸= m(k′) (5.7)

In practice, this optimal mapping is obtained by applying the Hungarian algo-
rithm (Kuhn, 1955) on the speaker-to-centroid distance matrix, and can be seen
as an incremental clustering step with cannot-link constraints.

5.4.2 Detecting new speakers and updating centroids

One of the many difficulties of online diarization lies in the detection of new speak-
ers that can appear at any time. In order for our system to be effective, it must
be able to detect them and re-identify them in the future. Moreover, since the
available audio at the beginning of the conversation is very short, even the initial
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centroids are expected to lack sufficiently discriminative information to correctly
represent the target speakers. This is why our incremental clustering approach
relies on continual adaptation by progressively refining the centroid matrix C with
local information.

Once the optimal mapping m∗ is determined, for any given local speaker k and
their local embedding ek

• if d(m∗(k), ek) > δnew, they are marked as new speaker (i.e. it is the first
time they are active since the beginning of the audio stream) and their em-
bedding ek is appended to the centroid matrix:

C ← [C; ek]

• otherwise, they are marked as returning speaker, and their embedding ek is
used to update the corresponding centroid.

A visual example contrasting a returning speaker against a new speaker is shown
in Figure 5.11.

norm = 1

embedding

centroid

Figure 5.11: Speaker recognition in incremental clustering. Given that d(c1, eA) >
δnew and d(c2, eA) > δnew, local speaker A is considered a new global speaker that
has not been seen before. In contrast, since d(c1, eB) ≤ δnew, local speaker B is
detected as global speaker 1.

Because of the weighing scheme described before, the quality of a speaker embed-
ding ek is expected to be positively correlated with the estimated duration during
which local speaker k is active: ∆k =

∑
f sfk. Therefore, we propose to update a

centroid only when this duration is long enough:
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cm∗(k) ←
{
cm∗(k) + ek if ∆k > ρupdate

cm∗(k) otherwise
(5.8)

where ρupdate is the minimum duration below which a speaker embedding ek is
considered to be too noisy to help refine the centroid. Equation 5.8 assumes that
speaker embeddings ek are unit-normalized and optimized for cosine similarity.

It is worth noting that in the categorization of continual learning methods discussed
in Chapter 2, our system could be defined as a type of memory-based approach
(see Section 2.4.2) in which the external memory is a progressively refined speaker
centroid matrix. However, our approach possesses two key advantages with respect
to memory-based methods. First, since the refinement of speaker centroids is not
tied to gradient-based learning, which is usually linked to catastrophic forgetting
because of drastic model parameter shifts (Hadsell et al., 2020), we effectively
avoid one of the main causes of forgetting. Second, the size of the centroid matrix
does not grow uncontrollably if left unbounded, as the number of speakers in a
conversation is typically rather low. As a result, our system may also be a viable
alternative in low-resource scenarios, where a low memory footprint is key.

5.4.3 Latency adjustment

Even though the whole [t− 5s, t] buffer is used to extract embeddings and assign
local speakers to an existing (or new) centroid, only the (active) speaker activity
probabilities sfk at its rightmost part [t − λ, t] are output: λ effectively controls
the latency of the whole system.

As mentioned in the introduction, the latency is defined as λ = λstep + λcontext.
The lowest possible value for λ corresponds to setting λcontext = 0, and hence
λ = λstep (500ms in our case). In this configuration, the rightmost parts of two
consecutive buffer states [t− 5s, t] and [t+ λ− 5s, t+ λ] do not overlap: [t− λ, t]
and [t, t + λ]. Therefore, they are simply concatenated, and frame-level speaker
activity probabilities are passed through a final thresholding step. Local speaker
k is marked as active at frame f if sfk > τactive.

The careful reader might have noticed that at the very beginning of the audio
stream, the initial buffer must be filled entirely before a first output can be provided
– effectively leading to a much larger latency of 5s, an order of magnitude larger
than the promised λ = 500ms. However, once this initial 5s warm-up period has
passed, the latency is indeed λ = 500ms. If having a low latency from the very
beginning of the stream is critical, one can simply add zero padding in the initial
range [0, λ]. In practical terms, this is essentially equivalent to a scenario where
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nobody speaks during the first 4.5s (at most), which should pose no particular
difficulty for our system. As a result, we believe this should have minimal impact
in performance, especially in longer conversations.

Figure 5.12 shows that, for cases where a longer latency λ is permitted, several
positions of the rolling buffer can be combined in an ensemble-like manner to obtain
a more robust output. In practice, for a given frame f , the final speaker activity
probabilities are computed as the average of the speaker activity probabilities
obtained from each buffer position.

au
di
o

current
buffer

penultimate
buffer

ante-pen.
buffer

tt-5s t-λ

aggregate

ou
tp
ut

binarize

τactive

Figure 5.12: Depending on the allowed latency λ (between 500ms and 5s), multiple
windows of the rolling buffer can be aggregated to obtain a (hopefully better)
prediction. Speakers are colored according to their assigned clusters.

5.4.4 Experiments

In this section, we describe the corpora we use: DIHARD III (Ryant et al.,
2020b,a), VoxConverse (Chung et al., 2020) and AMI (Carletta, 2007), as well
as our experimental protocol and implementation details.

The DIHARD III corpus

DIHARD III (Ryant et al., 2020b,a) is the third installment in a series of cor-
pora associated to the DIHARD speaker diarization challenges, which attempt
to provide a standard evaluation corpus for single-channel diarization systems.
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One of the motivations of DIHARD is to provide diarization scenarios in several
challenging conditions (e.g. in terms of recording environment, ambient noise, re-
verberation, number of speakers, etc.) and from a wide variety of domains (e.g.
meetings, audiobooks, restaurant conversations, etc.).

The third installment of the corpus is built on its previous version, providing
two additional domains: conversational telephone speech (CTS) and clinical. For
convenience, we provide the entire list of domains in the corpus alongside a short
description in Table 5.1. As noted by Ryant et al. (2020b), the manual annotation
process in the creation of DIHARD II was extremely slow and costly. Consequently,
DIHARD III is first transcribed on a speaker-turn basis and then automatically
force-aligned to establish time boundaries. At the same time, recycled recordings
from DIHARD II are kept with their existing manual annotations.

Domain Description

Audiobooks English recordings of speakers reading book passages
Broadcast interview Radio interviews from the decade of 1970
Clinical Interviews for the diagnosis of autism in children
Courtroom Arguments from the 2001 term of the U.S. Supreme Court
CTS 10-minute telephone conversations between two native English speakers
Maptask A “leader” speaker telling a map route to a “follower” speaker
Meeting Meeting recordings
Restaurant Restaurant conversations
Socio field Sociolinguistic interviews in field conditions
Socio lab Sociolinguistic interviews in quiet and controlled conditions
Webvideo English and Mandarin videos collected from the Internet

Table 5.1: Short description of the domains included in DIHARD III as explained
by Ryant et al. (2020a).

DIHARD III contains only development and evaluation subsets, each of them
further divided into a Core set, balanced in terms of domain duration (around
2hs per domain), and a larger Full set, including all available data. More detailed
information about the corpus and its subsets is shown in Table 5.2.

The VoxConverse corpus

Similarly to the VoxCeleb corpora (Nagrani et al., 2017; Chung et al., 2018) (see
Section 3.3.2), the VoxConverse corpus is the result from an automatic data col-
lection pipeline from YouTube videos consisting of several steps. First, a list of
candidate videos is selected based on search terms like “panel debate” and “discus-
sion”, in order to maximize the chances of alternate speaking and overlap. Then,
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Development Evaluation
Core Full Core Full

Number of recordings 181 254 184 259
Duration (in hours) 23.9 34.2 22.7 33.0
% of speech 78.4 79.8 77.4 79.1
% of speech overlap 10.0 10.7 8.8 9.4

Table 5.2: Description of the DIHARD III corpus as presented by Ryant et al.
(2020b). The percentage of overlapping speech is computed over the entire dura-
tion (counting both speech and non-speech).

an automatic process combining face tracking, mouth movements and the audio
track is used to determine when each person speaks. Finally, the data undergoes
a manual verification procedure to ensure that the desired annotation quality is
met.

In the same way as DIHARD III, VoxConverse provides only two subsets: devel-
opment and evaluation, each further described in Table 5.3.

Development Evaluation

Number of recordings 216 232
Duration (in hours) 20.3 43.5
% of speech 93.2 89.6
% of overlap 3.8 3.1

Table 5.3: Description of the VoxConverse corpus as presented by Chung et al.
(2020). The percentage of overlapping speech is computed over the entire duration
(counting both speech and non-speech).

The AMI meeting corpus

The Augmented Multi-party Interaction (AMI) corpus (Carletta, 2007) (not to
confuse with the automatic misogyny identification corpus introduced in Chap-
ter 3) is the result of collecting a combination of real and scenario-driven meetings
in English, recorded with a variety of microphones and video cameras in three dif-
ferent rooms. The corpus amounts to a total of 100 hours of audio and is labeled
for a wide variety of tasks, including transcriptions, named entities, summaries,
emotions, locations, among others.

The corpus provides official training, development, and test subsets of the Mix-
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Training Development Evaluation

Number of recordings 136 18 16
Duration (in hours) 80.7 9.7 9.1
% of speech 81.9 78.5 80.4
% of overlap 13.2 13.4 15.8

Table 5.4: Description of the AMI meeting corpus. The percentage of overlap-
ping speech is computed over the entire duration (counting both speech and non-
speech).

Headset audio files (Carletta, 2007) that are further described as the Full par-
titioning in (Landini et al., 2022). This data consists of the combination of the
recordings from the participant headsets (instead of the far-field microphones) and
is the data we use in all the experiments of this chapter. Further details about the
composition of the corpus are shown in Table 5.4.

Experimental protocol

DIHARD III (Ryant et al., 2020b,a) does not provide a training set. Therefore,
we split its development set into two parts: 192 files used as training set, and the
remaining 62 files used as a smaller development set. For simplicity, the latter
is referred to as the development set in the rest of the chapter. When defining
this split1, we made sure that the 11 domains were equally distributed between
both subsets. The test set is kept unchanged. We also report performance on
DIHARD II (Ryant et al., 2019) for comparison with FlexSTB (Xue et al., 2021b).

