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Abstract

Lightweight child-worn recorders that collect audio across an entire day allow for a
big-data approach to the study of language development. By collecting the child’s
production and linguistic environment, these recordings offer us a uniquely natural-
istic view of everyday language uses. However, such recordings quickly accumulate
thousands of hours of audio and require the use of automatic speech processing
algorithms. Besides providing ecologically-valid measures of what children hear and
say, these recordings can fuel computational models of early language acquisition
with what infants truly hear. This opens up new opportunities for running realistic
language learning simulations.

A first aspect of my doctoral work is dedicated to developing automatic speech
processing algorithms for child-centered long-form recordings. In this manuscript, I
first show that current state-of-the-art automatic speech recognition systems fail to
capture the complexity of naturalistic speech as found in long-forms. I then present
our attempt to propose a free, open-source, and more accurate alternative to the
LENA® proprietary software, which is currently the standard tool for obtaining
automatic analyses of long-forms. Using supervised learning methods, my collabo-
rators and I built a suite of speech processing tools to detect voice activity, identify
voice signal sources (child vocalizations, female or male speech), count the number
of linguistic units (phonemes, syllables, or words), and estimate the quantity of
background noise and reverberation.

A second aspect of my doctoral work is dedicated to computational models of early
language acquisition. I present a first modeling study showing that self-supervised
learning algorithms trained on audiobooks can learn phonetic and lexical aspects of
their training language. I then show that the same algorithm trained on ecological
long-forms needs inductive biases to learn phonetic aspects of its training language
reliably and reflect on whether similar inductive biases may guide language learning
in infants. Interestingly, there is no evidence for lexical learning on long-forms,
contrary to what has been shown in the literature on more curated data. This series
of studies illustrates the importance of considering ecologically-valid input data
when modeling language acquisition.

Keywords: language development, psycholinguistics, speech processing, deep learn-
ing, supervised learning, self-supervised learning, cognitive sciences
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Résumé

L’utilisation d’enregistreurs légers portés par les enfants et collectant du son tout
au long de la journée ouvre la voie à une approche de ‘données massives’ pour
étudier le développement du langage chez l’enfant. En recueillant la production
langagière de l’enfant ainsi que son environnement linguistique, ces enregistrements
nous offrent une vision réaliste des usages quotidiens du langage. Cependant, de tels
enregistrements constituent rapidement des milliers d’heures d’audio et nécessitent
l’utilisation d’outils de traitement automatique de la parole. En plus de fournir des
mesures réalistes de ce que les enfants entendent et disent, ces enregistrements
peuvent alimenter les modèles computationnels d’acquisition du langage avec une
entrée comparable à ce que les enfants entendent réellement, ouvrant ainsi de
nouvelles perspectives pour simuler l’apprentissage du langage.

Un premier aspect de mon travail doctoral concerne le développement d’outils de
traitement automatique de la parole compatibles avec ces enregistreurs portés par
l’enfant. Cette thèse commence par une étude montrant que les outils à la pointe de
la reconnaissance automatique de la parole ne parviennent pas à transcrire la parole
enregistrée dans des conditions bruitées et non contrôlées. À travers une brève
analyse technique et scientifique, j’introduis le logiciel propriétaire LENA, devenu
l’outil standard pour l’analyse automatique de ces enregistrements. Je présente
nos efforts pour en proposer une version libre, gratuite et plus performante. En
collaboration avec d’autres chercheurs, j’ai contribué à développer une série d’outils
de traitement automatique de la parole pour détecter l’activité vocale, identifier
les sources de signaux vocaux (vocalisations de l’enfant, paroles d’une femme ou
d’un homme adulte), compter le nombre d’unités linguistiques (phonèmes, syllabes,
mots), et estimer la quantité de bruit et de réverbération.

Un second aspect de mon travail doctoral concerne la modélisation de l’acquisition du
langage. Je présente une première étude montrant qu’un algorithme d’apprentissage
auto-supervisé entraîné sur des livres audio est capable d’apprendre des aspects
phonétiques et lexicaux de sa langue d’entraînement. En revanche, lorsque ce même
algorithme est exposé à ce que les enfants entendent réellement, l’implémentation de
biais inductifs qui visent à contraindre l’apprentissage est nécessaire pour observer
une acquisition de ces mêmes aspects phonétiques. À partir de ce constat, nous
réfléchissons à la possibilité que de tels biais inductifs puissent guider l’apprentissage
chez les enfants. Il est surprenant de constater que notre algorithme est incapable
d’apprendre les aspects lexicaux de sa langue d’entraînement lorsqu’il est exposé à
la parole que reçoivent les enfants, contrairement à ce qu’a montré la littérature sur
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des données moins bruitées. Cette série d’études illustre l’importance d’utiliser des
données d’entrée réalistes lors de la modélisation de l’acquisition du langage.

Mots-clés: développement du langage, psycholinguistique, traitement de la pa-
role, apprentissage profond, apprentissage supervisé, apprentissage auto-supervisé,
sciences cognitives

Résumé substantiel

Le langage est le propre de l’humanité. Tandis que l’on trouve des systèmes de com-
munication complexes chez de nombreuses espèces, les langues humaines présentent
une complexité et une capacité d’expression inégalées. En combinant un ensemble
fini de sons en un ensemble infini de mots, qui peuvent être à leur tour combinés
en un ensemble infini de phrases, nous pouvons exprimer un nombre incalculable
d’idées. Nous utilisons le langage pour développer des liens avec autrui, collaborer,
débattre, apprendre, exprimer nos émotions, plaisanter, réciter de la poésie, écrire
des livres et des articles scientifiques – les possibilités sont sans fin.

Devant une telle complexité, la maîtrise du langage est l’une des tâches les plus
difficiles qui soient. Malgré cela, la grande majorité des enfants deviennent des
utilisateurs compétents du langage, qu’il soit sous forme parlée ou signée. Ceci
est d’autant plus surprenant que l’apprentissage du langage chez les enfants se
déroule sans effort et en l’espace de quelques années seulement. Comment les enfants
apprennent-ils le langage? Quelles étapes développementales traversent-ils au cours
du processus d’apprentissage? Comment l’environnement langagier auquel les enfants
sont exposés façonne-t-il leurs compétences langagières ? Ce sont quelques-unes des
questions explorées dans la recherche sur le développement du langage.

Dans cette thèse, je propose d’aborder la question du développement du langage au
moyen d’une méthode récente de collecte de données : des enregistrements sonores
pouvant durer jusqu’à 16 heures et collectant la production langagière et l’environ-
nement linguistique de jeunes enfants. Ces enregistrements longs centrés sur l’enfant
(child-centered long-form recordings), au cœur de mon travail doctoral, donnent un
aperçu réaliste des utilisations quotidiennes du langage. En plus de fournir des
mesures sur ce que les enfants entendent et disent en conditions naturelles, dont
l’extraction automatique sera le sujet du Chapitre 1, ces enregistrements permettent
d’alimenter les modèles computationnels d’acquisition du langage avec des données
réalistes, sujet des Chapitres 2 et 3.
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Chapitre 1. La mesure est une pierre angulaire de la méthode scientifique. Mesurer
ce que les enfants entendent et disent nous fournit de précieuses informations sur
l’acquisition du langage, ce qui nous permet de mieux comprendre comment les
jeunes apprenants déduisent les règles de leur langue maternelle. Voici quelques-
unes des questions auxquelles les chercheurs s’intéressent : Qui parle à l’enfant ?
À quelle fréquence? Que leur dit-t-on et comment? Quels sons, mots ou phrases l’en-
fant produit-t-il ? Comment ces mesures changent-elles avec l’âge de l’enfant ? D’une
population à une autre ? D’un individu à l’autre ? Ces mesures sont-elles prédictives des
compétences langagières développées par l’enfant ? Peuvent-t-elles être utilisées pour
détecter les troubles de l’acquisition du langage ou quantifier l’efficacité des programmes
de remédiation langagière ?

Il est possible de répondre à bon nombre de ces questions en utilisant la technologie
des enregistrements longs centrés sur l’enfant. De manière regrettable, résoudre
ces questions n’est pas chose aisée. L’information à laquelle on s’intéresse est en
effet enfouie dans des milliers d’heures d’enregistrement et nécessite l’utilisation
d’outils de traitement automatique de la parole. À cela s’ajoute la nécessité que nos
algorithmes soient compatibles avec les conditions non contrôlées caractéristiques
des enregistrements centrés sur l’enfant : l’enfant peut être à la maison, au parc ou
à la crèche ; la parole enregistrée peut être partiellement masquée par des bruits
environnementaux tels que les sons produits par un aspirateur, le trafic routier, la
télévision ou la radio.

Dans ce premier Chapitre, nous proposons une analyse des performances d’un sys-
tème à la pointe de la reconnaissance automatique de la parole, le modèle Whisper
développé en 2022 par l’entreprise américaine OpenAI. Sur des enregistrements
longs centrés sur l’enfant collectés dans des familles anglophones vivant aux États-
Unis, Whisper obtient un taux d’erreur de mots (word error rate) moyen de 47.9%. Il
est intéressant de mentionner que des taux d’erreurs bien plus bas sur des corpus
couramment utilisés en reconnaissance automatique de la parole ont été documentés.
En effet, le taux d’erreur moyen à travers les corpus LibriSpeech, Common Voices,
Vox Populi et Fleurs est seulement de 7%. Nous attribuons une telle différence de
taux d’erreur de mots entre les enregistrements longs centrés sur l’enfant et les
corpus couramment utilisés à deux facteurs principaux. Le premier facteur est la
présence de parole prononcée par des enfants, très largement absente des données
d’apprentissage actuellement utilisées pour entraîner les modèles de reconnais-
sance automatique de la parole. Le deuxième facteur est la présence de conditions
d’enregistrement plus difficiles que celles couramment considérées (voir l’analyse
acoustique proposée dans le Chapitre 3). Cette première étude illustre certaines des
difficultés liées à l’utilisation des enregistrements longs centrés sur l’enfant.
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Nous poursuivons avec une analyse technique et scientifique du logiciel propriétaire
LENA (Language Environment Analysis) développé par l’organisme américain à but
non lucratif du même nom. L’utilisation combinée d’enregistreurs légers portés par
l’enfant et de ce logiciel propriétaire a profondément transformé la recherche sur le
développement du langage, le logiciel LENA s’étant rapidement imposé comme l’outil
standard pour l’analyse automatique des enregistrements longs centrés sur l’enfant.
Entre autres choses, le logiciel LENA segmente l’enregistrement audio en plusieurs
catégories en fonction de ce qu’il contient : des vocalisations produites par l’enfant
ou de la parole prononcée par un adulte. De cette première étape de segmentation
sont extraites plusieurs mesures : 1) le nombre de tours de conversation (conversa-
tional turns) entre l’enfant et un adulte ; 2) le nombre de mots prononcés par les
locuteurs adultes ; 3) le nombre de vocalisations canoniques produites par l’enfant,
en ignorant donc les pleurs, les rires, et les sons végétatifs (bruits de respiration ou
d’éructation).

Notre analyse révèle trois limitations importantes du logiciel LENA. Premièrement,
le logiciel est propriétaire, rendant difficile d’accès les nombreux détails d’implémen-
tation pouvant influer sur les performances du logiciel. Deuxièmement, le logiciel
repose sur des technologies de traitement automatique de la parole développées au
début des années 2000, et avec deux décennies de progrès, on peut raisonnablement
se demander si les performances ne bénéficieraient pas d’une mise à jour. Troisième-
ment, le logiciel LENA a été entraîné exclusivement sur de l’anglais américain, ce
qui ne garantit pas qu’il puisse fonctionner aussi bien sur d’autres langues.

C’est dans ce contexte que nous proposons une alternative libre, gratuite et plus
performante au logiciel LENA. En utilisant des méthodes d’apprentissage supervisé,
et en collaboration avec d’autres chercheurs, j’ai contribué à développer une suite
d’outils de traitement automatique de la parole entraînés sur des corpus multilingues
pour détecter l’activité vocale, identifier les sources de signaux vocaux (vocalisations
de l’enfant, paroles d’une femme ou d’un homme adulte), compter le nombre
d’unités linguistiques (phonèmes, syllabes, mots), et estimer la quantité de bruit et
de réverbération. En plus de constituer une alternative libre et gratuite au logiciel
LENA, nos résultats montrent que les performances de nos algorithmes sont égales
ou supérieures aux performances obtenues par l’algorithme LENA.

Nous concluons ce Chapitre en abordant trois aspects essentiels de cette ligne
de recherche, à savoir : 1) la nécessité d’aller au-delà des mesures initialement
développées par l’organisation américaine LENA; 2) l’importance de promouvoir
la diversité dans les données d’apprentissage et d’évaluation afin de construire des
algorithmes inclusifs avec un minimum de biais ; 3) l’importance de démocratiser
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l’usage de ces algorithmes en les rendant accessibles à des acteurs moins familiarisés
avec l’informatique et le traitement du signal.