VoxConverse does not provide a proper training set either (Chung et al., 2020).
Therefore, we also split its development set into two parts: the first 144 files (abjxc
to qouur, in alphabetical order) constitute the training set, leaving the remaining 72
files (qppll to zyffh) for the actual development set. Furthermore, multiple versions
of the VoxConverse test set have been circulating: we rely on version 0.0.22.

AMI provides an official {training, development, test} partition of the Mix-
Headset audio files (Carletta, 2007) (Full partitioning described in Landini et al.
(2022)), so we use it in our experiments without modifications.

While the same pre-trained segmentation and embedding models were used for
all three corpora, we rely on their respective development sets to optimize hyper-
parameters (τactive, ρupdate and δnew) specifically for each corpus. More precisely, we

1available at huggingface.co/pyannote/segmentation
2available at github.com/joonson/voxconverse
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use the pyannote.pipeline optimization toolkit that relies on a tree-structured
Parzen estimator algorithm (Bergstra et al., 2011) to minimize the overall diariza-
tion error rate – computed with pyannote.metrics (Bredin, 2017a) without any
forgiveness collar and including overlapped speech regions.

We also compare our system against several approaches. On the one hand, we
define the VBx system (Landini et al., 2022), a multi-stage approach based on
hidden markov models and x-vector, as the offline topline, as it currently holds
the state-of-the-art in offline speaker diarization. However, since this system does
not take into account overlapping speech, we also report the results of Bredin and
Laurent (2021), who extend VBx with overlap-aware re-segmentation. On the
other hand, our baseline system is the EEND-based FlexSTB (Xue et al., 2021b),
which extends EEND (Fujita et al., 2019) with a speaker-tracing buffer for online
diarization.

To ensure a fair comparison between all considered approaches, the optimization
process is applied for all of them independently. In other words, it means that
every row × dataset entry in Table 5.5 results from one dedicated optimization
process. This includes the offline topline, the proposed online approach and its
ablative variants, but excludes both FlexSTB (as we unfortunately did not have
access to its implementation) and experiments on DIHARD II (where we use the
hyper-parameter values tuned for DIHARD III).

Implementation details

We use a pre-trained segmentation model3 that was trained on the concatenation
of the training sets from AMI, DIHARD III, and VoxConverse. It ingests 5 second
audio chunks and outputs one prediction every 16ms with Kmax = 4 speakers.
More details about the training process can be found in the work by Bredin and
Laurent (2021) and in Section 5.3.1.

The speaker embedding model is the one presented in Section 3.3.3, based on the
canonical x-vector TDNN-based architecture (Snyder et al., 2018) but with fil-
ter banks replaced by trainable SincNet features (Ravanelli and Bengio, 2018).
We re-trained the architecture from scratch with the additive angular margin
loss (Deng et al., 2019) using chunks of variable duration (from 2 to 5 seconds)
drawn from VoxCeleb (Nagrani et al., 2017; Chung et al., 2018). We also aug-
mented the training data with reverberation based on impulse responses from
EchoThief and Traer and McDermott (2016), as well as additive background noise
from the MUSAN (Snyder et al., 2015) corpus. To facilitate reproducibility and
make related research possible, we also share the pre-trained speaker embedding

3available at hf.co/pyannote/segmentation@Interspeech2021
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model and more details about the training process4. Furthermore, the weights
used in the statistics pooling layer of the overlap-aware speaker embeddings were
obtained with γ = 3 and β = 10. These values were not optimized with the rest of
the hyper-parameters. Instead, we hand-picked them based on examples like the
one in Figure 5.8.

5.4.5 Results and discussion

System Latency DIHARD III AMI VoxConverse DIHARD II
FA Miss. Conf. DER FA Miss. Conf. DER FA Miss. Conf. DER FA Miss. Conf. DER

topline1 ∞ 3.6 12.5 6.2 22.3 3.1 17.2 3.8 24.1 3.1 4.6 3.4 11.1 5.0 15.3 7.4 27.7
topline2 ∞ 4.7 9.7 4.9 19.3 4.3 10.9 4.7 19.9 4.6 3.0 3.5 11.1 5.6 13.5 7.1 26.3

ours 5s 5.3 10.0 9.7 25.0 5.0 10.0 12.4 27.5 3.8 4.9 8.2 16.8 5.7 14.0 14.4 34.1
ablation1 5s 4.6 11.3 9.3 25.3 3.0 16.0 11.6 30.5 4.1 5.1 11.2 20.4 5.1 15.5 13.6 34.3
ablation2 5s 2.1 1.4 6.9 10.4 1.0 1.1 15.5 17.7 0.5 0.7 9.1 10.3 2.2 1.6 12.0 15.8

baseline 1s NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 36.0
ours 1s 6.2 9.7 11.8 27.6 6.6 9.4 14.4 30.4 5.1 3.3 11.7 20.1 5.8• 14.4• 14.9• 35.1•

Table 5.5: DER obtained on test sets. FA, Miss. and Conf. stand for false alarm,
missed detection and speaker confusion rates respectively (• = hyper-parameters
optimized with latency λ = 1s for fair comparison). Values in bold denote the best
performing system for each latency (excluding the oracle-based ablation2 ).

Our main set of experiments is summarized in Table 5.5. We start by reporting the
performance of the offline toplines topline1 that consists of VBx (Landini et al.,
2022), and of topline2, which adds the overlap-aware re-segmentation step intro-
duced by Bredin and Laurent (2021). System ours represents our full proposed
approach, and ablation1 and ablation2 are variants of ours with different charac-
teristics. In ablation1 Equation 5.4 is not applied, and in ablation2 we replace the
local segmentation model with an oracle segmentation. Finally, the performance
of the online FlexSTB approach is reported as the baseline system.

Overlap-aware speaker embedding. The comparison between ours and the
first ablative experiment ablation1 shows that the overlap-aware weighing scheme
introduced in Equation 5.4 brings a relative performance improvement of 10% on
AMI, 18% on VoxConverse and 1% on DIHARD III. Given that they respectively
contain 17%, 3%, and 11% of overlapped speech (computed over the total speech
duration), there is still room for improvement on this specific aspect. In partic-
ular, while we hand-crafted this weighing scheme, it should be possible to train
the segmentation and speaker embedding models jointly for the latter to fully
take advantage of the former’s capability at detecting and separating simultane-
ous speakers. Moreover, this would avoid the propagation of segmentation errors
across modules.

4at hf.co/pyannote/embedding
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Overlap-aware speaker segmentation. In the ablative experiment ablation2,
we replace the segmentation model by an oracle that provides a perfect binary
(i.e. sfk ∈ {0, 1}) overlap-aware segmentation. As expected, missed detection is
where most of the difference occurs (caused by overlapped speech), while speaker
confusion only marginally improves. The problem of overlapped speech detection
still represents a major weakness of both offline and online speaker diarization.

Figure 5.13: Impact of the latency on the overall DER performance.

Adjustable latency. In Figure 5.13, we show how the performance of our online
approach is affected as we decrease the allowed latency from λ = 5s to λ =
500ms. The speaker confusion consistently increases as the latency decreases,
while false alarm and missed detection remain constant. This can be explained
by the ensemble-like aggregation process described in Section 5.4.3 that combines
more views of the same problem as the allowed latency and the local future context
duration increase. Note that we kept the hyper-parameters (τactive, ρupdate, δnew)
optimized for latency λ = 5s and still obtain reasonable performance for lower
latencies. However, it is also possible to re-optimize the hyper-parameters for a
specific latency. This is what we did for the λ = 1s setting marked with • in
Table 5.5 for comparison with the FlexSTB (Xue et al., 2021b) baseline system.
Not only do we get better overall performance, but our approach also has the
advantage of a lower memory footprint, as it never ingests nor runs inference on
more than 5s of audio at a time (compared to 100s of FlexSTB) and keeps a single
vector per speaker in memory (compared to 100s of acoustic features and per-
speaker scores in FlexSTB). Furthermore, our approach with λ = 3s reaches the
same performance as the official baseline (Ryant et al., 2020b) of the DIHARD III
challenge (25.5% vs 25.4%), which addresses offline speaker diarization.

Continual learning. In order to understand whether our system progressively
adapts to the target conversation, we compare the performance of ours over time
against the offline topline2 (with overlap-aware re-segmentation (Bredin and Lau-
rent, 2021)) on DIHARD III. The results of this comparison are shown in Fig-
ure 5.14. While the performance of topline2 remains relatively constant, our
system keeps improving as conversations unfold, almost bridging the gap after
5 minutes of conversation. As new information becomes available, our system

121



Figure 5.14: Evolution of DER as conversations unfold. Left: online approach ours
with λ = 5s. Right: offline topline2 (Bredin and Laurent, 2021). Local DER is
computed on the 223 DIHARD III (test) conversations that are longer than 300s.

learns better speaker centroids, hence decreasing the speaker confusion. While
very long conversations can become rather expensive (if not impossible) to pro-
cess with most offline models, our system can handle daylong audio streams at a
practically constant memory cost, while getting progressively better at the same
time.

Speaker number estimation. As mentioned before, one of the key challenges
in online diarization is the detection of new speakers. In Figure 5.15, we show the
total number of speakers predicted by our 5s-latency system for each conversation
and each (test) corpus. We observe that the predicted number of speakers tends
to be underestimated in DIHARD III (Figure 5.15a), while the opposite is true in
VoxConverse (Figure 5.15c) and AMI (Figure 5.15b). This highlights the necessity
for better new-speaker detection techniques. In our system, new-speaker detection
is mainly controlled by the δnew hyper-parameter, which is optimized for each
corpus and kept unchanged throughout the entire conversation. However, clusters
may be spread differently depending on the target conversation and the speaker
they represent. We believe that new-speaker detection errors (and hence speaker
confusion) may be further reduced by adopting a flexible δnew. A first step in this
direction could be per-speaker δnew values that are automatically determined from
additional cluster statistics like the variance.

Offline vs. online. Finally, an important limitation of our approach is the gap
to state-of-the-art offline solutions like topline2. Since topline2 relies on the exact
same pre-trained segmentation model as our proposed approach, most of the re-
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Figure 5.15: Comparison between predicted and true numbers of speakers for the
test sets of (a) DIHARD III, (b) AMI and (c) VoxConverse. Each conversation is
marked as a blue point, while the dashed red lines represent correct predictions.

ported decrease in performance with λ = 5s is caused by speaker confusion errors
(relative +100% for DIHARD III, +160% for AMI, +130% for VoxConverse). Con-
sequently, there is still room for improvement in order for incremental clustering
to be on par with offline multi-pass clustering.