Chapitre 2. Pendant de nombreuses années, des scientifiques de divers domaines,
de la linguistique formelle à la psychologie du développement, en passant par
l’intelligence artificielle, ont envisagé la possibilité d’exécuter des simulations d’ap-
prentissage du langage sur ordinateur. De telles simulations sont importantes à la
fois pour des raisons pratiques et théoriques. Sur le plan théorique, les simulations
peuvent aider à prouver ou réfuter certaines hypothèses – et à en formuler de nou-
velles – sur la façon dont les nourrissons apprennent leur langue maternelle. Sur
le plan pratique, de telles simulations améliorent les compétences langagières des
ordinateurs, leur permettant de comprendre le langage et de le parler de manière
plus efficace.

Nous commençons ce Chapitre avec une synthèse des principaux résultats d’expé-
riences en laboratoire portant sur les capacités langagières des jeunes enfants. Par
exemple, une amélioration des capacités de discrimination des sons de la langue
maternelle est observée chez les nourissons entre 6 et 12 mois, tandis que leur capa-
cité à discriminer les sons non natifs diminue. En d’autres termes, la discrimination
des sons chez les jeunes enfants se s’adapte à leur langue maternelle. À 4 mois, les
nourrissons commencent en général à reconnaître leur propre nom, et à l’âge de 8
mois, la plupart d’entre eux connaissent la signification de nombreux mots. Étonna-
ment, cette connaissance précoce des aspects lexicaux et sémantiques de leur langue
maternelle intervient bien avant que les nourrissons ne développent pleinement leur
capacité de discrimination sonore, et avant même qu’ils ne produisent leur premier
mot, généralement vers la fin de leur première année de vie.

De nombreuses théories ont été proposées afin d’expliquer l’apprentissage du lan-
gage chez l’enfant. L’apprentissage statistique, sans doute l’une des plus importantes
d’entre elles, souligne la capacité des enfants à extraire les propriétés statistiques
de leur environnement linguistique afin d’en extraire la structure phonétique, lexi-
cale et grammaticale. Une seconde théorie, appelée apprentissage inter-situationnel
(cross-situational learning), met en avant la capacité des jeunes enfants à agréger
des informations à partir d’observations de cooccurrences entre un mot et sa signi-
fication, constituant ainsi une explication de l’apprentissage sémantique précoce.
Les théories de l’apprentissage social mettent l’accent sur le rôle des facteurs sociaux
dans l’acquisition du langage et l’importance de l’interaction humaine. Ces théories
soulignent l’importance de nombreux mécanismes, y compris l’imitation et le ren-
forcement, l’attention conjointe (c’est-à-dire l’attention coordonnée d’un enfant et
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son parent envers un objet ou un événement), les boucles de rétroaction lors de la
communication, etc.

Une manière de tester ces théories consiste à les implémenter. En effet, si l’acqui-
sition du langage chez les nourrissons se fait par le biais de certains mécanismes,
alors l’implémentation de ces mêmes mécanismes devrait produire des résultats
d’apprentissage similaires à ceux observés chez l’enfant. Bien que l’exécution de
simulations reflétant toute la complexité du monde réel ne soit pas encore possible
aujourd’hui, les simulations d’apprentissage représentent un outil précieux dans
l’étude de l’acquisition du langage en nous fournissant des preuves d’apprenabilité
sous la forme suivante : “La propriété P peut être apprise à partir de l’entrée E en
utilisant le mécanisme M”. Ces preuves d’apprenabilité nous éclairent ainsi sur ce
que les jeunes enfants peuvent apprendre sur la base exclusive du mécanisme M et
de l’entrée E.

Après avoir présenté une vue d’ensemble du paysage méthodologique dans l’exécu-
tion de simulations d’apprentissage, nous présentons notre propre approche, au cœur
du Chapitre 2 et 3 de cette thèse. Nous proposons de comparer les résultats d’ap-
prentissage de notre simulation aux mesures comportementales faites en laboratoire
chez l’enfant ou l’adulte. En particulier, nous proposons l’utilisation d’une tâche de
discrimination sonore ABX, un protocole couramment utilisé en psycholinguistique.
Durant cette tâche, l’apprenant artificiel reçoit trois triphones A, B et X avec A et
X correspondant à différentes occurrences du même triphone (par exemple “bip”)
et B correspondant à un autre triphone dont le phone central diffère (par exemple
“bop”). Si l’apprenant artificiel retourne une distance entre A et B plus petite que la
distance entre A et X, alors il réussit, sinon il échoue.

Tandis que cette tâche évalue les capacités de discrimination sonore de l’apprennant
artificiel, la seconde tâche proposée évalue ses capacités au niveau lexical. Dans
cette tâche lexicale, l’apprenant reçoit un vrai mot (par exemple “dragon”) ainsi
qu’un pseudo-mot présentant une probabilité phonotactique similaire (par exemple
“draton”). Si l’apprenant artificiel associe une probabilité plus élevée au vrai mot
qu’au pseudo-mot, alors il réussit, sinon il échoue.

Avant de présenter nos résultats, il convient de mentionner deux caractéristiques
essentielles de notre méthodologie. Premièrement, nous adoptons une approche
inter-linguistique (cross-linguistic) dans laquelle l’apprenant artificiel est exposé soit
à de l’anglais, soit à du français, simulant ainsi un enfant apprenant l’anglais ou
le français. Durant l’étape d’évaluation, nos deux apprenants sont évalués sur les
deux langues. La comparaison entre les scores natifs (apprentissage et évaluation
sur la même langue) et non natifs (apprentissage et évaluation sur deux langues
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différentes) nous permet de mesurer ce que l’apprenant a appris grâce à l’exposi-
tion à sa langue d’entraînement, par opposition à l’exposition à une autre langue.
Deuxièmement, nous adoptons une approche développementale dans laquelle nous
faisons varier la quantité de parole à laquelle l’apprenant a accès. Ceci nous permet
d’étudier l’effet de la quantité de parole sur les résultats d’apprentissage.

Dans cette première étude, nous exposons un modèle d’apprentissage auto-supervisé
à de grandes quantités de livres audio en suivant la méthodologie décrite plus haut.
Les trajectoires d’apprentissage suivies par notre apprenant artificiel montrent un
effet positif de leur langue d’entraînement, c’est-à-dire que l’apprenant natif (par
exemple le modèle anglais évalué sur l’anglais) obtient des scores phonétiques et
lexicaux plus élevés que l’apprenant non-natif (par exemple le modèle français
évalué sur l’anglais), et cela dès l’exposition à 50 heures de parole. Nous observons
également un effet important de la quantité de parole, c’est-à-dire que le modèle
natif s’améliore sur la tâche de discrimination sonore ainsi que sur la tâche lexicale à
mesure que la quantité de parole dans l’ensemble d’apprentissage augmente. Tandis
que l’on aurait pu s’attendre à un apprentissage successif durant lequel le modèle
apprend à discriminer les sons avant d’apprendre les mots, nous observons une
trajectoire parallèle, compatible avec les observations faites chez l’enfant.

Notre simulation fournit une preuve d’apprenabilité. En exposant nos algorithmes
auto-supervisés à de la parole, nous avons montré que ces derniers apprennent à
discriminer les sons et à discriminer les mots de pseudo-mots. De plus, les trajectoires
d’apprentissage de nos apprenants artificiels sont compatibles avec celles observées
chez l’enfant. Ainsi, nous démontrons que les théories d’apprentissage statistique,
dont nos algorithmes sont l’un des nombreux représentants, suffisent à expliquer
certains des aspects de l’apprentissage phonétique et lexical chez l’enfant.

Chapitre 3. Une mission d’importance capitale en sciences en général, et dans les
études de modélisation en particulier, est de comprendre dans quelle mesure nos
découvertes s’appliquent au monde réel.

Dans la simulation décrite plus haut, nous exposons nos apprenants artificiels à des
livres audio. Par ce biais, nous faisons l’hypothèse simplificatrice importante que
l’environnement linguistique de l’enfant est constitué de longues phrases articulées,
prononcées par le même locuteur, couvrant un large vocabulaire, présentant une
syntaxe complexe, et produites dans un environnement acoustique favorable (re-
lativement peu de bruits et peu de réverbération). Ces hypothèses simplificatrices
font partie intégrante de l’entreprise de modélisation mais ne correspondent pas
aux conditions auxquelles les jeunes enfants sont confrontés. Comment la complexité
de l’environnement langagier réel des enfants affecte-t-elle l’acquisition du langage?
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Les théories existantes rendent-elles compte de manière adéquate de ce que les enfants
entendent vraiment? Nos modèles computationnels présentent-ils les mêmes résultats
d’apprentissage lorsqu’ils sont formés sur des données propres ou réalistes ? Ces ques-
tions sont au centre du Chapitre 3. Nous proposons d’alimenter les simulations
d’acquisition du langage directement avec ce que les nourrissons entendent en
utilisant les enregistrements longs centrés sur l’enfant introduits au Chapitre 1.

Nous commençons par présenter un article expliquant comment un programme de
recherche se focalisant sur l’utilisation des enregistrements longs centrés sur l’enfant
dans le cadre de la modélisation de l’acquisition du langage pourrait procéder.
En particulier, nous présentons comment certaines expériences de perception de la
parole en laboratoire chez l’enfant peuvent être adaptées pour évaluer les apprenants
artificiels.

À travers une analyse acoustique comparative entre les enregistrements longs cen-
trés sur l’enfant et les livres audio couramment utilisés dans les modélisations
d’apprentissage, nous montrons que la parole contenue dans les enregistrements
centrés sur l’enfant contient un niveau de bruit bien plus élevé que celle trouvée
dans les livres audio. Notre analyse révèle également que contrairement aux livres
audio, les enregistrements longs centrés sur l’enfant présentent une grande variété
d’environnement réverbérant dégradant fortement la qualité du signal de parole.

À la lumière de ces différences acoustiques, nous proposons de comparer l’appren-
tissage d’un apprenant artificiel, le même que celui étudié au Chapitre 2, lorsque
ce dernier est exposé aux livres audio ou aux enregistrements centrés sur l’enfant.
En particulier, nous nous intéressons au processus de synchronisation perceptuelle
intervenant entre 6 et 12 mois chez les nourrissons, au cours duquel ces derniers
deviennent meilleurs pour discriminer les sons natifs et moins bons pour discriminer
les sons non natifs. Adoptant la même approche inter-linguistique et développemen-
tale que celle présentée au Chapitre 2, nous montrons que notre apprenant artificiel
reproduit en effet le processus de synchronisation perceptuelle lorsqu’il est entraîné
sur des livres audio, ce qui n’est pas le cas de l’apprenant artificiel entraîné sur les
enregistrements centrés sur l’enfant.

Afin de reproduire le processus de synchronisation perceptuelle à partir de ces enre-
gistrements, il est nécessaire d’équiper notre apprenant avec certains mécanismes
visant à guider le processus d’apprentissage. Ces mécanismes, aussi appelés biais in-
ductifs, ont été conçus pour répondre à deux critères : 1) ils doivent être compatibles
avec les comportements documentés chez l’enfant ; 2) ils doivent atténuer certaines
dégradations du signal identifiées lors de notre analyse acoustique. Puisque l’on
observe que ces biais inductifs sont nécessaires pour que notre apprenant artificiel
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reproduise le processus de synchronisation perceptuelle, nous explorons la possibi-
lité que des biais inductifs similaires puissent guider l’acquisition du langage chez
l’enfant.

Il est important de mentionner que nous n’observons pas de preuves d’un quelconque
apprentissage lexical, contrairement à ce qui a été montré dans le Chapitre 2
avec l’apprenant artificiel entraîné sur les livres audio. À travers l’utilisation de
microphones portés par l’enfant, nous montrons l’importance d’utiliser des données
d’entrée réalistes dans les simulations d’acquisition du langage.
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Thesis format
This document follows a thesis-by-publication format (thèse par articles), meaning
that first-author articles are directly embedded in the document’s body. Far from
being a mere concatenation of articles, this format allows me to relegate the expert-
oriented discourse and technical details to the scientific articles that are published
or are in the process of being published. By doing so, I focus on the coherence of
our past, present, and future work, highlighting the factors that led us to work on a
specific subject, detailing our most important findings, and outlining the potential
directions we may pursue in the future.

Throughout Chapters 1, 2, and 3, readers will find sections accompanied by an
article. These sections are highlighted with a box containing the article reference,
followed by a Motivation and a Paper Summary subsections. Readers should be able
to understand the essence of our work by focusing exclusively on these subsections,
which should ease – and considerably speed up – the reading of this document.
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Introduction 0
Language is unique to humans. While sophisticated communication systems are
found across many species, human languages exhibit unrivaled intricacies and
expressive power (Hockett, 1960). By combining a finite set of sounds into an
infinite set of words, which in turn can be combined into an infinite set of sentences,
we can express countless ideas. We use language to bond with others, collaborate,
debate, learn, express our feelings, make jokes, recite poetry, and write books and
scientific articles – the possibilities are endless.

Given such complexity, mastering one’s native language is one of the most chal-
lenging tasks a human being will ever face. Nevertheless, the vast majority of
infants become proficient language users, whether in spoken or signed form (Goldin-
Meadow & Brentari, 2017). What is even more astounding is that they do it within
a few years and in an effortless manner. How do infants learn to comprehend and
produce language? What developmental stages do they undergo as the learning process
unravels? How does the language infants are exposed to shape their language skills?
Those are some of the key questions explored in language development research.