5.5 Conclusion

In this chapter, we have presented an overlap-aware online speaker diarization sys-
tem combining the local speaker segmentation of a 5s-long rolling buffer with incre-
mental clustering of task-specific speaker embeddings (as defined in Chapter 3). A
wide array of experiments on the following three large speaker diarization corpora:
DIHARD III (Ryant et al., 2020b), AMI (Carletta, 2007) and VoxConverse (Chung
et al., 2020), allows us to reach the following conclusions.

First, our approach outperforms FlexSTB (Xue et al., 2021b) (a state-of-the-art on-
line speaker diarization baseline), with a substantially lower memory consumption.
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Furthermore, apart from handling overlapping speech at every stage, it benefits
from an adjustable latency between 500ms and 5s by design, without the need for
further training.

Second, and perhaps more importantly, our system is also capable of incremental
learning, progressively bridging the gap to offline performance as conversations
unfold by continually refining speaker centroids. In fact, our approach can also
be considered a type of low-resource memory-based method to continual learning
that does not depend on gradient-based learning, avoiding catastrophic forgetting
issues coming from model parameter shifts. These advantages may also make our
method preferable to an offline system when recordings are long and resources low.

Considering all of the above, we believe our system is particularly well-suited
to continual adaptation in the production phase, as it is designed to learn in a
completely autonomous and unsupervised manner.

Furthermore, our work also highlights several difficulties of continual learning in
online speaker diarization, such as new-speaker detection and the necessity for
more meaningful metrics. In particular, since speakers tend to be active through-
out the entire conversation, finding an accurate definition of catastrophic forgetting
in this context can be challenging. If we had to find an equivalent measure, we
would define it as an increase in the confusion involving a particular speaker.

Since our system is designed not to erase speaker centroids, it is effectively unable
to completely “forget” a speaker, even if it does not appear for long periods of
time. Yet, if a centroid is assigned conflicting embeddings from different speakers,
divergence is a likely outcome in the long run, where the divergent centroid would
arrive at a position that is far from the true (but unknown) centroid. Although
our system is likely to recover from this situation by creating a new centroid for
the divergent speaker, we believe that an interesting direction for future work is
the design of a proper measure of speaker divergence. As an example, one could
run a second pass of the system using the centroid matrix obtained after the first
run (skipping the centroid updates as defined in Section 5.4.1). In this context,
a divergence metric could be defined as the ratio of speaker embeddings that are
assigned to the correct centroid.
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Chapter 6

Continual self-adaptation for
speaker segmentation

“Uphold privacy and know that you can
have it. Know that we must have it.”

— Ann Cavoukian

One of the inconveniences of the system introduced in the previous chapter is that
it is tightly coupled to the pre-trained speaker segmentation and embedding mod-
els, which are frozen throughout the whole adaptation procedure. This represents
a considerable disadvantage with respect to gradient-based continual learning tech-
niques. Contrary to speaker embeddings, which may be more robust to domain
changes (as we saw in Chapter 3), development-production mismatch issues in the
speaker segmentation model could be catastrophic to the adaptation capabilities
of our approach, as it blindly trusts its output. In this chapter, we propose a train-
ing scheme to address this shortcoming by continually adapting the segmentation
model to a target domain as new conversations become available.

Importantly, the approach that we propose in this chapter also benefits from au-
tonomous self-supervised learning, and can even be defined as an ephemeral learn-
ing technique, in which sensitive and personally identifiable data is immediately
discarded after training and never stored permanently. In order to learn continu-
ally without ground-truth annotations, we investigate the possibility of using the
model’s own predictions as a training signal in a similar manner to knowledge
distillation (Hinton et al., 2015).

The content of the chapter is organized in the following way. In Section 6.1, we
establish the context and motivation of our work. In Section 6.2, we propose an
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initial self-supervised but non-continual training scheme as a first step towards our
goal, and we show its effectiveness with respect to a pre-trained baseline. Next,
in Section 6.3, we propose a continual learning extension to this training scheme,
which also outperforms the pre-trained baseline and is even on par with the initial
approach, while observing conversations one at a time sequentially. Finally, we
conclude and provide final remarks in Section 6.4.

This chapter has also been the subject of the following scientific publication:

Juan M. Coria, Hervé Bredin, Sahar Ghannay, and Sophie Rosset. Continual
Self-Supervised Domain Adaptation for End-to-End Speaker Diarization. In IEEE
Spoken Language Technology Workshop (SLT), Qatar, 2022.

6.1 Introduction

Whether multi-stage or end-to-end, speaker diarization models are generally trained
to perform well on a given corpus with its own set of specific assumptions and
properties (e.g. microphone quality, noise, speaker accent, language, etc.) shared
among recordings, and that we typically refer to as a domain. However, as il-
lustrated in Figure 6.1, given a model m0 trained on a corpus D0 from source
domain A, it is well known that the performance of m0 on a given corpus D1 from
a new target domain B is bound to be substantially worse than on data from
domain A, a problem known as domain mismatch.

In domain adaptation, whose procedure is also depicted in Figure 6.1, the goal is
to fix this mismatch by fine-tuning the out-of-domain model m0 on the corpus D1

from target domain B, for which we want to obtain good performance. In par-
ticular, end-to-end training makes speaker diarization models suitable for domain
adaptation because fine-tuning a single model is simpler than doing so for multiple
modules. Nevertheless, domain adaptation remains expensive for two reasons:

• the large target-domain corpus D1 needs to be collected “a priori”

• D1 needs to be manually annotated

In this chapter, we study continual domain adaptation for the speaker segmenta-
tion model (also called end-to-end speaker diarization) introduced in the previous
chapter. We propose a continual and fully self-supervised training scheme that
achieves an average 17% relative improvement over a pre-trained baseline without
a single manually annotated conversation. Our approach also rivals (and some-
times outperforms) non-continual variants trained on the whole target domain at
once. Furthermore, since only a single conversation at a time is used for training,
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Figure 6.1: Domain mismatch and domain adaptation.

every new conversation can be discarded as soon as it is processed, avoiding any
potential unwanted access.

6.1.1 Removing the need for manual annotation

A straightforward solution to avoid the need for manual annotations is to leverage
unsupervised learning techniques. Recently, self-supervised methods for neural
network training have gained enormous popularity because of their ability to find
useful training signals from unlabeled data. In fact, many popular models trained
in a self-supervised manner rely on auxiliary tasks derived from the underlying
structure of the data, which usually consist in predicting artificially missing or
distorted parts of the input (Devlin et al., 2019; Chung and Glass, 2020; Chen
et al., 2020).

However, deriving a useful training signal solely from auxiliary tasks can be ex-
tremely challenging in some cases, for example in the context of speaker diarization.
The technique of pseudo-labels (Lee et al., 2013) does not depend on such auxiliary
tasks. Instead, it is based on the concept of knowledge distillation (Hinton et al.,
2015), where a training signal is obtained via a pre-trained teacher model mt,
whose output is used as ground-truth to train the student model ms.

This method has shown great promise in end-to-end speaker diarization (Takashima
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et al., 2021) by leveraging well-performing pre-trained models. A similar study on
domain adaptation for speech enhancement (Tzinis et al., 2022) even goes one step
further, showing that periodically updating mt while fine-tuning ms on the target
domain can significantly increase performance.

6.1.2 Continual and ephemeral learning

The need to “a priori” collect a large target-domain corpus can be eliminated
by relying on continual learning (Hadsell et al., 2020). As discussed in Chap-
ter 2, this paradigm is defined by a training scheme in which the training cor-
pora D1, . . . ,DL ∈ S appear in sequence as they become available. In our case,
this happens in production, after the initial model development phase. In this
chapter, we assume that S is sampled from a single (target) domain with its own
particular set of properties, and that each Di is a single conversation from this
domain. We believe this represents a realistic use case scenario, for example in the
context of a home assistant for speech and speaker recognition that may improve
itself on the target household after every interaction with the involved users.

As we have seen in Chapter 2 and Chapter 4, the naive approach of keeping all
past Dj<i (past conversations in our case) for future training raises both time
and space costs substantially, and storing past data permanently may also be
problematic or even impossible in some cases. In particular, audio conversations
are usually regarded as sensitive and personally identifiable data that should be
protected from third-party access, which complicates the storing and retrieval for
model training. Our proposed approach can be considered ephemeral, as we forbid
any storage of (and access to) past conversations in order to protect user privacy.

After sequential training on conversations from the target domain, we expect the
system to perform well on both past and future conversations of that domain.
As defined in previous chapters, the improvement on past conversations is usu-
ally referred to as backward transfer, while forward transfer is used to denote
the improvement on future conversations. Unfortunately, gradient-based contin-
ual learning is prone to catastrophic forgetting (French, 1999; Hadsell et al., 2020),
whereby the performance on past conversations sharply deteriorates as the model
is trained on new ones.

However, if we consider our target scenario of an adapting home assistant, forget-
ting specific conversation details should not constitute a major problem as long as
there is an overall improvement at speaker diarization in the target domain. For
example, consider an assistant system controlling living-room appliances that is
exceptionally moved outdoors and later positioned at its initial location indoors.
Given the target domain of “living-room conversations”, it would be unfair to pe-
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nalize the model a few days later for losing performance on recordings with outdoor
acoustics and noise from wind or cars. In other words, we allow our model to for-
get as long as it involves out-of-domain knowledge. For this reason, we choose to
focus on forward transfer, where a well-performing system should benefit from a
boosted performance in future target-domain conversations.

6.2 Self-supervised adaptation

In this section, we propose an initial non-continual self-supervised training scheme
based on pseudo-labels that we consider a first step towards our continual domain
adaptation goal. We first discuss background work related to the subject, then
introduce our proposed approach and experimental protocol, and finally we present
and discuss the results we obtain.