Attempting to answer these questions takes much collaborative effort from re-
searchers spanning different disciplines such as neuroscience, psychology, linguistics,
philosophy, computer sciences, and many others. Despite scientists’ best efforts to
reveal the hidden workings of infants, numerous secrets continue to elude our un-
derstanding. In our quest for comprehension, we must find ingenious ways to collect
and describe what children hear and produce, elicit and measure their behavior or
brain activity while exposed to language, and so on – much of this methodology will
be introduced throughout the thesis.

During my stay at the Laboratoire de Sciences Cognitives et Psycholinguistique (LSCP)
and Meta AI in Paris, under the supervision of Alejandrina Cristia, Hervé Bredin,
and Emmanuel Dupoux, I explored how artificial neural networks (ANN) could be
used to foster progress in language development research. In particular, I focused on
using child-centered long-form recordings that collect everyday language uses from
the child’s perspective – described in Section 0.2. In this context, my collaborators
and I developed a suite of speech processing tools to automatically describe the input
afforded to children as well as their language production. This aspect is discussed
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in Chapter 1 and illustrates how artificial neural networks can be used as a tool to
describe children’s language environments. A second aspect of my doctoral work
focused on modeling early language acquisition. Computer simulations can help us
get insights into how infants may acquire their native language. These aspects are
discussed in Chapters 2 and 3 and illustrate how artificial neural networks can be
used as a model of the infant learner.

0.1 The nature versus nurture debate

Abbaye de Royaumont (Val-d’Oise), October 1975. Noam Chomsky, an esteemed
American linguist, and Jean Piaget, a distinguished Swiss psychologist, met for the
first time to discuss their views on the origins of learning and language (Manesse
& Miniac, 1981). The encounter between these two intellectual giants will remain
forever engraved in the history of cognitive sciences. At the heart of the discussion
was the fundamental question of the relative contribution of genes (nature) and the
environment (nurture) in infant language acquisition.

On the one hand, Chomsky’s nativist theory posits that language acquisition is pri-
marily driven by innate, universal principles specific to the human brain. Chomsky
argues that children possess an innate language acquisition device (LAD), a hypothet-
ical cognitive module containing universal grammatical rules or principles common
to all languages and enabling infants to acquire language effortlessly and rapidly
(Chomsky, 1959). Central to his claim is the poverty of the stimulus argument,
which posits that children are not exposed to rich enough data within their linguistic
environments to acquire every feature of their language (Chomsky et al., 1980).

On the other hand, Piaget’s constructivist theory argues that language acquisition
is intricately linked to cognitive development. According to his theory of cognitive
development, children progress through distinct mental stages, constructing knowl-
edge and understanding through their interactions with the environment. In this
view, language acquisition is a gradual process that evolves alongside the child’s
cognitive abilities. Constructivist theories emphasize the proactive role of children
in acquiring language from sensorimotor experiences (Piaget, 1935; Vygotsky, 1962;
Tomasello & Farrar, 1986).

Although it is widely acknowledged that both nature and nurture play significant
roles in infant language acquisition (Karmiloff-Smith, 1998; Rowland, 2013), the
relative contribution of each remains the subject of intense and contentious debates
(Saffran & Thiessen, 2008; Ambridge & Lieven, 2011).

2 Chapter 0 Introduction



Recently, the progress of artificial intelligence and machine learning has made
available a new source of evidence that can contribute to this debate: simulation. By
building an artificial language learner and placing it in an environment similar to that
of infants, one could determine, in theory, which aspects of the learning trajectories
observed in humans can be learned by the machine (Dupoux, 2018; Lavechin, de
Seyssel, Gautheron, et al., 2022). We will dedicate the General discussion to this
matter.

As we elaborate in Chapter 4, the key to placing an artificial learner in an environ-
ment similar to that of infants comes from child-centered long-form recordings.

0.2 What are child-centered long-form recordings?

Fueled by the advancements in wearable and battery technology, child-centered
daylong or long-form recordings1 allow us to capture what children hear and say
across an entire day by collecting audio data directly within the child’s environment
and from the child’s perspective.

Fig. 1.: Child-centered long-form recordings are typically collected using a custom-made
piece of clothing with a front chest pocket to hold a lightweight and child-safe
recorder. This Figure shows a LENA® recording device capable of capturing up to
16 hours of audio worn by a little girl growing up in Vanuatu. Photograph taken by
Heidi Colleran.

In most settings, infants and young children wear a custom-made piece of clothing
with a front chest pocket, within which a lightweight recording device is inserted
– see Figure 1. Although researchers sometimes use alternative or custom devices,

1From now on, we will use exclusively child-centered long-form recordings (often shortened as long-
forms). The ‘long-form’ adjective better reflects, in opposition to ‘day-long’, that some researchers
do not capture the entirety of the child’s waking day, and others may also capture nighttime.
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e.g., Cao et al. (2018), the large majority of long-forms are collected with the
recorder designed in the late 2000s by the LENA® (Language ENvironment Analysis)
nonprofit American organization. As we shall see in Chapter 1, the LENA® device
has the advantage of being accompanied by a speech processing software, allowing
researchers to extract measures of what children hear and say automatically.

From a scientific perspective, long-forms have many advantages. First, they sample
the full range of language input the child is exposed to as well as the language
output they produce. Second, they reduce observer effects relative to, e.g., shorter
audio or video recordings (Bergelson et al., 2022). Third, they consume relatively
little electricity and are compatible with field data collection in remote places – e.g.,
see Casillas et al. (2021) for a study in a Papuan community. Finally, the technology
behind long-forms is becoming increasingly cheap. At the time of writing, one
LENA® recorder currently costs between 219$ and 329$ (“LENA shop”, 2023), while
USB lavalier microphones cost less than 20$.

These combined advantages allow researchers to obtain an ecologically-valid view
of children’s language environments around the world and to foster progress in
language acquisition research. In this thesis, we will adopt a perspective primarily
focused on signal processing challenges while trying to remain relevant to language
development research2. As we delve into the subject, it will become evident that
long-form recordings offer many opportunities and pose remarkable challenges.

0.3 Content overview

Having gained a good understanding of the technology discussed in this thesis, we
provide a concise content overview.

Chapter 1 presents our contributions to building automatic speech processing
systems for child-centered long-forms.

We start with a short study demonstrating the low performance of current state-of-
the-art automatic speech recognition systems. We then present the LENA proprietary
software, now routinely used to analyze children’s language environments collected
through wearable recording devices. Finally, we present our efforts in proposing
a free and open-source alternative to the LENA® software. In addition to offering
better-performing algorithms, our solution expands the range of measures designed

2For aspects not covered in this thesis, we will refer to Casillas and Cristia (2019) for a step-by-step
guide on collecting and analyzing long-forms and Cychosz et al. (2020) for ethical guidelines.
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initially by the LENA® Foundation. This chapter shows how artificial neural networks
can be used as a tool to process child-centered long-forms.

Chapter 2 presents our contributions to modeling early language acquisition from
audiobooks.

We review some results in the language acquisition literature, presenting key de-
velopmental milestones observed in infants and the learning mechanisms proposed
to explain how infants acquire their native language. We explain how running
language learning simulations in computers can help us better understand infant
language acquisition. After presenting the various approaches to modeling language
acquisition, we present our own approach, with a short study assessing the phonetic
and lexical capabilities of a self-supervised deep learning model trained on audio-
books. This chapter returns to the nature versus nurture debate mentioned above
by providing proof of learnability. Furthermore, it sets the stage for the following
chapter by proposing a candidate algorithm to learn from ecological long-forms.

Chapter 3 presents our contributions in modeling early language acquisition from
ecological child-centered long-forms.

We start with a position paper advocating for the use of ecologically-valid data
when modeling language acquisition. After laying out recommendations on how a
research program centered around modeling language acquisition from long-forms
could proceed, we present our own modeling study of early phonetic acquisition.
Concluding this chapter, we introduce a benchmark compatible with the vocabulary
typical of children’s language environments and identify two challenges that must
be addressed to run more realistic simulations of language acquisition. This chapter
brings together some of the tools built in Chapter 1 with the candidate learning
mechanism proposed in Chapter 2 with the additional constraint that the learning
must occur in an environment similar to that of infants.

Chapter 4 consists of a general discussion reflecting on the limitations and the
broader implications of our findings.

We first summarize our main contributions. We present how our approach in learning
from ecological long-forms can contribute to the nature versus nurture debate. We
close this thesis with a hypothetical scenario that outlines our perspective on the
trajectory the field must embark upon to make substantial advancements.
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Automatic analysis of
children’s language
experiences

1

Measurement is a cornerstone of science, and language development research is no
exception. Measurements of what children hear and say provide critical information
about early language acquisition, enabling us to gain a deeper understanding of how
young language learners infer the rules of their native language. Central questions in
language development research include: Who talks to the child, how often, what do
they say, and how do they say it? What sounds, words, or sentences does the child
produce? How do these measures change with age, across diverse populations, and
between individuals? Are these measures predictive of later language skills? Can
they be used to detect language disorders or quantify the effectiveness of language
remediation programs?

Traditionally, such measures are obtained from short recordings of naturalistic inter-
actions in semi-controlled environments (Hart & Risley, 1995; Bergelson, Amatuni,
et al., 2019) or times of in-person observations (Roopnarine et al., 2005). Although
informative, these data collection methods provide researchers with a limited per-
spective on the vast array of communication situations children experience and
engage in throughout the day, from morning to night. In the late 2000s, the advent
of the LENA® system enabled researchers to capture language use in everyday life
directly from the child’s perspective, promising an ecologically valid description of
children’s language experiences.

As we shall see throughout this first chapter, this ecological validity comes with a
price, which involves dealing with real-life recordings that are rarely clean, some-
times unintelligible, most often noisy, and span up to 16 hours – audio samples
are available on this project page1. Child-centered long-form recordings raise many
interesting scientific and engineering challenges, some of which are addressed in
this first chapter.

1https://marvinlvn.github.io/projects/2_project
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We begin by addressing some of the challenges of working with child-centered
long-form data with a short study assessing the performance of a state-of-the-art
automatic speech recognition system on recordings collected in American English-
speaking families. We then introduce the LENA® proprietary software dedicated to
the automatic analysis of long-forms, whose combined use with the LENA® wearable
recorder has had a major impact on language development research. We highlight
certain limitations of the LENA® system and present our attempt to propose a free,
open-source, and more accurate alternative. Next, we present our voice activity
detection model that estimates the background noise level and the quantity of
reverberation, both of which are salient in naturalistic speech as found in long-
forms. Finally, we reflect on current limitations and potential future work in building
automatic speech processing tools compatible with long-forms.

1.1 Automatic speech recognition

Fig. 1.1.: Automatic speech recognition is the task of transcribing a given audio to text, i.e.,
answering the question: "What is being said?".

.

About a decade ago, the performance of automatic speech recognition (ASR, see
Figure 1.1) systems dramatically increased with the adoption of deep neural network-
based hybrid approaches (Hinton et al., 2012). More recently, the ASR community
has seen another quantum leap forward with the emergence of end-to-end systems
supplanting traditional modeling components with a single network (J. Li, 2022).
Some claim that modern ASR systems now achieve human-level or even supra-
human performance (Xiong et al., 2016; T. S. Nguyen et al., 2020; Radford et al.,
2022).

These recent breakthroughs promise to ease the life of language development
researchers working with child-centered long-form recordings. Indeed, long-forms
can quickly accumulate thousands of hours of audio, making manual transcription
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too expensive and time-consuming to be feasible. A fully-functioning ASR system
capable of handling the high variability and high quantity of noise inherent in
long-form recordings would provide researchers with a precise understanding of
what children hear and produce, enabling a level of description that has never been
achieved before.

This section proposes a short study of one such ASR system claimed to achieve
human-level performance: Whisper from OpenAI (Radford et al., 2022). We aim
to demonstrate that current state-of-the-art ASR systems are barely usable on long-
forms – and, thus, are far from reaching human-level performance. In doing so, we
introduce our readers to some of the difficulties in using long-forms, namely, the
challenging recording conditions.

1.1.1 Performance of Whisper on American English long-forms

Experimental protocol

Dataset. For this analysis, we consider the Bergelson corpus (Bergelson, 2017;
Bergelson, Casillas, et al., 2019) collected from 44 American English infants, from
6-18 months of age (mean µage = 12.5 mths and standard deviation σage = 3.3
mths), living in Rochester, western New York. This corpus consists of long-form
recordings using the same LENA® recorder as presented in the Introduction (single
channel, 16-kHz sampling rate). Out of the 44 infants, 10 were selected for manual
annotation, chosen to represent the full diversity of the original corpus in terms
of maternal education and age range. Fifteen 2-minute non-overlapping sessions
were randomly sampled from the selected long-forms, resulting in 5 hours of audio
transcribed by expert annotators – see Soderstrom et al. (2021) for the rationale of
the sampling and annotation processes.

After filtering out non-speech segments (e.g., cries, laughs, etc.) and utterances
transcribed as unintelligible, we are left with 2,174 utterances totaling 51 mn of
speech. Among these utterances, 66% are produced by female adults (FEM), 14%
by male adults (MAL), 12% by electronic devices such as TVs or toys (ELE), and 6%
by children (CHI; either the child wearing the recording device or any other children
in the environment).

Model. We automatically transcribe each of the 2,174 utterances using the Whisper
large system (Radford et al., 2022). Whisper is a large-scale transformer-based ASR
system trained on 680,000 hours of multilingual and multitask audio data collected
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from the internet that has been shown to yield competitive performance on a variety
of benchmarks, including multiple languages.

Evaluation metric. To evaluate the performance of Whisper, we use the word error
rate (WER) computed as:

WER = S + D + I

N

where S, D, and I are the number of substitutions, deletions, and insertions between
the reference (i.e., the human transcription) and the hypothesis (i.e., the automatic
transcription), and N is the number of words in the reference.

Results and discussion

Fig. 1.2.: Word error rate (WER) obtained by Whisper large as a function of voice type.
FEM stands for female adult speech, MAL stands for male adult speech, CHI
stands for child vocalization, and ELE stands for electronic speech (TV, radio,
toys, etc.). Each point is an utterance, and bars indicate the median word error
rate across utterances produced by a given voice type. The WER is greater than
100% when there are more errors in the automatic transcript than words in the
reference. Only utterances for which Whisper obtained a WER lower than 200%
are displayed.
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On the Bergelson corpus, Whisper obtains an average WER of 47.9%, suggesting
poor transcription capabilities on naturalistic speech utterances found in child-
centered long-forms2. In comparison, the same model obtains an average WER of
7.0% on four of the most popular benchmarks in the ASR community: LibriSpeech
(Panayotov et al., 2015); Common Voice (Ardila et al., 2019); VoxPopuli (Wang
et al., 2021); and Fleurs (Conneau et al., 2023). The difficult acoustic conditions
found in long-forms might explain the observed 40% difference in WER between
them and popular ASR benchmarks. As long-forms collect language use in everyday
life, speech is not recorded in a controlled environment. Instead, it is spoken from
a distance, it is reverberated and absorbed by surrounding obstacles, and it can be
mixed with other speech sounds and background noise. In addition, people do not
speak in clear and well-articulated sentences but may mumble, whisper, or laugh
while speaking, producing short turns that sometimes overlap. We will return to the
impact of the difficult acoustic conditions found in long-forms in Section 1.4.

To a certain extent, the low WER obtained by Whisper relates to the different
speech sources found in long-forms, as shown in Figure 1.2. Although this Figure
should be interpreted with precaution given the small sample size of our analysis,
results suggest similar performance for female and male adult speech (median WER
of 40.0% for FEM versus 45.5% for MAL) and worse performance for children’s
vocalizations and electronic speech (median WER of 100%). Numerous studies
indicate that automatic recognition of children’s speech is a challenging task due to
various factors such as the high variability in speech sounds, the high pitch range,
the presence of disfluencies, and the limited amount of data available for training
that are primarily focused on adult speakers – see Bhardwaj et al. (2022) for a
review. The lower performance obtained on electronic speech may be attributed to
electronic devices like TVs or radios typically running in the background, resulting in
distorted far-field speech that is more challenging to transcribe accurately. Overall,
the data show a high standard deviation (too high to be displayed in Figure 1.2),
with a high density of utterances for which Whisper obtains a WER of 0% or 100%.
In other words, there are many instances where Whisper produces a transcription
that is either completely accurate or completely wrong. This demonstrates the low
reliability of Whisper in automatically transcribing utterances found in long-forms.

2An alternative experimental protocol consists in running Whisper on the entire audio recordings
without using utterance boundaries. In this scenario, we assign a greater weight to the false alarms
produced by the model. Following this protocol leads to Whisper obtaining an average WER of
100%, as opposed to the 47.9% WER obtained when using utterance boundaries. Another protocol
worth considering consists in extending utterance boundaries to provide the model with additional
contextual information. While we have not conducted this analysis, it is reasonable to expect that
Whisper may exhibit slightly higher performance with longer contexts.
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Human transcription Automatic transcription

what what about the laundry
it is time for me to take a shower it is time for me to take a shower
so you can play with some toys so you can claim some poison
in the bathroom with that
i got your house i got your house
and your baby and your baby
should we get a couple more toys should we go get a couple more toys
what else do you like what else do you like
no remember we did this yesterday no remember we did this yesterday
it was fun it was fast
how about your magna doodle i like your hair too
do you want to take this in do you want to take this in
so you can color so you can color
i think we should find one more toy i think we should find one more toy
how about your ball how about your ball
where is your ball where is your ball
here it is here it is
here you hold this one here you hold this one
and i will pick up the ball and i will pick up the box
your father is ridiculous your father is ridiculous
okay okay

Tab. 1.1.: Example of a 2-minute session extracted from American English long-forms for
which Whisper obtains a word error rate of 8.8%. Insertions and substitutions
are indicated in red.

Finally, Tables 1.1 and 1.2 show examples of 2-minute sessions transcribed by
Whisper. A closer examination of the transcription produced by Whisper provides
valuable insights. We observe transcription errors that seem natural, in the sense
that they can easily be attributed to the acoustic similarity between the human and
the automatic transcript, e.g., "it was fun" transcribed to "it was fast" or "and I will
pick up the ball" transcribed to "and I will pick up the box". However, there also
exist errors that can hardly be explained by mere acoustic similarity, e.g., "and a soft
rabbit" transcribed to "you know it is all together". Although it is hard to provide
precise evidence, we hypothesize that these errors are due to the language modeling
task (among other tasks) used to train Whisper. As the model is trained to transcribe
the audio and predict the next token, there might be situations where one task
dominates the other.

In the same vein, we noticed hallucinations like "thanks for watching" and "please
hit the like button and share the video with friends on social media" that are not
pronounced in the audio. Although Whisper’s authors gave little to no details about
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the data source used to train the model (Radford et al., 2022), the observation of
such flaws leaves little doubt about how the authors gathered 680k hours of audio.

Human transcription Automatic transcription

is baby crying are you crying
why do not you go make him something are you going to make him do that
hairy dog there we go
and a soft rabbit you know it is all together
a velvet mouse i love it you know
and a furry cat hurry up
a funky frog bye bye
you are okay bye bye
funny frog bye
sh bye
sh sh sh the end
oh who came oh he is here
you are okay okay
you are okay ah
you are okay ah

Tab. 1.2.: Example of a 2-minute session extracted from American English long-forms for
which Whisper obtains a word error rate of 89.6%. Insertions and substitutions
are indicated in red.

1.1.2 Challenges and opportunities in building automatic speech
recognition systems for long-forms

Child-centered long-form recordings offer a unique ecological view of children’s
language environment and allow for a big-data approach to the study of language
acquisition (Casillas & Cristia, 2019; Gautheron et al., 2020; Cychosz & Cristia,
2021). This comes at the price of handling the complexity of everyday language use:
through tedious, time-consuming, and expensive human-made transcription or the
development of specialized automatic speech recognition systems.

This section demonstrated Whisper’s failure to transcribe American English long-
forms. However, it would not be fair to interpret this failure as a lack of progress
in automatic speech recognition. There have been breakthroughs – and I consider
Whisper one of them. The word error rate is constantly lowering (Baevski et al., 2020;
Hsu et al., 2021; Radford et al., 2022; Y. Zhang et al., 2023), bringing us closer to the
day when language development researchers will have a fully functional ASR model
for long-forms. As of now, it appears evident that transcribed speech found on the
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internet and current ASR training sets fail to address the complexity of naturalistic
adult and child speech, such as found in long-forms. A direct consequence is that
ASR tools developed with their own commercial or research agenda would likely
not work on long-forms. Therefore, we are left with one possibility: building our
own tools.

We can do so by leveraging existing sharing platforms of child language data. Some
of these platforms include the Child Language Data Exchange System (CHILDES),
which focuses on child language data in general (MacWhinney, 1996), PhonBank,
which focuses on child phonology (Rose & MacWhinney, 2014), and HomeBank,
which provides access to multi-hour and real-world recordings like long-forms
(VanDam et al., 2016). Although only a small portion of the data is transcribed
speech, it can be used to fine-tune existing ASR tools like Whisper, which would
likely yield a significant performance boost on long-forms.

While our analysis focused solely on American English, it is crucial to remember
that children develop language in diverse cultural and linguistic environments
(Scaff, 2019). Therefore, building tools for the more than 7,000 languages that
exist worldwide is essential to understand the similarities and differences between
the wide variety of children’s language experiences (Kidd & Garcia, 2022). The
development of inclusive AI tools for low-resource languages, including ASR models,
is an active area of research (Besacier et al., 2014; Reitmaier et al., 2022) that will
likely be key in building a universal description of children’s language experiences.

1.2 The Language ENvironment Analysis (LENA®)
software

In addition to providing a wearable recording device capable of capturing up to
16 hours of audio (presented in the Introduction), the LENA® Foundation proposes a
proprietary software designed to provide automated quantitative analyses of both the
child’s vocalizations and their language environment. Since its public release in 2008,
the LENA® system has become the industry and research standard for measuring
language acquisition in young children. For instance, Warren et al. (2010) used the
LENA® technology to compare the vocal production and language environment of a
sample of American English children with autism spectrum disorder (ASD) to that of
typically-developing children. They report the same amount of adult speech across
the two groups but 29% fewer vocalizations and 26% fewer conversational turns for
children with ASD than their typically-developing counterparts. Adopting a similar
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methodology, Gilkerson et al. (2017) found that, on average, American children from
lower socioeconomic status (SES) families produced fewer vocalizations and were
exposed to less adult speech than their higher SES peers. The LENA® technology
has also been used to measure the effects of language remediation programs by
comparing the quantity of speech produced and overheard by children before and
after the remediation (Weil & Middleton, 2010; Ota & Austin, 2013; Sacks et al.,
2014).

This section aims to provide readers with scientific and technical information on the
types of measures extracted by the LENA® software and the models deployed to
extract them. Next, we outline the efforts of the language development community
to evaluate the system. We conclude by identifying three limitations of the system:
1) its closed-source license; 2) its aging technology; and 3) the fact that it has been
optimized for American English only.

Most information concerning the LENA® system was obtained from the various
technical reports published by the foundation. See Gilkerson and Richards (2020)
for an overview of the system; D. Xu, Yapanel, Gray, et al. (2008) and D. Xu,
Yapanel, and Gray (2008) for the models and their performance; Gilkerson and
Richards (2008) for the data collection procedure; and Gilkerson et al. (2008) for
the annotation procedure.

1.2.1 Extracted measures and models

The full speech processing pipeline, depicted in Figure 1.3, can be described as
follows:

1. First, the audio is segmented into broad speaker and non-speaker categories.
Categories include female adult speech, male adult speech, key child vocaliza-
tions, other child vocalizations, electronic speech, overlapping speech, noise,
and silence (the last three are not represented in Figure 1.3). This step is
performed using a minimum duration Gaussian mixture model (MDGMM) fed
with 36 mel-frequency cepstrum coefficients (MFCCs). A second-pass classifi-
cation is performed to detect faint sounds via a likelihood-ratio test, i.e., the
likelihood of any non-silence segment is compared with the silence-likelihood
of the same segment. The segment is considered faint if the ratio is lower than
a threshold tuned on a small test set. Detected faint sounds are filtered out
from subsequent analyses.
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Fig. 1.3.: The LENA® speech processing software. First, the audio recording is segmented
into broad speaker and non-speaker categories (FEM: female adult speech; MAL:
male adult speech; KCHI: key child vocalization, i.e., the child wearing the
microphone; OCH: other child vocalization; ELE: electronic speech). Second, the
conversational turn count (CTC) is computed as the number of times an adult
speaks and the key child follows with no more than 5 seconds in between. Third,
the adult word count (AWC) is estimated as the number of words produced by
MAL and FEM categories. Fourth, the child vocalization count (CVC) is estimated
as the number of times the key child produces speech-like vocalizations (here, the
second vocalization produced by KCHI is a cry and is discarded from the CVC).

2. Second, the conversational turn count, or CTC, is computed as the number of
times an adult speaks and the key child follows (or vice versa) with no more
than 5 seconds in between.

3. Third, adult speech segments are further processed to estimate the number of
words in each segment, resulting in the adult word count (AWC) metric. The
AWC is estimated using a least-square linear regression based on the sequence
length, the number of consonants and vowels, with the last two variables
obtained using the Sphinx phone recognizer optimized for American English
adult speech (Lamere et al., 2003).

4. Fourth, segments produced by the key child are further classified into vegeta-
tive sounds (e.g., breathing or burping), fixed signals (e.g, crying, screaming,
laughing), and speech-like vocalizations. The child vocalization count, or
CVC, is estimated as the number of times a speech-like vocalization is encoun-
tered. Little information is available about how this classification is performed,
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however, D. Xu, Yapanel, Gray, et al. (2008) suggests an approach based
on low-level acoustic features discriminative of the type of sounds produced
by the child combined with phone-level information (using the same Sphinx
phone recognizer as used to estimate AWC).