6.2.1 Related work

The technique of pseudo-labels (Lee et al., 2013; Kahn et al., 2020) constitutes
an interesting alternative to address the manual annotation issue, as it consists in
using the predictions of a pre-trained system as annotations in a teacher-student
training scheme. This training procedure is usually linked to knowledge distilla-
tion (Hinton et al., 2015), in which a model ms (known as the student) is trained to
produce the predictions ŷ = mt(x) from a model mt (known as the teacher), given
the same input x. An illustration of this training scheme is shown in Figure 6.2.

student 

teacher 

loss function

back-propagation

Figure 6.2: Teacher-student training schemes train a student model ms to match
the predictions ŷ of a teacher model mt.
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Knowledge distillation has typically been applied to scenarios in which ms is much
smaller (in number of parameters) than mt, for example to deploy ms in low-
resource devices (Sanh et al., 2019). In contrast, pseudo-labels were originally
designed for semi-supervised scenarios to boost performance by leveraging both
labeled and unlabeled data, and can be defined in more complex ways (e.g. by
combining the output of multiple teachers).

As mentioned in the introduction, a similar idea has been applied to speaker
diarization in Takashima et al. (2021). In their work, the authors propose to
use a committee-based teacher model, whose pseudo-labels are a combination of
predictions from multiple systems that are known to perform well on the task. In
contrast, our training scheme requires that the teacher model mt and the student
model ms be the same, so that ms can progressively replace mt in the continual
learning extension we will discuss in Section 6.3. Consequently, even though it
can provide a better training signal, continually training multiple models in a
committee-based method brings additional computational costs (for both training
and inference) that we prefer to avoid.

At the same time, a risk of the model being both teacher and student is divergence,
as matching its own predictions may progressively reinforce errors, a phenomenon
known as confirmation bias. Previous work has typically relied on introducing
additional factors of variation to the teacher output ŷ that do not interfere with
the quality of the pseudo-label. For example, Takashima et al. (2021) rely on
the fact that mt is a combination of pre-trained models, as it is less likely that
the entire set of teacher models will make the same mistakes. Alternatively, the
approach of Tzinis et al. (2022) for speech enhancement proposes to recombine the
signal and noise outputs of the teacher to form new artificial training examples,
which can be seen as a form of augmentation.

6.2.2 Proposed approach

As in Chapter 5, we choose to use the end-to-end speaker segmentation architecture
from Bredin and Laurent (2021) (illustrated in Figure 6.3 for convenience) as our
pre-trained out-of-domain model m0. As illustrated in Figure 6.4, m0 is first
used to produce the pseudo-labels for the entire set of conversations of the target
domain. Only then, m0 is trained using those same pseudo-labels as ground-
truth. In this initial approach, we train m0 on the concatenation of all target-
domain conversations [D1; . . . ;DL] at once, which makes it non-continual. As
such, pseudo-labels are computed once at the beginning using m0 (with a random
augmentation aug as explained in the following paragraphs of this section) and
they are never updated afterwards. This difference will prove to be an interesting
discussion point with regards to pseudo-label quality in the comparison with the
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continual learning extension that we introduce in Section 6.3.

SincNet

4x
Bidirectional LSTM 

2x
Feed Forward 

Figure 6.3: Architecture of the pre-trained out-of-domain segmentation
model m0 (Bredin and Laurent, 2021) (introduced in Chapter 5).

When defining the pseudo-labels ŷ, one could choose an exact copy of the con-
tinuous m0(x) ∈ [0, 1]Kmax×F , so that ŷ = m0(x). However, as evidenced by the
real example of m0(x) shown in Figure 6.3, m0(x) can be rather noisy and fail to
provide a useful training signal in some input regions. Consequently, we define ŷ
as a binary version of m0(x) using a threshold θ, which we manually set to θ = 0.5
for simplicity.

inference

training

audio

pseudo-labels

Figure 6.4: Initial non-continual self-supervised training scheme.
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As mentioned before, a risk of the model being both teacher and student is di-
vergence, as matching its own predictions may progressively reinforce errors. To
limit this, we rely on data augmentation. As shown in Figure 6.4, we calculate
pseudo-labels ŷ before training with a weak noise-based augmentation aug applied
to the input audio x:

ŷkf =

{
1 if m0(aug(x))kf ≥ θ

0 otherwise
(6.1)

where k denotes speakers and f denotes frames. Our hypothesis is that generat-
ing ŷ from a weak perturbation of x may help to prevent divergence by providing
a slightly distorted view of each input, acting as a form of regularization. More-
over, as depicted in Figure 6.4, we also use Aug(x) as inputs during training to
improve robustness to strong perturbations, which we define as the addition of
both background noise and reverberation.

Finally, in order to further discourage divergence and overfitting, we rely on the
well-known technique of early stopping based on a stopping criterion. As shown
in Figure 6.5, while the performance on the training set tends to keep improving
(due to the nature of gradient descent), validation performance usually peaks after
a certain number of epochs, only to reach a plateau or even decrease with further
training, which is typically considered a sign of overfitting. In this context, early
stopping is designed to automatically halt training when validation performance
does not improve after a certain number of epochs (called the patience of the
algorithm).
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Figure 6.5: Early stopping based on the AUROC metric.
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In our case, the stopping criterion is based on a performance metric known as the
area under the receiver operating characteristic curve (AUROC for short) (Bradley,
1997). Similarly to the detection error trade-off (DET) curve (see Section 3.3.4),
the ROC curve is determined by relating false positives and true positives at
different decision thresholds θj. As shown in the example of Figure 6.6, this is
equivalent to applying multiple thresholds θj ∈ [0, 1] to m0(x) and comparing the
results to the pseudo-labels that act as the ground truth. Notice that, as with any
measure based on estimates of the ground truth, this metric may not approximate
actual performance correctly if pseudo-labels contain errors.
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Figure 6.6: The receiver operating characteristic (ROC) curve of a model m is
determined by computing the false positive rate and true positive rate of its pre-
dictions m(x) at different thresholds θj. The area under the ROC curve (AUROC)
metric is then defined in the interval [0, 1], and it approaches 1 as the predictions
resemble the reference labels.

6.2.3 Experimental protocol

In this section, we describe the way we conduct our experiments, which includes
the corpus we use (with the domains it contains), the evaluation metrics, and the
implementation details.

Corpus

We experiment on DIHARD III (Ryant et al., 2020b), a corpus we have also used
in Chapter 5, and that we described in detail in Section 5.4.4. In particular, we
are interested in this corpus because it contains conversations from 11 different
domains, whose descriptions are shown in Table 6.1.
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Domain Description

Audiobooks English recordings of speakers reading book passages
Broadcast interview Radio interviews from the decade of 1970
Clinical Interviews for the diagnosis of autism in children
Courtroom Arguments from the 2001 term of the U.S. Supreme Court
CTS 10-minute telephone conversations between two native English speakers
Maptask A “leader” speaker telling a map route to a “follower” speaker
Meeting Meeting recordings
Restaurant Restaurant conversations
Socio field Sociolinguistic interviews in field conditions
Socio lab Sociolinguistic interviews in quiet and controlled conditions
Webvideo English and Mandarin videos collected from the Internet

Table 6.1: Short description of the domains included in DIHARD III as explained
by Ryant et al. (2020a).

As shown by the more detailed description presented in Table 6.2, these domains
differ greatly in number of speakers and difficulty (of which the diarization error
rate is a good proxy). In particular, notice that webvideo may not in fact qualify
as a domain, as it is a collection of English and Mandarin audio from video sharing
platforms. Indeed, its set of shared properties among recordings may be rather
small (e.g. differences in microphone quality, noise, language, accent, etc.).

Domain splits

In order to craft an experimental protocol for our study, a straightforward ap-
proach is to use a set of domains DHdev to determine the best hyper-parameters,
and another disjoint set of domains DHtest to evaluate the best-performing configu-
ration (where DH stands for “DIHARD”). However, this seems a waste of domains
spanning a wide range of different characteristics, and for which we would also
want to determine the effectiveness of our method. In particular, specific domains
that may be assigned to DHdev by misfortune could in fact represent an interesting
success (or failure) case whose study we miss. As a result, in order to perform our
evaluation on each of the 11 domains, we cross-validate hyper-parameter optimiza-
tion making sure not to leak target-domain knowledge neither in model weights
nor in hyper-parameters.

To do this, we split the set of domains in DIHARD III Full (Ryant et al., 2020b)
into sets DHA and DHB as shown in Table 6.2. Given the potential differences in
domain difficulty, we balance DHA and DHB by evening the performance of the
VB-HMM baseline (track 2) (Ryant et al., 2020b) between both sets, which we
use as a proxy for the difficulty of each domain.
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Subset Domain Recordings Duration Spk / Rec. Base
dev test dev test dev test DER

DHA

Broadcast Interview 12 12 2.1h 2.0h 3.8 3.7 4.6
Court 12 12 2.1h 2.0h 6.9 7.3 8.9

Socio Lab 16 12 2.7h 2.0h 2.0 2.0 12.9
CTS 61 61 10.2h 10.2h 2.0 2.0 20.4

Meeting 14 11 2.4h 1.9h 5.4 3.9 33.5
Restaurant 12 12 2.0h 2.1h 7.2 6.4 49.5

DHB

Audiobooks 12 12 2.0h 2.0h 1.0 1.0 5.2
Maptask 23 19 2.5h 2.1h 2.0 2.0 11.0

Socio Field 12 22 2.0h 2.3h 3.5 2.3 18.2
Clinical 48 51 4.3h 4.4h 2.0 2.0 21.6

Webvideo 30 35 1.9h 2.1h 4.0 4.1 41.8

Table 6.2: Partitioning of DIHARD III domains. The average number of speak-
ers per recording (“Spk / Rec.”) and the DER of the VB-HMM baseline for
track 2 (Ryant et al., 2020b) (“Base DER”) are evidence of domain differences
in difficulty.

Before experimentation, we define a hyper-parameter space consisting of the possi-
ble values with which we choose to test our approach. A configuration h extracted
from this space contains values for the learning rate, batch size and sound-to-noise

proposed 
training scheme

hyper-parameter 
space

 (train)

evaluation

 (test)

Figure 6.7: Experimental procedure to evaluate performance on a each hyper-
parameter configuration h and domain d in DHA.
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ratio ranges for the augmentation functions. As illustrated in Figure 6.7, since
our goal is to adapt model m0 to a single domain, for every hyper-parameter con-
figuration h and every domain d ∈ DHA, we train m0 on dtrain and evaluate the
resulting model on dtest to determine its performance pdh. Then, we obtain the
overall performance of each h by averaging over all domains in DHA:

ph =
1

|DHA|
∑

d∈DHA

pdh (6.2)

After this procedure, we determine the best-performing configuration hbest in the
following way (lower is better in our case):

hbest = argmin
h

ph (6.3)

Lastly, hbest is used to train m0 with our training scheme on each domain d ∈ DHB

independently, as depicted in Figure 6.8. For each domain, we use dtrain for train-
ing, and dtest for evaluation, resulting in the final per-domain test performance pd.
Crucially, the same process is repeated inverting the roles of DHA and DHB to
report the performance of the domains in DHA.

proposed 
training scheme

 (train)

evaluation

 (test)

Figure 6.8: Experimental procedure to evaluate the hyper-parameter configura-
tion hbest on each domain in DHB.