1.2.2 Training and test data

The LENA® Foundation created a large-scale corpus of long-form recordings across
over 300 American infants growing up in monolingual English-speaking families
in the Denver metropolitan area. Families were selected to ensure diversity in
age (2-48 months) and socioeconomic contexts. In total, 32,000 hours of long-
forms were collected (Gilkerson & Richards, 2008). This large-scale corpus has
been partially annotated and split into a 155-hour-long training set and a 70-hour-
long test following the procedure described in Gilkerson and Richards (2008) and
Gilkerson et al. (2008).

1.2.3 Evaluation of the LENA® system

It is essential to establish the reliability of the measures extracted by the LENA®

system and document potential biases that may arise when using the system in
recording conditions that differ from the ones it was trained on. This is especially
critical as the data used to train the models were collected exclusively in Ameri-
can English-speaking families, yet, the system has been used in diverse linguistic,
socioeconomic, and cultural contexts (Ganek & Eriks-Brophy, 2018).

Besides internal validation proposed by the designers of the LENA® Foundation
(D. Xu, Yapanel, & Gray, 2008), researchers have attempted to characterize the
system’s reliability in different settings. In a recent meta-analysis, Cristia et al.
(2020) found 33 studies reporting on the accuracy of the measures extracted by
the LENA® software. While the majority of these studies (N=18) focused on North
American English families, the remaining 15 studies included children learning UK
English, US Spanish, Dutch, Finnish, Mandarin and Shanghai Chinese, Tsimane’
or other languages. Only a few studies (N=8) considered settings matching the
LENA® training set. In contrast, the remaining 25 studies included populations
not represented in the original training set, including children: diagnosed with or
at risk for autism spectrum disorder, of low socioeconomic status, bilingual, etc.
Overall, authors report a significant correlation between LENA® AWC and its human-
transcribed estimate (average Pearson’s R of .79 with N=13 studies) while also
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noting that LENA® AWC measures tend to over-estimate their human counterpart
(average relative error rate (RER) of 13.8% with N=14). The performance obtained
by the LENA® software is similar for the CVC measure (average Pearson’s R of
.77 with N= 5) with a stronger tendency for under-estimation (average RER of
−24.2% with N= 6). The performance is lower for CTC for which the authors found
an average Pearson’s R of .36 (N= 6) with a strong tendency for underestimation
(average RER of −34% with N= 4).

Studies dedicated to specific populations (and their meta-analysis) can inform us
about the reliability of the LENA® technology in particular settings. However, these
studies vary significantly in design, which can result in widely varying performance
measures. Additionally, the number of these studies is still relatively small, making
it challenging to detect potential biases of the LENA® algorithm, i.e., systematic
errors that may occur in specific populations. In a study that I co-authored (Cristia,
Lavechin, et al., 2019)3 as part of the Analyzing Child Language Experiences around
the World project (see “The ACLEW project”, 2023), we collected, annotated, and
standardized over 800 short clips extracted from child-centered long-forms. These
clips amount to 20 hours of audio across five different corpora. Three of these
corpora were based on North American children aged 3-36 months, the population
for whom the LENA® system was initially designed. One corpus was based on
a different dialect of English (UK English), for which we predicted slightly lower
performance. And the remaining corpus was collected in a different linguistic
and socio-cultural context involving Tsimane’ learners aged 15-59 months, living
in Northern Bolivia, a rural setting with large families. For this last corpus, we
predicted degraded performance, particularly in terms of AWC which the LENA®

algorithm estimates using an American English phone recognizer. Although our
statistical analyses do not indicate that performance is worse for children who
differ from the LENA® original training set, which is encouraging for researchers
studying under-represented communities, further follow-up studies with greater
statistical power are necessary to confirm this finding. There exists at least one
counter-evidence in Räsänen et al. (2019) who found a lower AWC performance on
non-American English languages. Finally, Cristia, Lavechin, et al. (2019) comes with
a set of recommendations on what research questions can be addressed using the
LENA® system and how to evaluate its reliability.

3Note that Cristia, Lavechin, et al. (2019) was one of the 33 studies included in the meta-analysis
previously mentioned (Cristia et al., 2020).
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1.2.4 Limitations of the LENA® system

This section revealed three important limitations of the LENA® system. First, it
is a closed-source black box, making it challenging to access information beyond
what is provided in the various LENA® technical reports. Second, the system relies
on speech processing technologies developed in the early 2000s (MDGMM, Sphinx
phone decoder, etc.), and with two decades of progress, one might reasonably
question whether the performance could benefit from an update. Third, the LENA®

system has been optimized solely for American English and may not work as well on
other languages. This bias is particularly evident in the training set and is further
reinforced in the LENA® AWC estimate (step 3. of Section 1.2.1), which relies on an
American English phone recognizer. It is possible that the second-pass classification
over key-child segments (step 4. of Section 1.2.1) also suffers from this same bias,
although I could find little information regarding its implementation – which brings
us back to the first limitation.

1.3 An open-source alternative to the LENA® speech
processing pipeline

The previous section introduced the LENA® software, employed in over 100 peer-
reviewed articles involving more than 10,000 children/families (“LENA 15th birth-
day”, 2023). Additionally, we highlighted three important limitations of the software:
its closed-source nature, its aging technology, and its inherent bias toward American
English.

This section will present our attempt to propose a free, open-source, and more
accurate alternative to the LENA® pipeline. In particular, Section 1.3.1 will put
forward an alternative approach to the LENA® segmentation algorithm, while
Section 1.3.2 will present an alternative approach to estimate adult word counts.
Most of the work presented below was done as part of the ACLEW project gathering
speech processing and language development experts worldwide and constitutes the
starting point of my Ph.D. thesis.

1.3 An open-source alternative to the LENA® speech processing
pipeline
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1.3.1 Segmentation into broad speaker categories

Lavechin, M., Bousbib, R., Bredin, H., Dupoux, E., Cristia, A. (2020) An
open-source voice type classifier for child-centered daylong recordings.
Interspeech

Motivation

The automatic segmentation of adult and child speech (depicted in Figure 1.4)
enables language development researchers to study the quantity of speech produced
or overheard by children and their possible variations across different populations.
Such technology can also help diagnose language delays or disorders early and
measure the impact of language remediation programs.

Fig. 1.4.: Voice type classification is the task of identifying voice signal sources in an audio
stream. In this example, FEM stands for female adult speech, MAL stands for male
adult speech, KCHI stands for vocalizations produced by the key child (wearing
the microphone), and OCH stands for vocalizations produced by other children in
the environment.

On the speech-processing side, detecting vocal activity segments is often the ear-
liest building block of any speech processing pipeline (see the LENA® pipeline in
Figure 1.3). Detected segments can be used as input for downstream tasks such as
estimating the number of words produced by adult speakers (Räsänen et al., 2021),
classifying whether speech is directed towards an adult or a child (Schuller et al.,
2017), and many other tasks relevant for language development research.

By and large, the automatic segmentation of adult and child speech on long-forms
is performed using the LENA® proprietary software, developed with early 2000s
technology (“LENA release notes”, 2023) and optimized exclusively for American
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English. Our primary goal in the work presented below was to develop a free,
open-source, and more accurate alternative to LENA®’s segmentation algorithm. It
was accepted as a proceeding in the Interspeech 2020 conference.

Paper summary

In Lavechin et al. (2020), we propose a model that classifies audio segments into: 1)
vocalizations produced by the key child, i.e., the child wearing the recording device
(KCHI); 2) vocalizations produced by other children (OCH); 3) adult male speech
(MAL); and 4) female adult speech (FEM).

To train our model, we gathered and standardized 260 hours of human-annotated
child-centered long-form recordings covering 10 languages. A comparison with
the LENA® system reveals that our model performs better. The most notable
improvements are obtained in detecting female adult speech (20.8% absolute gain
in terms of F-score) and in detecting key-child vocalizations (13.8% absolute gain
in terms of F-score). Future work might address the limited amount of training
data for the MAL and OCH categories, which resulted in relatively low performance,
although still higher than LENA®’s corresponding categories.

Contrary to the LENA® segmentation algorithm, our model can detect overlapping
speech, in which case, two speaker categories are activated at the same time.
Although our model does not detect electronic speech since our training set was
not annotated for this category, additional analyses have revealed that most frames
classified as electronic speech by human annotators do not activate any speaker
categories in our model. This behavior is desirable for most researchers working on
language acquisition as electronic speech is thought not to affect learning outcomes
(Kuhl, 2016). See “Voice type classifier: Follow-up analysis”, 2023 for performance
on electronic and overlapping speech.

1.3 An open-source alternative to the LENA® speech processing
pipeline
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Abstract
Spontaneous conversations in real-world settings such as those
found in child-centered recordings have been shown to be
amongst the most challenging audio files to process. Neverthe-
less, building speech processing models handling such a wide
variety of conditions would be particularly useful for language
acquisition studies in which researchers are interested in the
quantity and quality of the speech that children hear and pro-
duce, as well as for early diagnosis and measuring effects of
remediation. In this paper, we present our approach to design-
ing an open-source neural network to classify audio segments
into vocalizations produced by the child wearing the record-
ing device, vocalizations produced by other children, adult male
speech, and adult female speech. To this end, we gathered di-
verse child-centered corpora which sums up to a total of 260
hours of recordings and covers 10 languages. Our model can be
used as input for downstream tasks such as estimating the num-
ber of words produced by adult speakers, or the number of lin-
guistic units produced by children. Our architecture combines
SincNet filters with a stack of recurrent layers and outperforms
by a large margin the state-of-the-art system, the Language EN-
vironment Analysis (LENA) that has been used in numerous
child language studies.
Index Terms: Child-Centered Recordings, Voice Type Classifi-
cation, SincNet, Long Short-Term Memory, Speech Processing,
LENA

1. Introduction and related work
In the past, language acquisition researchers’ main material
was short recordings [1] or times of in-person observations [2].
However, investigating the language phenomenon in this man-
ner can lead to biased observations, potentially resulting in di-
vergent conclusions [3]. More recently, technology has allowed
researchers to efficiently collect and analyze recordings over a
whole day. By the combined use of a small wearable device
and speech processing algorithms, one can get meaningful in-
sights of children’s daily language experiences. While daylong
recordings are becoming a central tool for studying how chil-
dren learn language, a relatively small effort has been made to
propose robust and bias-free speech processing models to an-
alyze such data. It may however be noticed that some collab-
orative works that benefit both the speech processing and the

This work was performed using HPC resources from GENCI-
IDRIS (Grant 2020-A0071011046). It also benefited from the support
of ANR-16-DATA-0004 ACLEW (Analyzing Child Language Expe-
riences collaborative project), ANR-17-CE28-0007 (LangAge), ANR-
14-CE30-0003 (MechELex), ANR-17- EURE-0017 (Frontcog), ANR-
10-IDEX-0001-02 (PSL), ANR-19-P3IA-0001 (PRAIRIE 3IA Insti-
tute), and the J. S. McDonnell Foundation Understanding Human Cog-
nition Scholar Award.

child language acquisition communities have been done. In
particular, we may cite Homebank, an online repository of day-
long child-centered audio recordings [4] that allow researchers
to share data more easily. Some efforts have also been made
to gather state-of-the-art pretrained speech processing models
in DiViMe [5], a user-friendly and open-source virtual ma-
chine. Challenges and workshops using child-centered record-
ings [6, 7], also attracted the attention of the speech processing
community. Additionally, the task of classifying audio events
has often been addressed in the speech technology literature. In
particular, the speech activity detection task [8] or the acous-
tic event detection problem [9, 10] are similar to the voice type
classification task we address in this paper.

Given the lack of open-source and easy-to-use speech
processing models for treating child-centered recordings, re-
searchers have been relying, for the most part, on the Language
ENvironment Analysis (LENA) software [11] to extract mean-
ingful information about children’s language environment. This
system will be introduced in more detail in the next section.

1.1. The LENA system

The LENA system consists of a small wearable device com-
bined with an automated vocal analysis pipeline that can be
used to study child language acquisition. The audio recorder
has been designed to be worn by young children as they go
through a typical day. In the current LENA system, after a full
day of audio has been been captured by the recorder, the au-
dio files are transferred to a cloud and analyzed by signal pro-
cessing models. These latter have been trained on 150 hours
of proprietary audio collected from recorders worn by Ameri-
can English-speaking children. The speech processing pipeline
consists of the following steps [11, 13, 14]:

1 First, the audio is segmented into mutually exclusive cat-
egories that include: key child vocalizations (i.e., vo-
calizations produced by the child wearing the recording
device), adult male speech, adult female speech, other
child speech, overlapping sounds, noise, and electronic
sounds.

2 The key child vocalization segments are further cate-
gorized into speech and non-speech sounds. Speech
encompasses not only words, but also babbling and
pre-speech communicative sounds (such as squeals and
growls). Child non-speech sounds include emotional
reactions such as cries, screams, laughs and vegetative
sounds such as breathing and burping.