Evaluation

Evaluating the quality of a local speaker segmentation model with the usual di-
arization error rate (described in detail in Section 5.2.4) requires an additional
speaker tracking algorithm to link speaker identities from different audio chunks,
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such as the online speaker diarization system introduced in the previous chapter.
Instead of relying on an additional tracking algorithm like a recording-wise clus-
tering, we compute what we call the average chunk-wise diarization error rate, or
CDER for short.

average

predictions

ground-truth

Figure 6.9: The chunk-wise diarization error rate (CDER).

As depicted in Figure 6.9, we split the recording into 5s chunks with a 500ms shift
(to reproduce the functioning environment of the system presented in Chapter 5)
and we compute the diarization error rate (DER) of each chunk with respect to
their reference labels. Then, we obtain the CDER by averaging the resulting DER
values. We think this evaluation method can clearly separate the performance
of the speaker segmentation model from the one of a clustering algorithm, whose
function is to “stitch” consecutive 5s prediction chunks. In other words, the CDER
may be correlated to a conversation-level DER in a scenario with perfect cluster-
ing, whose evaluation is out of the scope of our study. As in the previous chapter,
we compute the DER values with pyannote.metrics (Bredin, 2017a) without for-
giveness collar and including all overlapping speech.

Implementation details

As discussed in Section 6.2, we use the architecture introduced by Bredin and Lau-
rent (2021) as model m0 (SincNet (Ravanelli and Bengio, 2018) trainable feature
extraction, 4 LSTM (Hochreiter and Schmidhuber, 1997) and 2 fully-connected
feed-forward layers) that we pre-train with manually obtained labels on the train-
ing set of the AMI meeting corpus (Carletta, 2007) (see Section 5.4.4). This corpus
consists of meetings in a strictly controlled environment, which is radically different
from most of the domains we can find in DIHARD III. As in the previous chapter,
we use the Mix-Headset Full partitioning described in Landini et al. (2022). The
model we obtain achieves a DER of 17.5% on the AMI corpus test set.

Both strong and weak augmentations Aug and aug apply random noise, but
only Aug has a 50% chance of applying a random room impulse response (making
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it stronger than aug). Noise is sampled from MUSAN (Snyder et al., 2015) (short
for “a music, speech and noise corpus”) excluding speech, and impulse responses
are sampled from EchoThief (Warren, 2021) and Traer and McDermott (2016).
We use the Adam optimizer (Kingma and Ba, 2015) and fine-tuning is stopped af-
ter 3 epochs of no improvement on the development set of the target domain. The
hyper-parameter values that we choose to experiment with are shown in Table 6.3.

Hyper-parameter Values

learning rate {10−3, 10−4, 10−5}
batch size {16, 32, 64, 128}

noise SNR range {0dB-5dB, 5db-10dB, 10dB-15dB}

Table 6.3: Hyper-parameter search space in our experiments. SNR denotes the
sound-to-noise ratio.

6.2.4 Results and discussion
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pre-trained NA NA 51.4 35.9 22.0 64.8 28.3 86.8 47.5 28.2 40.9 56.8 73.0 80.9

whole1 50.7 33.3 21.1 63.5 26.4 88.6 46.8 26.0 41.0 56.2 71.9 82.8
whole2 ✓ 45.5 29.4 21.5 48.5 23.6 78.5 42.9 24.8 39.7 36.7 69.4 85.4
whole3 ✓ ✓ 41.7 30.5 21.9 37.7 25.1 57.6 42.9 25.6 48.3 35.8 64.6 69.1
whole4 ✓ 48.2 34.4 24.0 44.8 27.7 82.4 47.0 28.6 52.5 44.6 70.1 74.1

topline NA ✓ 20.5 9.1 7.5 14.6 14.6 38.4 38.7 3.1 12.6 21.9 39.6 25.5

Table 6.4: CDER of the non-continual self-supervised approach on each dtest, av-
eraged over 10 runs to limit the effect of randomness. Bold values denote the best
model (not counting the supervised topline). Entries named whole denote variants
of our approach.

The results of this initial set of experiments are summarized in Table 6.4. We use
pre-trained to denote the performance of the initial pre-trained model, and topline
to denote the performance of supervised fine-tuning on each domain. Since our
self-supervised training scheme trains the model on the whole set of conversations
of the target domain at once, we decide to call them whole, where the numbers
denote variants with different combinations of augmentation strategies.
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Our best performing model is whole3, which outperforms the pre-trained baseline
by a relative 19% on the average CDER (51.4% → 41.7%). This shows that the
self-supervised training scheme with pseudo-labels is indeed effective in adapting
the pre-trained model to the target domain. In fact, the performance of whole3 is
better than pre-trained across all domains individually, with the sole exception of
maptask. As expected, there is also a large performance gap with respect to the
fully supervised topline. Our technique based on pseudo-labels still has consider-
able room for improvement.

Concerning the augmentation functions, the best average performance is obtained
when combining both the pseudo-label augmentation aug and the training aug-
mentation Aug in whole3, which seems to support the hypothesis that they can
improve the training signal. However, our results also suggest that Aug may have
a stronger impact than aug . Indeed, when looking at whole2 (for the effect of Aug)
and whole4 (for the effect of aug), the average performance obtained by whole2 is
better than whole4 by almost 3% (45.5% vs 48.2%).

Finally, notice that performance deteriorates with respect to pre-trained in some
cases, like whole2 on the clinical domain (80.9% → 85.4%), or whole3 on the
maptask domain (40.9%→ 48.3%). Since pseudo-labels are computed once before
training and never updated, we think this may be caused by poor pseudo-labels
that fail to provide useful information for the model to exploit, which may con-
tribute to the reinforcement of errors.

6.3 Continual learning extension

Having demonstrated the effectiveness of pseudo-labels for non-continual domain
adaptation, the remaining problem we aim to solve is the necessity to collect a
large target-domain corpus “a priori”. To do this, in this section we propose to add
a continual learning extension to the previously described self-supervised training
strategy.

6.3.1 Proposed approach

As discussed in previous chapters, continual gradient-based training is prone to
catastrophic forgetting (French, 1999; Hadsell et al., 2020), whereby performance
on past conversations Di deteriorates as new training stages occur. As explained
in the introduction, instead of preventing forgetting completely, we propose to
focus on maximizing the overall performance on the target domain d, and allow
forgetting as long as it does not involve in-domain knowledge. Put simply, we want
the model to progressively improve at speaker diarization within the boundaries
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of the target domain. Since future conversations in production are restricted to
belong to the target domain, this is equivalent to maximizing forward transfer.

Trivially, one could maximize performance on the target domain by training on
all past Dj≤i at each training stage i, but this introduces two problems. First,
the cost of training on Di grows linearly with the number of conversations, which
can in theory be infinite. Second, storing conversations permanently may not be
possible, as they are usually considered sensitive data that needs to be guarded
from third-party access. To avoid these issues, we train on one conversation Di of
domain d at a time and discard Di immediately after. Hence, our approach could
be considered ephemeral, as any data from training stages j < i is inaccessible.

As depicted in Figure 6.10, given the initial model m0 pre-trained on an out-of-
domain corpus (in our case the AMI meeting corpus (Carletta, 2007)), we fine-tune
model mi−1 on a single conversation Di of the target domain at a time, resulting
in a new model mi. To do this, we rely on the pseudo-labels produced by mi−1.
In other words, we repeat the training strategy introduced in Section 6.2 for each
conversation in the sequence, using mi−1 as a starting point each time. Moreover,
we rely on both augmentation functions Aug and aug during training and pseudo-
label computation, respectively.

domain  
   

training ...training training

...

Figure 6.10: Continual training over conversations Di of domain d using pseudo-
labels ŷi. Model m0 (pre-trained on an out-of-domain corpus) produces the first
pseudo-labels ŷ1. From then onward, each model mi−1 produces pseudo-labels ŷi
and is then trained only on conversation Di, resulting in a new model mi.

Since the model has no access to a validation set in the production phase, we create
one for each conversation by extracting approximately 30% of Di. Specifically, as
shown in Figure 6.11, we ensure that both training and development sets for Di

are spread uniformly throughout the entire recording by interleaving 40s windows
for training with 20s windows for validation. We denote the subset containing all
training windows as traini, and the one containing all validation windows as devi.
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We then calculate the AUROC on devi after each training epoch on traini. When
the validation AUROC does not improve for a certain number of epochs, we stop
training and wait for the next conversation Di+1. It is worth noting that this
procedure trusts the pseudo-labels completely. Hence, it carries the potential risk
of confirmation bias.

train traindev dev

40s 20s 40s 20s

Figure 6.11: Partitioning of a conversation into training and validation sets.

Our work is similar to Tzinis et al. (2022), where the trained speech enhancement
model is both teacher and student at the same time and the teacher is regularly
updated to improve the quality of the pseudo-labels. However, while each train-
ing stage in Tzinis et al. (2022) is run on the entire target-domain corpus S at
once, we train on a single conversation Di at a time, with no access to previous
conversations Dj<i.

Given the effectiveness of the initial non-continual training scheme, we believe that
the combination of augmentation and stopping criterion may be capable of favoring
forward transfer in this continual learning extension by discouraging overfitting to
the current conversation.

6.3.2 Experimental protocol

In our experiments, we use the same domain splitting technique that we described
in Section 6.2.3 for cross-validation, with the difference that we train on the tar-
get domain d sequentially, using traini and devi. The evaluation CDER is also
computed on the same held-out test sets as before. Since these target-domain
test conversations could be considered possible future conversations, tracking their
performance across the training sequence allows us to measure forward transfer in
more detail.