3 A model based on a phone decoder estimates the number
of words in each adult speech segment.

4 Further analyses are performed to detect conversational
turns, or back and forth alternations between the key
child and an adult.
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Figure 1: Proposed architecture. The network takes the raw waveform of a 2s audio chunk as input and passes on to SincNet [12]. The
low-level representations learnt by SincNet are then fed to a stack of two bi-directional LSTMs, followed by three feed-forward layers.
The output layer is activated by a sigmoid function that returns a score ranging between 0 and 1 for each of the classes.

The LENA system has been used in multiple studies cov-
ering a wide range of expertise including a vocal analysis of
children suffering from hearing loss [15], the assessment of a
parent coaching intervention [16], and a study of autism spec-
trum disorders [17]. An extensive effort has been made to as-
sess the performance of the LENA speech processing pipeline
[18, 19, 20].

Despite its wide use in the child language community,
LENA imposes several limiting factors to scientific progress.
First, as their software is closed source, there is no way to build
upon their models to improve performance, and we cannot be
certain about all design choices and their potential impact on
performance. Moreover, since their models have been trained
only on American English-speaking children recorded with one
specific piece of hardware in urban settings, the model might
potentially be overfit to these settings, with a loss of generaliza-
tion to other languages, cultures, and recording devices.

1.2. The present work

Our work aims at proposing a viable open-source alternative to
LENA for classifying audio frames into segments of key child
vocalizations, adult male speech, adult female speech, other
child vocalizations, and silence. The general architecture is pre-
sented in 2.1. Additionally, we gathered multiple child-centered
corpora covering a wide range of conditions to train our model
and compare it against LENA. This data set is described in fur-
ther details in 2.2.

2. Experiments
2.1. End-to-end voice type classification

The voice type classification problem can be described as the
task of identifying voice signal sources in a given audio stream.
It can be tackled as a multi-label classification problem where
the input is the audio stream divided into N frames S =
{s1, s2, . . . , sN} and the expected output is the corresponding
sequence of labels y = {y1,y2, . . . ,yN} where each yi is of
dimension K (the number of labels) with yi,j = 1 if the jth

class is activated, yi,j = 0 otherwise. Note that, in the multi-
label setup, multiple classes can be activated at the same time.

At training time, fixed-length sub-sequences made of mul-
tiple successive frames, are drawn randomly from the training
set to form mini-batches of size M .

As illustrated in Figure 1, these fixed-length sub-sequences
are processed by a SincNet [12] that aims at learning meaning-
ful filter banks specifically customized to solve the voice type
classification task. These low-level signal representations are
then fed into a stack of bi-directional long short-term memory
(LSTM) layers followed by a stack of feed-forward (FF) layers.
Finally, the sigmoid activation function is applied to the final

output layer of dimension K so that each predicted score ŷi,j
consists of a number ranging between 0 and 1. The network is
trained to minimize the binary cross-entropy loss:

L = − 1

KM

M�

i=1

K�

j=1

yi,j log ŷi,j + (1− yi,j) log (1− ŷi,j)

(1)
At test time, audio files are processed using overlapping

sliding sub-sequences of the same length as the one used in
training. For each time step t, and each class j, this results in
several overlapping sequences of prediction scores, which are
averaged to obtain the final score for class j. Finally, time steps
with prediction scores greater than a tunable threshold σj are
marked as being activated for the class j.

Our use case considers K = 5 different classes or sources
which are:

• KCHI, for key-child vocalizations, i.e., vocalizations
produced by the child wearing the recording device

• OCH, for all the vocalizations produced by other children
in the environment

• FEM, for adult female speech

• MAL, for adult male speech

• SPEECH, for when there is speech

As the LENA voice type classification model is often used
to sample audio in order to extract segments containing the most
speech, it appeared to us that it was useful to consider a class for
speech segments produced by any type of speaker. Moreover,
in our data set, some of the segments have been annotated as
UNK (for unknown) when the annotator was not certain of which
type of speaker was speaking (See Table 1). Considering the
SPEECH class allows our model to handle these cases.

One major design difference with the LENA model is that
we chose to treat the problem as a multi-label classification task,
hence multiple classes can be activated at the same time (e.g.,
in case of overlapping speech). In contrast, LENA treats the
problem as a multi-class classification task where only one class
can be activated at a given time step. In the case of overlapping
speech, LENA model returns the OVL class (which is also used
for overlap between speech and noise). More details about the
performance obtained by LENA on this class can be found in
[18].

2.2. Datasets

In order to train our model, we gathered multiple child-centered
corpora data [21, 22, 23, 24, 25, 26, 27, 28, 29, 30] drawn from
various child-centered sources, several of which were not day-
long. Importantly, the recordings used for this work cover a
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Table 1: Description of the BabyTrain data set. Child-centered corpora included cover a wide range of conditions (including different
languages and recording devices). ACLEW-Random is kept as a hold-out data set on which LENA and our model are compared. DB
correpond to datasets that can be found on Databrary, HB the ones that can be found on Homebank.

Cumulated utterance duration

Corpus Access LENA-recorded? Language Tot. Dur. KCHI OCH MAL FEM UNK

BabyTrain

ACLEW-Starter mixture (DB) mostly Mixture 1h30m 10m 5m 6m 20m 0m
Lena Lyon private (HB) yes French 26h51m 4h33m 1h14m 1h9m 5h02m 1h0m
Namibia upon agreement no Ju|’hoan 23h44m 1h56m 1h32m 41m 2h22m 1h01m
Paido public (HB) no Greek, Eng., Jap. 40h08m 10h56m 0m 0m 0m 0m
Tsay public (HB) no Mandarin 132h02m 34h07m 2h08m 10m 57h31m 28m
Tsimane upon agreement mostly Tsimane 9h30m 37m 23m 11m 28m 0m
Vanuatu upon agreement no Mixture 2h29m 12m 5m 5m 9m 1m
WAR2 public (DB) yes English (US) 50m 14m 0m 0m 0m 9m

Hold-out set

ACLEW-Random private (DB) yes Mixture 20h 1h39m 45m 43m 2h48m 0m

wide range of environments, conditions and languages and have
been collected and annotated by numerous field researchers.

We will refer to this data set as BabyTrain, of which a broad
description is given in Table 1.

We split the BabyTrain data set into a training, development
and test sets, containing approximately 60%, 20% and 20% of
the audio duration respectively. We applied this split such that
files associated to a given key child were included in only one of
the three sets, splitting children up within each of the 8 corpora
of BabyTrain. The only exception was WAR2, too small to be
divided, and therefore put in the training set in its entirety.

In order to ensure that our models generalize well enough
to unseen data, and to compare the performance with the LENA
system, we kept the ACLEW-Random as a hold-out data set.

2.3. Evaluation metric

For each class, we use the F-measure between precision and
recall, such as implemented in pyannote.metrics [31] to
evaluate our systems:

F-measure =
2× precision × recall

precision + recall

where precision = tp/(tp + fp) and recall = tp/(tp + fn) with:

• tp the duration of true positives

• fp the duration of false positives

• fn the duration of false negatives

We select our models by averaging the F-measure across the
5 classes. Note that these 5 metrics have been computed in a
binary fashion, where the predictions of our model for a given
class were compared to all reference speaker turns such as pro-
vided by the human annotations (no matter if the latter were
overlapping or not). In diarization studies, the choice of a collar
around every reference speaker turns is often made to account
for inaccuracies in the reference labels. We chose not to do so,
consequently all numbers reported in this paper can be consid-
ered as having a collar equal to 0.

2.4. Implementation details

Figure 1 illustrates the broad architecture used in all experi-
ments. For SincNet, we use the configuration proposed by the

authors of the original paper [12]. All LSTMs and inner feed-
forward layers have a size of 128 and use tanh activations. The
last feed-forward layer uses a sigmoid activation function.

Data augmentation is applied directly on the waveform us-
ing additive noise extracted from the MUSAN database [32]
with a random target signal-to-noise ratio ranging from 5 to 20
dB. The learning rate is set up by a cyclical scheduler [33], each
cycle lasting for 1.5 epoch.

Since we address the problem in a multi-label classification
fashion, multiple classes can be activated at the same time. For
the reference turns, the SPEECH class was considered to be ac-
tivated whenever one (or more) of the KCHI, CHI, FEM, MAL
or UNK class was activated. The UNK class (see Table 1) corre-
sponds to cases when the human annotator could hear that the
audio contained speech or vocalizations, without being able to
identify the voice source. This class does contribute in activat-
ing the SPEECH class, but our model does not return a score for
it.

2.5. Evaluation protocol

For all experiments, the neural network is trained for 10 epochs
(approximately 2400 hours of audio) on the training set. The
development set is used to choose the actual epoch and thresh-
olds {σj}Kj=1 that maximizes the average F-measure between
precision and recall across classes.

We report both the in-domain performance (computed on
the test set of BabyTrain) and the out-of-domain performance
(computed on the hold-out set, ACLEW-Random). We compare
our model with the LENA system on the hold-out set.

3. Results
We evaluate two different approaches, one consisting of 5 mod-
els trained separately for each of the class (referred as binary),
and one consisting of a single model trained jointly on all the
classes (referred as multitask). At first, both in the binary
and the multitask scenario, architectures shared the same set
of hyper-parameters. Only the dimension of the output layer
differed. Results indicated that multitask approaches were sig-
nificantly better than binary ones, which seems to show that
sharing weights during training helps better learn the bound-
aries between the different classes.

To further improve the performance of our model, we tried
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Table 2: In-domain performance in terms of F-measure between precision and recall. The ”Ave.” column represents the F-measure
averaged across the 5 classes. Numbers are computed on the test set from which the Paido corpora has been removed. Performance
on the development set are reported using small font size. We report two variants, the first one is based on 5 binary models trained
separately on each of the class, the second one consists of a single model trained in a multitask fashion

Train/Dev. System KCHI OCH MAL FEM SPEECH Ave.

without Paido binary 76.1 79.2 22.5 28.7 37.8 38.9 80.2 83.5 88.0 89.3 60.9 63.9
with Paido multi 75.8 78.7 25.4 30.3 40.1 43.2 82.3 83.9 88.2 90.1 62.3 65.2

without Paido multi 77.3 80.6 25.6 30.6 42.2 43.7 82.4 84.2 88.4 90.3 63.2 65.9

multiple sets of hyper-parameters (varying the number of filters,
the number of LSTM and FF layers, and their size). However,
no significant differences have been observed among the dif-
ferent architectures. The retained architecture consists of 256
filters of length L = 251 samples, 3 LSTM layers of size 128,
and 2 FF layers of size 128.

Finally, removing Paido from the training and development
set led to improvements on the other test domains, as well as
the hold-out set, while the performance on the Paido domain
remained high. Indeed, we observed a F-measure of 99 on the
KCHI class for the model trained with Paido as compared to
89 for the model trained without it. This difference can be
explained by a higher amount of false alarms returned by the
model trained without it. The Paido domain is quite far from
our target domain since it consists of laboratory recordings of
words in isolation spoken by children, and thus it is reasonable
to think that removing it leads to better models.

3.1. In-domain performance

Since LENA can only be evaluated in data collected exclusively
with the LENA recording device and BabyTrain contains a mix-
ture of devices, we do not report on LENA in-domain perfor-
mance. Additionally, comparing performance on a domain that
would have been seen during the training by our model but not
by LENA would have unfairly advantaged us.

Table 2 shows results in terms of F-measure between pre-
cision and recall on the test set for each of the 5 classes. The
best performance is obtained for the KCHI, FEM, and SPEECH
classes, which correspond to the 3 classes that are the most
present in BabyTrain (See Table 1). Performance is lower for
the OCH class and MAL classes, with an F-measure of 25.6 and
42.2 respectively, most likely due to the fact that these two
classes are underrepresented in our data set. The F-measure is
lowest for the OCH class. In addition to being underrepresented
in the training set, utterances belonging to the OCH class can
easily be confused with KCHI utterances since the main feature
that differentiates these two classes is the average distance to
the microphone.

The multitask model consistently outperforms binary ones.
When training in a multitask fashion, increases are higher for
the lesser represented classes, namely OCH and MAL. Addition-
ally, removing Paido leads to an improvement of 0.9 in terms of
average F-measure on the other domains.

3.2. Performance on the hold-out data set

Table 3 shows performance of LENA, our binary variant, and
our multitask variant on the hold-out data set. As observed on
the test set, the model trained in a multi-task fashion shows bet-
ter performance than the models trained in a binary fashion. Re-
moving Paido leads to a performance increase of 4 points on the
average F-measure.

Table 3: Performance on the hold-out data set in terms of F-
measure between precision and recall. ”Ave.” column repre-
sents the F-measure averaged across the 5 classes. The hold-
out data set has never been seen during the training, neither by
LENA, nor by our model.

Train/Dev. System KCHI OCH MAL FEM SPEECH Ave.

english (USA) LENA 54.9 28.5 37.2 42.6 70.2 46.7
without Paido binary 67.6 23.0 31.6 62.6 77.6 52.5

with Paido multi 66.4 19.9 39.9 63.0 77.6 53.3
without Paido multi 68.7 33.2 42.9 63.4 78.4 57.3

Turning to the comparison with LENA, both the LENA
model and our model show lower performance for the rarer OCH
and MAL classes. Our model outperforms the LENA model by
a large margin. We observe an absolute improvement in terms
of F-measure of 13.8 on the KCHI class, 4.6 on the OCH class,
5.6 on the MAL class, 20.8 on the FEM class, and 8.1 on the
SPEECH class. This leads to an absolute improvement of 10.6
in terms of F-measure averaged across the 5 classes.

4. Reproducible research
All the code has been implemented using pyannote.audio
[34], a python open-source toolkit for speaker diarization. Our
own code, easy-to-use scripts to apply the pretrained model can
be found on our GitHub repository 1, which also includes con-
fusion matrices and a more extensive comparison with LENA.
As soon as required agreements will be obtained, we plan to
facilitate access to the data by hosting them on Homebank.

5. Conclusion
In this paper, we gathered recordings drawn from diverse child-
centered corpora that are known to be amongst the most chal-
lenging audio files to process, and proposed an open-source
speech processing model that classifies audio segments into
key child vocalizations, other children vocalizations, adult male
speech, and adult female speech. We compared our approach
with a homologous system, the LENA software, which has been
used in numerous child language studies. Our model outper-
forms LENA by a large margin and will, we hope, lead to more
accurate observations of early linguistic environments. Our
work is part of an effort to strengthen collaborations between
the speech processing and the child language acquisition com-
munities. The latter have provided data as that used here, as
well as interesting challenges [6, 7]. Our paper is an example of
the speech processing community returning the favor by provid-
ing robust models that can handle spontaneous conversations in
real-world settings.

1 https://github.com/MarvinLvn/voice-type-classifier
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1.3.2 Phoneme, syllable and word counts estimation

Fig. 1.5.: The ALICE model proposed in Räsänen et al. (2021). In a first stage, speech
segments produced by adult speakers are identified using the voice type classifier
presented in Section 1.3 (Lavechin et al., 2020). In a second stage, adult speech
segments are further processed to estimate the adult phoneme count (APC), adult
syllable count (ASC) and the adult word count (AWC).

In the previous section, we presented a neural network trained to identify broad
speaker categories on a multilingual corpus of child-centered long-forms and showed
that it outperforms the LENA® segmentation model. Can we go a step further and
propose an open-source and more accurate alternative to the LENA® adult word
count (AWC) estimation model? Our attempt to do so is presented in a co-authored
publication in Räsänen et al. (2021), whose model is depicted in Figure 1.5.

As evidenced in Section 1.2, the LENA® speech processing pipeline has been opti-
mized for American English. This is especially true for its AWC estimate, which relies
on an American English phone recognizer. Räsänen et al. (2019) suggests that this
shortcoming may translate into a lower accuracy on non-English languages. Another
important matter that stands on its own is whether the word is a relevant linguistic
unit to measure language input in children. Indeed, the composition of words varies
greatly among human languages, with some words comprising a single morpheme
and others comprising multiple morphemes – e.g., in Japanese, "食べたくなかっ
た", tr. tabetakunakatta means "I/he/she/they did not want to eat (it)". With this

1.3 An open-source alternative to the LENA® speech processing
pipeline

27



consideration in mind, it could be relevant to compute not only the number of words
overheard by the child, but also the number of phonemes and syllables.

In Räsänen et al. (2021), we introduce ALICE for Automatic LInguistic unit Count
Estimator. ALICE is a model trained to estimate the number of phonemes, syllables,
and words produced by adults in child-centered long-forms. After adult segments
have been detected by our voice type classifier (Lavechin et al., 2020), we extract
various features from each segment. Features include: 1) the estimated number of
consonants, vowels, and consonant-vowel or vowel-consonant alternations using
Allosaurus (X. Li et al., 2020), a phone recognizer trained on 12 languages; 2) the
estimated number of syllables using SylNet (Seshadri & Räsänen, 2019) trained on
Estonian and Korean speech; 3) signal-level features such as the utterance duration,
the total signal energy, and the number of waveform zero-crossings. All features
are then mapped to three separate linear regressions allowing ALICE to correct
under- or over-estimation in the feature extraction step. Regression parameters
are estimated using the least-square method on 36 hours of annotated audio from
long-forms, including Yélî Dnye, Tseltal, Argentinian Spanish, American English,
Canadian English, and UK English.

We evaluated the generalization performance of our system to unseen data using a
leave-one-corpus-out procedure. Results indicate that ALICE outperforms the LENA®

AWC estimate on our American, Canadian, and UK English corpora. Unfortunately,
LENA® automatic measures were not available for our Yélî Dnye, Tseltal, and
Argentinian Spanish corpora as the latter have been collected with non-LENA®

recorders and the LENA® software only accepts audio files collected using their
recorder. Consequently, there remains to measure how ALICE performs compared to
the LENA® on non-English languages.

Our voice type classifier that segments audio into broad speaker categories (Lavechin
et al., 2020), along with ALICE that estimates the number of linguistic units produced
by adult speakers (Räsänen et al., 2021), constitute an open-source alternative to
steps 1., 2. and 3. of the LENA® pipeline depicted in Figure 1.3. There only remains
to implement step 4. which consists in classifying vocalizations produced by the
key child into vegetative sounds, fixed signals, and speech-like vocalizations. This
would require a first-stage classification to extract vocalizations produced by the
key child (using our voice type classifier or a similar model) and a second stage
to sub-classify these vocalizations. Evaluating the accuracy of such a pipeline in
real-world settings would also require summing up errors acquired in both stages.
To the best of my knowledge, there is presently no available open-source pipeline
that can be readily used to automatically sub-classify the key-child vocalizations
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from long-form recordings, but see Z. Zhang et al. (2018), Al Futaisi et al. (2019),
or Anders et al. (2020) for related work.

Throughout this chapter, we presented our contributions to developing automatic
speech processing tools to analyze child-centered long-forms. These recordings
collect audio in challenging environments and include near-field as well as far-field
speech produced by multiple speakers, including children. Besides, the speech can
be reverberated and affected by numerous sources of noise.

We close this chapter with a last contribution dedicated to a model that automatically
extracts background noise and reverberation measures.

1.4 Background noise and reverberation estimation

Lavechin, M.*, Métais, M.*, Titeux, H., Boissonnet, A., Copet, J., Rivière,
M., Bergelson, E., Cristia, A., Dupoux, E., Bredin, H. (2023) Brouhaha:
multi-task training for voice activity detection, speech-to-noise ratio, and
C50 room acoustics estimation. Submitted to ASRU

Motivation

As long-forms collect everyday language use in naturalistic settings, background
noise and reverberation populate the recordings. Background noise most commonly
refers to undesired sounds that impede the listeners’ perception of more important
sounds – speech in most cases. Background noise includes noise generated by
heating or ventilating systems, appliances (vacuum cleaner, washer, dishwasher,
refrigerator, etc.), outdoor traffic flow, and many others. Reverberation refers to
the persistence of sounds as sound waves reflect off obstacles and hard surfaces in
the environment. As these acoustic phenomena can strongly degrade the signal of
interest, it is crucial to be capable of measuring them at any given moment in the
recording.

On the speech-processing side, such measures can be used to evaluate the relia-
bility of automatic tools under noisy or reverberant conditions. On the language-
development side, background noise and reverberation measures can be used to
assess the wide variety of listening conditions faced by infants. For instance, one
could study whether background noise measures extracted from long-forms correlate
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with later language development – see Erickson and Newman (2017) for a review
on the influence of background noise on infant language learning.

The article presented in this section, for which we give a summary below, proposes
a model that automatically extracts background noise and reverberation measures
from single-channel audio recordings. It is submitted as a proceeding to the 2023
Automatic Speech Recognition and Understanding (ASRU) workshop.

Paper summary

Fig. 1.6.: Background noise and reverberation estimation. Here, we want to automatically
measure whether speech is noisy or reverberant in an audio stream. Our objective
is to develop a single model that carries out three tasks: voice activity detection
(VAD), speech-to-noise ratio (SNR) estimation, and C50 estimation.

In Lavechin, Métais, et al. (2022), we introduce Brouhaha, depicted in Figure 1.6,
a model that extracts: 1) speech/non-speech segments; 2) speech-to-noise ratio
(SNR), that measures the relative power of the speech signal as compared to the
power of the background noise; and 3) C50, also called speech clarity, that measures
the extent to which the environment is reverberant. It does so from single-channel
recordings and returns measures at the frame level.

In most cases, SNR and C50 measures are not available from the single-channel
recordings of interest. Measuring the SNR would require perfectly separating the
speech source from the background noise source, and measuring the C50, would
require retrieving the room impulse response (RIR) from which this measure is
derived (see details in Section 1 of the paper). So, how can we obtain the labels
required to train our model?

In this paper, we follow a data-driven approach by which we contaminate clean
speech segments with additive background noise and reverberation. By doing so, we
generate artificially contaminated speech segments given as input to our model. The
model is then trained to predict the ‘strength’ of the two transformations applied
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earlier, namely the SNR and C50 measures. Audio examples used during training are
available on this this project page4.

We conducted several experiments to validate our model, including tests on arti-
ficially contaminated audio recordings and naturally noisy and reverberant audio.
Our results show that the multi-task training regime proposed in the paper improves
the model’s performance. One particularly relevant result in the context of this
thesis manuscript is that of Section 5.6 of the paper, demonstrating that the SNR –
and to a lesser extent the C50 – impacts the word error rate obtained by Whisper
on child-centered long-forms. Using the same American English long-forms and
the same ASR system as the ones presented in Section 1.1, our results reveal that
Whisper accurately transcribes 83% of the words of utterances whose SNR belongs
in the [12, 23.6] dB range. Whisper’s accuracy decreases as the SNR decreases until
it successfully transcribes only 48% of the words of utterances whose SNR is in the
[−9.4, −4.2] dB range.

This exemplifies how Brouhaha can be used to assess the reliability of automatic
speech processing tools under noisy or reverberant conditions.

4https://marvinlvn.github.io/projects/1_project
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Abstract
Most automatic speech processing systems register degraded
performance when applied to noisy or reverberant speech. But
how can one tell whether speech is noisy or reverberant? We
propose Brouhaha, a neural network jointly trained to extract
speech/non-speech segments, speech-to-noise ratios, and C50
room acoustics from single-channel recordings. Brouhaha is
trained using a data-driven approach in which noisy and re-
verberant audio segments are synthesized. We first evaluate
its performance and demonstrate that the proposed multi-task
regime is beneficial. We then present two scenarios illustrating
how Brouhaha can be used on naturally noisy and reverberant
data: 1) to investigate the errors made by a speaker diarization
model (pyannote.audio); and 2) to assess the reliability of an
automatic speech recognition model (Whisper from OpenAI).
Both our pipeline and a pretrained model are open source and
shared with the speech community.
Index Terms: voice activity detection, speech-to-noise ratio,
speech clarity, acoustic environment, reverberation

1. Introduction and related work
Robustness to degraded acoustic environments is a critical fac-
tor limiting the impact and adoption of speech technologies.
Numerous sources of variations in the audio can degrade or hide
the signal of interest and impact the performance of automatic
speech processing systems. Be it automatic speech recogni-
tion (ASR) [1, 2, 3], speaker identification/diarization [4, 5],
or speaker localization [6], most systems exhibit a loss of per-
formance when applied in noisy or reverberant conditions.

While speech processing systems are being improved to
handle degraded acoustic environments [7, 8, 9], little work
has been devoted to automatically predict the properties of
the acoustic environment. A proposed approach involves us-
ing synthetic audio generated by applying an audio transfor-
mation of interest (e.g., reverberation). A neural network is
then trained to extract the ‘strength‘ of this audio transforma-
tion. This approach is most commonly used to develop systems
that predict room acoustic measures like speech clarity (C50),
reverberation time (T60) or direct-to-reverberant ratio (DRR)
[10, 11, 12, 13, 14]. In practice, these values can be estimated
directly from the room impulse response (RIR, the recording

⋆ M. Lavechin and M. Métais equally contributed to this work.
This work was granted access to the HPC resources of GENCI-

IDRIS under the allocation 2022-AD011012554. It also benefited from
the support of ANR-16-DATA-0004 ACLEW, ANR-17-EURE-0017,
ANR-19-P3IA-0001; the J. S. Mc-Donnell Foundation; and ERC Ex-
ELang grant no 101001095.

of a high-energy and bursty sound, such as a pistol shot or a
balloon popping). However, in most cases, RIRs are not avail-
able, and we need to estimate the values of interest from the ob-
served single channel audio recording. A similar approach has
been adopted in [15] to automatically estimate the frame-level
speech-to-noise ratio (SNR). The authors evaluate the perfor-
mance of their system on synthetic data, but not on real data.
In practice, real SNRs are not available making it impossible to
compare the estimated values to the real ones. Thus, it remains
unclear if such a system can generalize to real data.