We use a separate Adam optimizer (Kingma and Ba, 2015) for each new conversa-
tion, and training on traini is stopped after 3 epochs of no improvement on devi.
Training sequences are sorted alphabetically according to existing recording iden-
tifiers.
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6.3.3 Results and discussion

Table 6.5 summarizes the entire set of experiments. As before, we include the
performance of the pre-trained baseline and the supervised topline, both of which
are non-continual. We show the performance of several variants of our approach
(denoted ours), as well as the fully supervised equivalents (denoted sup) that rely
on true labels.
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pre-trained NA NA 51.4 35.9 22.0 64.8 28.3 86.8 47.5 28.2 40.9 56.8 73.0 80.9

ours1 pseudo 56.7 32.2 21.1 74.2 25.9 92.3 47.2 27.5 50.1 55.0 99.9 97.9
ours2 pseudo ✓ 42.8 30.4 21.5 39.3 25.3 46.8 44.3 25.9 34.3 33.6 69.2 99.8
ours3 pseudo w/ aug ✓ 44.3 30.7 21.9 40.8 28.1 48.2 43.8 27.6 44.5 39.0 68.3 94.9

sup1 true 22.4 14.6 8.2 16.6 15.1 38.7 40.7 3.2 12.5 24.0 44.3 28.6
sup2 true ✓ 22.4 9.4 8.7 17.2 15.7 41.3 40.6 4.0 13.1 22.8 44.6 29.6

topline true ✓ 20.5 9.1 7.5 14.6 14.6 38.4 38.7 3.1 12.6 21.9 39.6 25.5

Table 6.5: CDER of continual models on each dtest at the end of the training se-
quence, averaged over 10 runs to limit the effect of randomness. Bold values denote
the best model per domain and type of supervision (not counting the supervised
topline).

Continual self-supervision

Our best model ours2 outperforms pre-trained across all domains with a relative
improvement of 17% on the average CDER (51.4% → 42.8%), except on clinical
where the model diverges (80.9% → 99.8%). Surprisingly, ours2 closely follows
our best non-continual system whole3 on average, with only a 1.1% difference
(42.8% vs 41.7%), and even outperforms it in some domains like meeting (46.8%
vs 57.6%), maptask (34.3% vs 48.3%) and socio field (33.6% vs 35.8%). This
suggests that the quality of pseudo-labels may be improving in these domains as
new conversations appear, while pseudo-labels in whole systems cannot improve
because the teacher model is frozen. This seems to support the hypothesis that
the model progressively adapts to the target domain.

Finally, note that supervised continual training (sup1 and sup2 ) also performs
well, rivaling the non-continual supervised topline with a CDER absolute difference
of 1.9% (22.4% vs 20.5%).

142



Forward transfer

The results from Table 6.5 only measure performance at the end of the conversa-
tion sequence. In Chapter 4, we have seen that this may not fully explain how
knowledge is being transferred during continual training.

Figure 6.12 shows the dtest CDER after training on each conversation Di for each
domain. Model ours2 seems to improve with new conversations in 6 of the 11 do-
mains: broadcast interview, court, socio lab, meeting, maptask and socio field.
However, it often reaches a plateau rather early (and still far behind supervised
models). Although forward transfer seems to be at play in these domains, this
behavior suggests that keeping the same training strategy throughout the entire
sequence might be sub-optimal.

In some domains like conversational telephone speech (CTS), restaurant and au-
diobooks, the model even starts to slowly diverge after having reached its peak
performance. As a result, it might be useful to anticipate this “hinge” moment in
continual adaptation to change the training strategy. In particular, similarly to
how a plateau may be caused by the stagnation of pseudo-label quality, divergence
might start to occur when there is a drop in pseudo-label quality. In this context,
updating the teacher model less frequently (e.g. by using mi−5 instead of mi−1

to generate pseudo-labels), could be a promising alternative to avoid snowballing
into a rapid degradation of the training signal.

At the same time, our proposed approach diverges from the very beginning in
the clinical domain, which could be caused by unreliable pseudo-labels from the
initial model m0, while performance across conversations is extremely unstable for
all models in webvideo. As discussed before, we believe this instability may be
caused by webvideo’s loose definition as a domain, suggesting that a well-defined
set of shared characteristics may be key to benefit from forward transfer across
conversations. Interestingly, this is also supported by our experiments on sequence
labeling from Chapter 4, where high levels of forward transfer were observed when
sharing a large set of characteristics across languages (e.g. task, domain, people
names, city names, etc.).

Lastly, note that supervised models show a substantial error increase in a handful
of conversations of restaurant, which could be caused by ambiguous or inaccurate
annotations. Since manual annotations are never used in our training scheme,
it may be an interesting alternative to supervised training when annotations are
unreliable.
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Figure 6.12: CDER on dtest as a function of training conversations Di appearing
sequentially. Curves follow the average and standard deviation across 10 runs.
Each system is referenced with its identifier from Table 6.4 and Table 6.5.

A closer look at forward and backward transfer

Despite single-conversation performance not being particularly relevant to our do-
main adaptation problem, it remains interesting to look at their fluctuation to
better understand how knowledge is transferred across the training sequence. Fur-
thermore, this can provide valuable insights for future research directions.

In order to investigate this, we measure the CDER on conversations D1, D2, DL−1

and DL (i.e. the first two and last two conversations) in two contrasting scenarios:
successful adaptation (meeting) and divergence (clinical). Taking the example of
the performance matrix presented in Chapter 2 and Chapter 4, this corresponds
to the two first and two last rows of P , as shown in Figure 6.13.
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Figure 6.13: Rows of the performance matrix P (highlighted in green) that we
selected to investigate single-conversation performance.

The results are shown in Figure 6.14, where we append the performance of pre-
trained at the beginning of the sequence for reference. First, we observe that
performance across conversations differs substantially, suggesting a certain vari-
ability in difficulty even in conversations from the same domain. Despite this,
forgetting seems to be limited, as sharp error increases in a conversation after
training on it are rare when there is no divergence.

Second, since true labels are never seen by ours2 and ours3, it is interesting that
performance tends to improve with new conversations. Overall, although both
supervised and self-supervised models seem to benefit from transfer in both di-
rections, supervised variants remain the clear winner (as expected), especially in
clinical. Although not as strong, we believe that the transfer observed in our
self-supervised models may progressively improve pseudo-labels as well as model
quality estimation for the stopping criterion. It may also explain performance
fluctuations in webvideo, as very dissimilar conversations might limit transfer.

The role of augmentation

Our results show that augmentation Aug (present in ours2 and ours3 but not in
ours1 ) is key in achieving good self-supervised performance, although not so much
in supervised systems, where both variants obtain equal performance on average.
The example of maptask in Figure 6.12 is particularly interesting, as Aug makes
the difference between learning and diverging.

On the other hand, aug (present only in ours3, whole3 and whole4 ) seems to be
more useful in whole systems than in continual training. Nevertheless, we believe
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Figure 6.14: CDER on conversations D1, D2, DL−1 and DL. Each curve represents
the CDER (averaged over 10 runs) of a single conversation computed immediately
after training on each conversation of the entire sequence. A dot denotes the
position of the target conversation within the sequence. Note that curves are
shifted right by one step to accommodate for the initial performance, corresponding
to the pre-trained baseline.

that aug may prevent reinforcing errors at the beginning of continual training
when pseudo-label quality is low because of domain mismatch, although failing to
prevent divergence in the long term. Figure 6.14 is a good example of this, as ours3
is better than ours2 in the beginning of the training sequence for both meeting
and clinical. As a result, it may be more interesting to apply aug only during the
first conversations of the sequence to obtain the best qualities from both variants.

6.4 Conclusion

In this chapter, we have proposed a training scheme for domain adaptation in
speaker segmentation. We trained a model on conversations from a target domain
sequentially and in a fully self-supervised way, removing the need for annotating
data and for storing personally identifiable data permanently. After a variety of
experiments on the 11 DIHARD III (Ryant et al., 2020b) domains covering a wide
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range of scenarios, we reach the following conclusions.

First, our training scheme achieves an average 17% relative improvement over a
pre-trained baseline, even rivaling a non-continual self-supervised topline, which
shows that it is indeed possible for the segmentation model to self-adapt to a
target domain continually. In fact, our approach can run locally and autonomously
in the background with little to no human involvement (e.g. in a home voice
assistant). Since speaker segmentation constitutes one of the key modules in the
online speaker diarization system that we introduced in Chapter 5, we believe that
the combination of our continual training scheme with this online system is a very
promising future research direction that could boost the adaptability of speaker
recognition systems to the environments of the production phase.

Second, even though our approach is effective on a variety of domains, our results
also highlight several areas for improvement. In particular, clearly identifying con-
vergence and divergence cases is extremely important for the reliable deployment
of our method.

Finally, even in convergence scenarios, the gap between self-supervised and super-
vised models remains large. We believe that it is key for future research to reduce
this gap in order to raise the attractiveness of self-supervised approaches and elim-
inate the tedious, error-prone and costly manual annotation process. A possible
way to do this could be to pre-train the initial segmentation model for few-shot
learning to new domains, for example by leveraging meta-learning techniques.
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Chapter 7

Conclusion

“Every move you make opens a whole new
world of possibilities. . . ”

— Matt Haig, The Midnight Library

In this chapter, we provide a summary and overview of the contributions presented
in this manuscript. In Section 7.1, we summarize the research conducted in the
different chapters throughout the thesis. In Section 7.2, we discuss our open source
contributions, and in particular diart : an online speaker diarization library and
toolkit written in Python that we developed for the study presented in Chapter 5.
In Section 7.3 we list our contributions, and in Section 7.4 we discuss possible
directions that we consider interesting and promising for future research.

7.1 Summary

In this thesis, we have investigated and discussed different ways of addressing the
continual learning problem in written and spoken language applications. In partic-
ular, our primary focus was on the production phase of a machine learning model,
which is characterized by the presence of unlabeled data arriving sequentially as
time passes. As we have discussed previously, we believe this problem requires au-
tonomous and flexible learning systems that are capable to adapt to their produc-
tion environments without human supervision, which is extremely labor-intensive
and resource-consuming.

In Chapter 2, we have discussed background work on three key research fields re-
lated to this thesis: neural representations, transfer learning and continual learn-
ing. On the one hand, we found transfer learning relevant to leverage knowledge
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acquired by the model during its development phase, as well as to gradually im-
prove and refine that knowledge in production. On the other hand, we saw that
the catastrophic forgetting problem in continual learning has been linked to drastic
model parameter changes in gradient-based learning (Hadsell et al., 2020). Con-
sequently, we have identified task-specific representations as a promising research
direction, as they do not rely on this type of learning for refinement.

In Chapter 3, we began our journey by investigating ways to learn task-specific
representations in both written and spoken language tasks. In a comparison of
metric learning loss functions, we learned that these techniques may be better
suited for open-set tasks, as they benefit more from the intra-class compactness
and inter-class separability encouraged by metric learning. These observations
forked our research in two directions that we have explored in the subsequent
chapters.

Given the ineffectiveness of task-specific representations on closed-set tasks, in
Chapter 4 we took a step back from our initial hypothesis to study the continual
adaptation of a contextual word embedding model to new languages, for example
in the context of a dialogue system that is progressively deployed in different
countries. Surprisingly, we observed high levels of forward transfer, which lead to
the discovery of fast recovery capabilities.

In Chapter 5, we explored the possibility of leveraging the task-specific represen-
tations obtained in Chapter 3 for the open-set task of online speaker diarization,
targeting the adaptation to a live conversation. We believe this is a relevant but
often ignored use case, as most diarization systems require access to the entire con-
versation at once. Hence, we have proposed a modular system that progressively
refines internal speaker representations with incremental clustering, and we have
demonstrated its ability to continually improve without supervision.

Finally, in Chapter 6 we attempted to solve one of the main shortcomings of the
system introduced in Chapter 5. We have proposed a training scheme to con-
tinually adapt the speaker segmentation model to new unlabeled conversations
from a target domain that appear sequentially. Since conversations are typically
considered sensitive data, we also make sure not to store recordings permanently.
For example, a home voice assistant could rely on our approach to progressively
improve live speaker recognition performance after each conversation with the in-
volved users. We show that our training scheme outperforms a pre-trained baseline,
and is even on par with non-continual self-supervised models.

Overall, we believe our work has brought us a step closer to the design of effective
autonomous and self-learning systems for language-related applications, capable of
exploiting the unlabeled data available in their production environments. On the
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one hand, our hypothesis of leveraging representations that are tailored to a specific
task has proven to be effective in the context of online speaker diarization (Chap-
ter 5). On the other hand, both our supervised (Chapter 4) and self-supervised
(Chapter 6) studies on continual fine-tuning have shown that it is possible to
benefit from high forward transfer under the right conditions, even in the face of
forgetting.

However, although a step in the right direction, our work has barely scratched
the surface of post-deployment continual adaptation, as there is still a wide array
of problems that we have not addressed and questions we have not answered. In
particular, many complex tasks we have left out from our study, like question an-
swering, information retrieval, speech recognition and translation, could all benefit
from continual adaptation after model deployment. Furthermore, a key limitation
in the adoption of continual adaptation techniques is the performance gap with
respect to well-established yet non-continual solutions, which is extremely difficult
to address given the limited context that is available to continual systems.

At the same time, two key questions arising from this thesis remain unanswered.
First, although we open a discussion for continual learning through representation
refinement, more research is needed to understand how well-established forgetting
and transfer definitions translate to this scenario, and whether the representation
models themselves can adapt to the production environment as well. Lastly, the
underlying cause of the high forward transfer we observed remains unclear, which
we believe requires further investigation on both theoretical and practical grounds.

7.2 Reproducible research

One of the contributions of this thesis is the source code associated to each of
our studies, which allows anyone to reproduce the results discussed throughout
the manuscript. In the following list, we present the links to the public and open
source GitHub repositories corresponding to each chapter.

• Chapter 3 (speaker verification and misogyny categorization)
github.com/juanmc2005/SpeakerEmbeddingLossComparison

github.com/juanmc2005/MetricAMI

• Chapter 4 (slot filling and named entity recognition)
github.com/juanmc2005/ContinualNLU

• Chapter 5 (online speaker diarization)
github.com/juanmc2005/StreamingSpeakerDiarization

• Chapter 6 (speaker segmentation)
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github.com/juanmc2005/CSDA

An additional work of this thesis has been the further development of the source
code corresponding to Chapter 5. Indeed, we believe it could become a useful tool
for machine learning practitioners in the field of online speaker diarization. In the
following section, we discuss this specific contribution in more detail.

Diart: a real-time speaker diarization library

Speaker diarization in real-time holds the potential to accelerate and cement the
adoption of speaker recognition technology in our everyday lives. However, al-
though current offline systems achieve outstanding performance in pre-recorded
conversations, additional problems of online diarization, like limited context and
low latency, require flexible and efficient solutions enabling both research and
production-ready applications.

A first version of the source code for Chapter 5 included a demonstration script
capable of streaming audio from a local microphone and drawing the predictions of
our proposed system in real time. Given its initial popularity and the feedback of
the GitHub community, we decided to develop this project further and transform
it into a toolkit for online speaker diarization. This source code has also been the
subject of the following scientific publication, which is currently under review:

Juan M. Coria, Hervé Bredin, Sahar Ghannay, Sophie Rosset, Khaled Zaouk,
Ingo Fruend, Bertrand Higy, Amit Kesari, and Yagna Thakkar. Diart: A Python
Library for Real-Time Speaker Diarization. Submitted to The Journal of Open
Source Software, 2022.

Diart is a Python library for real-time speaker diarization that leverages data struc-
tures and pre-trained models available in pyannote.audio (Bredin et al., 2020) to
implement production-ready real-time inference on a variety of audio streams, like
local and remote audio/video files, microphones, and even WebSockets. The fol-
lowing code extract demonstrates the simplicity of running live inference over a
microphone with diart, while plotting predictions in real time as they are produced
by the system.

from diart import OnlineSpeakerDiarization
from diart.sources import MicrophoneAudioSource
from diart.inference import RealTimeInference

system = OnlineSpeakerDiarization()
mic = MicrophoneAudioSource(system.config.sample_rate)
inference = RealTimeInference(system, mic, do_plot=True)
prediction = inference()
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The library was also designed to facilitate research by providing fast batched in-
ference and hyper-parameter tuning thanks to and in full compatibility with Op-
tuna (Akiba et al., 2019). As shown in the code extract below, the Optimizer class
allows users to tune hyper-parameters, while Benchmark allows to evaluate a sys-
tem. Both these classes can be applied on entire corpora, and achieve significantly
faster run times than RealTimeInference by applying models in mini-batches and
simulating a stream.

from diart import OnlineSpeakerDiarization
from diart.inference import Benchmark
from diart.optim import Optimizer

# Data directories
audio = "/audio/dir"
labels = "/ground-truth/dir"
# Optimizer output directory
output = "/output/dir"

# Optimize hyper-parameters
optimizer = Optimizer(audio, labels, output)
optimizer(num_iter=100)

# Evaluate the system
system = OnlineSpeakerDiarization(optimizer.best_config)
benchmark = Benchmark(audio, labels)
benchmark(system)

Diart also follows an object-oriented design fully capable of extension and cus-
tomization. Streaming is powered internally by ReactiveX extensions (RxPY),
but available “blocks” allow users to mix and match different operations with any
streaming library they choose. For instance, the following code extract shows
how to combine diart blocks with ReactiveX to continually extract overlap-aware
speaker embeddings (see Section 5.3.2).

import rx.operators as ops
import diart.operators as dops
from diart.sources import MicrophoneAudioSource
from diart.blocks import (

SpeakerSegmentation as Segmentation,
OverlapAwareSpeakerEmbedding as Embedding

)

seg = Segmentation.from_pyannote("pyannote/segmentation")
emb = Embedding.from_pyannote("pyannote/embedding")
sample_rate = segmentation.model.get_sample_rate()
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mic = MicrophoneAudioSource(sample_rate)

stream = mic.stream.pipe(
# Reformat stream to 5s duration and 500ms shift
dops.rearrange_audio_stream(sample_rate),
ops.map(lambda wav: (wav, seg(wav))),
ops.starmap(emb)

).subscribe(on_next=lambda e: print(e))

mic.read()

A prototyping tool with a command-line interface is also provided to quickly run
inference, evaluation, profiling and optimization without writing any Python code.

Finally, measurements of the computation time show that it takes 165ms to pro-
vide the output of a single state of the rolling buffer on a CPU Intel Cascade Lake
6248 (20 cores at 2.5Ghz), while the number decreases more than three-fold on
a GPU Nvidia Tesla V100 SXM2, achieving a processing time of 50ms. Consid-
ering updates of the rolling buffer every 500ms (which can also be customized),
this means that our implementation is well-suited for real-time applications, as a
prediction can be obtained before receiving the next buffer state.

All in all, we hope diart’s flexibility, efficiency and customization will allow for
exciting new research and applications in online speaker diarization.

7.3 Contributions

Throughout the work of this thesis, we have made the following contributions:

A systematic comparison of metric learning loss functions. In Chapter 3,
we performed a comparison of loss functions for metric learning that was lacking
in the literature at the time. In speaker verification, we have shown that additive
angular margin loss (Deng et al., 2019) is superior to the other loss functions
compared in the study. In misogyny categorization, we have shown that metric
learning loss functions do not perform better than the standard cross entropy loss.

A settlement on the usefulness of metric learning. In Chapter 3, we found
that metric learning may be useful in the context of open-set tasks, but ineffec-
tive on closed-set tasks. This seems to provide an explanation of why research
on metric learning techniques has sometimes been contradicting in the past. In-
deed, some studies on closed-set tasks have claimed that their improvement is at
best marginal (Musgrave et al., 2020), while other studies on open-set tasks have
claimed a significant improvement (Srivastava et al., 2020). By comparing these
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techniques on both types of problems, we have found a lacking aspect in previ-
ous comparisons that may explain why this is the case. However, confirming this
hypothesis requires a larger study across a wide variety of tasks from different
domains and modalities.

A fully end-to-end speaker embedding model. Previous work on speaker
verification relies on costly feature extraction algorithms like MFCC and data-
hungry post-processing modules like PLDA (Ioffe, 2006) for speaker embedding.
In Chapter 3, we trained a simpler fully end-to-end model relying on SincNet
trainable features (Ravanelli and Bengio, 2018) and the additive angular margin
loss (Deng et al., 2019) that achieved competitive performance. Furthermore,
we have shared this model with the speaker recognition community to accelerate
future research and power practical applications.

A state-of-the-art misogyny categorization model. In Chapter 3, we trained
a model for the task of misogyny categorization on tweets that outperformed the
state-of-the-art model to date by an absolute 4.4% difference in F1 score. However,
performance still remains low on this challenging task.

A better understanding of forward transfer. In Chapter 4, we saw that
a sequence labeling model that is continually trained on the adaptation axis of
languages suffers from forgetting (i.e. performance loss of previously learned lan-
guages). Although this was expected, we were also surprised to discover that the
model was able to leverage previous knowledge in the form of forward transfer
(i.e. performance gain of new languages with respect to monolingual). Additional
experiments provided evidence that model parameters were shifting towards a bet-
ter multilingual initialization, while moving away from previous-language optima.
Our experiments from Chapter 6 on the domain axis in speaker diarization also
seemed to benefit from a similar phenomenon. This is an interesting property that
could be exploited in both future research and practical applications.

A better understanding of the localization of progressively acquired
knowledge. In the same vein, our experiments from Chapter 4 also provided evi-
dence of where the knowledge facilitating forward transfer is stored. We found that
most of this knowledge was stored in the Transformer-based encoder BERT (De-
vlin et al., 2019), and not in the appended word classifier. In this context, we have
shown that the common strategy of freezing general-purpose model parameters to
avoid forgetting can be highly counterproductive, as it may completely erase the
possibility of forward transfer, and hence of progressive improvement.

Fast recovery capabilities. In Chapter 4, we have shown that it is possible to
leverage high forward transfer for fast recovery capabilities, allowing the model to
fully restore and even improve lost performance on previous languages with just a
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few training epochs. However, it remains unclear whether a cost-effective solution
exists to avoid forgetting with this technique.

A state-of-the-art online speaker diarization system. In Chapter 5, we
have proposed a modular system for online speaker diarization consisting of three
steps: speaker segmentation, speaker embedding and incremental clustering. We
have shown that our approach outperforms the state-of-the-art with a lower mem-
ory consumption as well as an adjustable latency, which can even reach half the
latency of the previous best system. Furthermore, our system adapts continually,
progressively bridging the gap to offline performance as time passes. Neverthe-
less, there is still a large gap between offline and online performance, specifically
in speaker confusion. This shows that our incremental clustering algorithm has
considerable room for improvement.

A Python toolkit for online speaker diarization. As discussed in Section 7.2,
we have released an open source implementation of our online speaker diarization
system from Chapter 5 in the form of a Python library and toolkit, that works on
any live conversation in real time. This allows anyone to use, optimize, evaluate
and even customize our system with little effort.

A training scheme for continual self-supervised domain adaptation in
speaker diarization. In Chapter 6, we have proposed a training scheme com-
bining continual learning and pseudo-labels to progressively adapt the speaker
segmentation model (used in Chapter 5) to a new domain one conversation at a
time. We found our approach to be effective, outperforming a pre-trained baseline
by a relative 17% without storing sensitive user data. However, our method is still
behind its fully supervised equivalent.

7.4 Future directions

As mentioned in Section 7.1, we believe two important yet unaddressed research
directions arise from our work: the improvement of continual learning with task-
specific representations, and the better understanding of naturally occurring for-
ward transfer. In this section, we list what we believe to be important future
research topics to answer key questions from each of these directions.

7.4.1 Continual learning with task-specific representations

Meaningful metrics. In Chapter 5, we saw that forgetting could be more ac-
curately defined as a centroid divergence problem in the context of incremental
clustering. Moreover, we believe it is also not fully applicable to the task of online
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diarization itself. Indeed, there is a low risk of forgetting speakers, as they tend
to speak regularly throughout the target conversation. In fact, this may act as
a form of replay (see Section 2.4.2). We believe that task-specific definitions of
both forgetting and transfer metrics are crucial to understand and address the
difficulties of continual adaptation in different types of applications.

Continual refinement of the embedding model. Although we have pro-
posed a way to progressively refine speaker centroids within a fixed embedding
space, it should also be possible to refine the embedding model in the same way
as the speaker segmentation model in Chapter 6. Indeed, continually improving
intra-class compactness and inter-class separability for the target domain holds
the potential to substantially decrease speaker confusion. A technique boosting
these properties while ensuring backward compatibility (so that previous centroids
remain meaningful) could provide significant gains to incremental clustering.

Joint speaker segmentation and embedding. The system we have proposed
in Chapter 5 is based on two fundamental pre-trained building blocks, which are
the speaker segmentation and speaker embedding models. However, these models
are pre-trained separately on different data from potentially different domains, and
are not allowed to learn from each other. We believe it should be possible to train
a single model to perform these two tasks at once, which could allow joint transfer
between them and hence achieve better performance. Furthermore, it could be free
to learn the transformation function we presented in Equation 5.4 to find improved
weights for embedding extraction. Nevertheless, the difficulty of this study lies in
finding the right training data and multi-task loss function to favor joint transfer
and discourage interference.

A combination of our proposed approaches. We believe that the continual
self-supervised training scheme from Chapter 6 could provide a substantial boost
in the continual adaptation capabilities of the online speaker diarization system
proposed in Chapter 5. For example, the speaker segmentation model could be
fine-tuned in the background using the past audio and predictions from the target
conversation, while a previous snapshot of the segmentation model is being used
for real-time inference.

Incremental clustering constraints. The incremental clustering algorithm we
have proposed in Chapter 5 is not without its flaws. In particular, it requires
several hyper-parameters to be tuned beforehand, and it is based on rigid and
hand-crafted rules. Alleviating some of these constraints could give more flexibility
to the system, for example by determining the value of δnew automatically based
on the distribution of speaker embedding distances computed in the past.

157



7.4.2 Better understanding of forward transfer

The causes of high forward transfer. In Chapter 4 and Chapter 6, we saw
that forward transfer can appear without any specific encouragement from our
part. Although we hypothesized that this is due to shared properties of the data
in each training stage, we have not answered this question definitely. We think that
further research is needed in this area to fully understand the causes underlying
this phenomenon, as well as its applicability in other situations.

Fast model recovery. In Chapter 4, we discovered that the model could recover
its lost performance (due to forgetting) in a matter of a few training epochs. We
hypothesize that these capabilities can be exploited in a variety of scenarios. For
instance, it could be used to efficiently bootstrap the training process of a multilin-
gual model at the beginning of a long and tedious data collection and annotation
process. Additionally, it could even provide a way to avoid catastrophic forgetting
by interleaving “recovery cycles” with training stages. However, it remains unclear
whether doing so in a cost-effective manner is possible.

Localization of transferred knowledge. In Chapter 4, we learned that the
knowledge allowing high forward transfer was mostly stored in the contextual
word embedding model, and not in the task-specific classifier. However, given the
depth of the model, it would be useful to determine the relevance of each layer
more precisely. We hypothesize that certain layers (e.g. the lower layers) could
contain more general-purpose knowledge than others, which could allow for the de-
velopment of new constraint-based continual learning methods (see Section 2.4.3)
that do not interfere with forward transfer.
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Titre: Apprentissage de représentation en continu pour la langue écrite et parlée

Mots clés: 3 à 6 mots clefs (version en français)

Résumé: L’apprentissage automatique a récem-
ment connu des avancées majeures, mais les
modèles actuels sont généralement entraînés une
fois sur une tâche cible et leurs paramètres sont
rarement révisés. Ce problème affecte les per-
formances après la mise en production car les
spécifications des tâches et les données peuvent
évoluer avec le temps. Pour résoudre ce prob-
lème, l’apprentissage continu propose un entraîne-
ment au fil du temps, à mesure que de nouvelles
données sont disponibles. Cependant, les mod-
èles entraînés de cette manière souffrent d’une
perte de performance sur les exemples déjà vus, un
phénomène appelé oubli catastrophique. De nom-
breuses études ont proposé différentes stratégies
pour prévenir l’oubli, mais elles s’appuient souvent
sur des données étiquetées rarement disponibles en
pratique.

Dans cette thèse, nous étudions l’apprentissage

continu pour la langue écrite et parlée. Notre
objectif est de concevoir des systèmes autonomes
et auto-apprenants capables d’exploiter les don-
nées disponibles sur le terrain pour s’adapter aux
nouveaux environnements. Contrairement aux
travaux récents sur l’apprentissage de représenta-
tions à usage général, nous proposons d’exploiter
des représentations adaptées à une tâche cible. En
effet, ces dernières pourraient être plus faciles à
interpréter et à exploiter par des méthodes non su-
pervisés et plus robustes à l’oubli, comme le clus-
tering.

Dans ce travail, nous améliorons notre compréhen-
sion de l’apprentissage continu dans plusieurs con-
textes. Nous montrons que les représentations spé-
cifiques à une tâche permettent un apprentissage
continu efficace à faibles ressources, et que les pré-
dictions d’un modèle peuvent être exploitées pour
l’auto-apprentissage.



Title: Continual Representation Learning in Written and Spoken Language

Keywords: continual learning, representation learning, metric learning, speaker diarization, sequence
labeling

Abstract: Although machine learning has recently
witnessed major breakthroughs, today’s models are
mostly trained once on a target task and then de-
ployed, rarely (if ever) revisiting their parameters.
This problem affects performance after deploy-
ment, as task specifications and data may evolve
with user needs and distribution shifts. To solve
this, continual learning proposes to train models
over time as new data becomes available. How-
ever, models trained in this way suffer from sig-
nificant performance loss on previously seen ex-
amples, a phenomenon called catastrophic forget-
ting. Although many studies have proposed dif-
ferent strategies to prevent forgetting, they often
rely on labeled data, which is rarely available in
practice.

In this thesis, we study continual learning for writ-
ten and spoken language. Our main goal is to
design autonomous and self-learning systems able

to leverage scarce on-the-job data to adapt to the
new environments they are deployed in. Contrary
to recent work on learning general-purpose repre-
sentations (or embeddings), we propose to lever-
age representations that are tailored to a down-
stream task. We believe the latter may be easier
to interpret and exploit by unsupervised training
algorithms like clustering, that are less prone to
forgetting.

Throughout our work, we improve our understand-
ing of continual learning in a variety of settings,
such as the adaptation of a language model to
new languages for sequence labeling tasks, or even
the adaptation to a live conversation in the con-
text of speaker diarization. We show that task-
specific representations allow for effective low-
resource continual learning, and that a model’s
own predictions can be exploited for full self-
learning.
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