Given the high interplay between noise and reverberation
(the SNR may be influenced by how noise and speech sources
reverberate, and it is harder to obtain reliable estimates of rever-
beration parameters in low SNR conditions [16, 17]), can we
design a system that tackles both tasks simultaneously? This
is one of the questions we address in this work. Our approach
is closest to [18] who proposes to train a neural network for
jointly estimating room acoustic parameters and the utterance-
level SNR. However, the authors use a restrained set of noise
segments which cast doubts on the ability of their model to gen-
eralize to unseen noises. More importantly, they do not evaluate
their system with respect to the SNR, and they do not address
the question of whether the proposed multi-task regime is ben-
eficial for the estimation performance.

We propose Brouhaha, a model jointly trained on the
speech/non-speech classification task and the SNR and C50 re-
gression tasks. Our model is trained on 1, 250 hours of synthetic
audio generated from clean speech segments contaminated with
silence, noise and reverberation. We first demonstrate that the
proposed multi-task regime is beneficial and compare the per-
formance of Brouhaha against state-of-the-art systems. We then
apply Brouhaha on real data (under naturally noisy and rever-
berant conditions) to: 1) analyze the error patterns of a speaker
diarization system (pyannote.audio [19]); and 2) assess the re-
liability of an ASR system (Whisper [20]). In addition to show-
ing how Brouhaha can be used, these experiments constitute
evidence that our system is applicable to real data.

Beyond the scientific interest of exploring the effectiveness
of the proposed multi-task training regime and assessing the ap-
plicability of the method on real data after training on synthetic
ones, we believe our work has a strong practical interest. Unlike
previous work [15, 18], Brouhaha can be applied to any audio
regardless of whether it contains speech, non-speech or both.
By using our system, there is no requirement to implement a
preliminary voice activity detection system prior to obtaining
SNR and C50 values. We believe such advancement, in addition
to a simple user interface (one python command!), significantly
aids empowering researchers who may not possess expertise in
speech processing or machine learning to make the most out of
speech technology.
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Figure 1: Audio contamination pipeline. s1 → s2: With probability pRIR = 0.9, the clean speech segment (marked as S) contaminated
with silence (marked as NS) s1 is convolved with a randomly drawn impulse response RIRs. n1 → n2: With probability pRIR, the
randomly drawn noise segment n1 is convolved with a randomly drawn impulse response RIRn. s2 + n2 → s3: The reverberated
speech segment s2 and the reverberated noise segment n2 are added together to obtain a Speech-to-Noise Ratio (SNR) randomly drawn
between 0 and 30 dB. As noises can have a wide dynamic range and the utterance-level SNR captures only global information about
the noise level, we recompute SNRs using a 2-second long sliding window shifted every 10ms over s2 and n2. C50 is computed as the
ratio of early (0 to 50ms) and late (50ms to the end of the response) energies of the room impulse response RIRs. Labels obtained
via this pipeline include: speech/non-speech (frame-level), C50 measure of RIRs (utterance-level), and SNR (frame-level).

2. Audio contamination pipeline
We start from: 1) a set of clean speech segments that will be
contaminated; 2) a set of noise segments used to simulate noisy
conditions; and 3) a set of RIRs to simulate reverberation. The
clean speech segments are contaminated following the steps
presented in Figure 1, which we will not repeat here.

3. Multi-task training
We tackled the voice activity detection problem as a classifica-
tion problem where, for each 16-ms frame, the expected out-
put is 1 if there is speech, 0 otherwise. C50 and SNR estima-
tions were tackled as regression problems where, for each 16-
ms frame, the expected output is the actual C50 or SNR in dB.
We tackled the C50 estimation at the frame level during train-
ing – despite the label being at the utterance level – to allow the
model to return smoother transitions when a change in C50 is
detected at inference time.

At training time, short fixed length sub-sequences are
drawn randomly from the training set and gradient-descent is
used to minimize the multi-task loss function L = LVAD +
LC50 + LSNR, where LVAD is the binary cross-entropy loss,
and LC50 and LSNR are mean squared error (MSE) losses. Be-
fore training, LC50 and LSNR are normalized by their maximum
value (computed over 10 batches) to ensure all three losses lie
between 0 and 1. We computed LSNR only over speech frames
as the SNR is not defined on non-speech frames.

4. Experiments
4.1. Datasets

Our audio contamination pipeline requires three types of audio
data: 1) clean speech segments; 2) noise segments; and 3) RIRs.
A pretrained VAD model [19] was applied to find non-speech
segments in 1000 hours of clean read-speech, retrieved from
the LibriSpeech [21]. Predicted non-speech segments were ex-
tended with silence to obtain a ratio of approximately 30% of

non-speech. We used noise segments from AudioSet [22] and
discarded human vocalizations. We also downsampled music
segments from 38% to 5%, leading to a total of 1500 hours
of noise segments. Finally, 385 impulse responses were ob-
tained from EchoThief [23] and the MIT Acoustical Reverber-
ation Scene [24] datasets. We used the same train/dev/test split
originally proposed in LibriSpeech. Noise segments and im-
pulse responses were randomly split into 80%, 10% and 10%
for the training, development and test set, respectively. All files
used in this paper consist of 16-kHz single-channel recordings.

4.2. Evaluation metrics

We evaluated Brouhaha performance on the VAD task using
the F-score between precision and recall, such as implemented
in pyannote.metrics [25]. SNR and C50 predictions were eval-
uated using the mean absolute error (MAE) at the frame level.
Since SNR is not defined on non-speech frames, the SNR was
only evaluated across speech frames.

4.3. Architecture, optimization and training procedure

The model consists of SincNet (using the configuration in [26]),
followed by a stack of bidirectional long short-term memory
(LSTM) and feed-forward layers. Finally, we have three paral-
lel layers: one classification layer (with softmax activation) that
returns the predicted probability of speech, and two regression
layers that return the predicted SNR and C50 (with sigmoid ac-
tivation parametrized between −15 and 80 dB for the SNR, and
−10 and 60 dB for the C50).

We trained 144 different architectures across different sets
of hyperparameters, varying the duration of the input se-
quences: 4, 6, 8, or 10 seconds; the batch size: 32, 64, or 128
sequences; the size of the hidden LSTM layers: 128 or 256;
the number of LSTM layers: 2 or 3; and the dropout propor-
tion: 0, 30 or 50%. The best architecture was trained with 6-s
segments, a batch size of 64 sequences, 3 LSTM layers of size
256, and a dropout proportion of 50%. The best architecture
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was selected on the validation metric: an average of the VAD
F-score, SNR and C50 MAEs, with the latter two normalized
by the maximum error to balance the contribution of each term.

5. Results
5.1. The effect of multi-task training

Table 1: Performance on unseen synthetic data (our test set)
in terms of F-score (VAD) and mean absolute errors (SNR and
C50). A checkmark below a given training task indicates that
the associated loss is activated during training.

Training tasks: VAD SNR C50

VAD SNR C50 F-score (%) MAE (dB) MAE (dB)

✓ ✓ ✓ 93.7 4.1 3.5
✓ ✓ 93.7 4.2 ——
✓ ✓ 93.6 —— 3.8

✓ ✓ —— 4.3 3.7
✓ 93.5 —— ——

✓ —— 4.3 ——
✓ —— —— 4.2

Table 1 shows performance obtained by models trained to solve
either one, two or three of the proposed tasks (VAD, SNR, C50).
All models shared the same set of hyper-parameters, only the
dimension of the output layer differed. Results indicate that
the multi-task training regime is beneficial: the model trained
simultaneously on the three tasks obtained better performance
than models trained on two tasks which themselves obtained
better performance than models trained on a single task. The
largest performance gain is observed for the C50 estimation,
with a decrease of 0.7 dB in terms of MAE between the single-
task and the three-tasks training regime. These results seem
to show that sharing weights during training helps better solve
the proposed three tasks. Not only does using a single model
provide a performance gain, but it is also more convenient and
computationally efficient.

5.2. Voice activity detection

Table 2: Voice activity detection F-score obtained by Brouhaha
and pyannote.audio pretrained system [19]. Numbers are re-
ported on synthetic data (our test set) and on real data (Baby-
Train [27]).

Data type System VAD F-score (%)

synthetic Brouhaha (ours) 93.7
pyannote.audio [19] 89.0

real Brouhaha (ours) 77.2
pyannote.audio [19] 80.8

Table 2 shows voice activity detection performance obtained by
Brouhaha and a state-of-the-art system (pyannote.audio [19]).
We consider two evaluation sets: 1) our test set made of unseen
synthetic audio data (referred as ‘synthetic‘ in the table); and 2)
BabyTrain [27], a corpus of highly naturalistic child-centered
recordings (referred as ‘real‘ in the table). Specifically, Baby-
Train recordings are acquired via child-worn microphones as
they go about their everyday activities and are widely used in

language acquisition research [28]. Child-centered recordings
are notoriously challenging for speech processing systems as
they contain spontaneous and overlapping speech, and a wide
variety of noisy and reverberant conditions.

Results show a strong advantage for Brouhaha over pyan-
note.audio on unseen synthetic data (4.7% absolute difference
in terms of F-score) . This indicates that, on highly noisy and
reverberant synthetic audio, our system is competitive on the
VAD task. Admittedly, Brouhaha has an advantage over pyan-
note.audio as the latter has not been trained on synthetically
noisy and reverberant audio. Turning to a performance com-
parison on real data, numbers reveal that pyannote.audio out-
performs Brouhaha by a 3.6% absolute difference in terms of
F-score. This result suggests that training a VAD system on
LibriSpeech [21] contaminated with reverberation and additive
noise might not be optimal, and this is despite the precautions
taken in simulating challenging noisy and reverberant condi-
tions. Nonetheless, LibriSpeech is currently the only source of
clean speech available in sufficiently large quantities to run our
audio contamination pipeline and obtain SNR and C50 labels.

5.3. Speech-to-noise ratio estimation

Table 3: Mean absolute error on the SNR estimation task com-
puted on unseen synthetic data (our test set). All predicted and
gold SNRs are brought back to the [−15, 30] dB range as done
in [15]. For a given speech utterance, the heuristic estimates the
noise (resp. speech) power as the mean power of non-speech
(resp. speech) frames within a 6-s window centered around
each annotated speech frame (defaulting to the average SNR
when no non-speech frames were found within the 6-s window).

System SNR MAE (dB)

Brouhaha (ours) 2.3
Heuristic 8.4
Li et al. [15] 12.5

Table 3 shows MAE performance on the SNR estimation task
computed on our test set made of unseen synthetic audio data
for: 1) Brouhaha; 2) a heuristic using the oracle VAD that es-
timates the noise (resp. speech) as the mean power of neigh-
boring non-speech (resp. speech) frames; and 3) the system
proposed in [15] (a 4-layer LSTM trained from mel frequency
cepstral coefficients).

Results indicate that Brouhaha is better at estimating the
frame-level SNR than our heuristic, with an absolute difference
of 6.1 dB in terms of MAE (note that both systems use a 6-
s window as input, and that our heuristic requires oracle VAD
boundaries). Surprisingly, our heuristic performs better than the
system proposed in [15] with a 4.1 dB absolute difference in
terms of MAE. This indicates that [15] struggles generalizing
to unseen noise or to reverberant environments. Unfortunately,
we could not compare systems on the test used in [15] as the
latter has not been publicly released.

5.4. C50 estimation

We ran Brouhaha on the BUT Speech@FIT Reverb
dataset [29]. This dataset consists of LibriSpeech test-
clean utterances retransmitted by a loudspeaker in 5 different
rooms. For each room, the speaker was placed on 5 positions
on average and retransmitted utterances were recorded with
31 microphones. RIRs were measured multiple times for each
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Figure 2: C50 estimation. Real C50 against C50 predicted by
Brouhaha on 1000 utterances from the BUT Speech@FIT Re-
verb dataset [29].

speaker position. Here, we compare the real C50 (averaged
over between 1 and 9 duplicated RIR measures) to the C50

predicted by Brouhaha on 1000 randomly drawn utterances.
Figure 2 shows a strong correlation between the real and

the predicted C50, with a R2 of .85 and a mean average error
of 1.1 dB. We would have liked to compare the performance of
our system on the C50 estimation task with other systems, but
we could not find any open-source pre-trained C50 estimators
despite extensive research in this area [11, 12, 14].

5.5. Investigating speaker diarization errors

We ran a pretrained pyannote.audio speaker diarization
pipeline [19] on the VoxConverse dataset [30] and evaluated
its performance at Brouhaha frame resolution (16ms). Each
frame can either be classified as: 1) missed detection (when
the speaker diarization pipeline incorrectly classifies a speech
frame as non-speech): 2) false alarm (the other way around);
3) speaker confusion (when a speech frame is assigned to the
wrong speaker); or 4) correct. Figure 3 focuses on speaker con-
fusion (but the same pattern holds for missed detections) and
shows the distribution of predicted SNR (left) and C50 (right)
depending on whether the speech frame was assigned to the cor-
rect speaker. There is a clear trend as far as SNR is concerned:
pyannote.audio is much more likely to confuse speakers in low
(predicted) SNR regions. Similarly, the accuracy degrades sig-
nificantly as we get closer to the lowest predicted C50 values.

Exploring the errors made by a pretrained system can pro-
vide valuable insights for developing effective strategies. In
our case, one might devise strategies to address the issue of
high speaker confusion in low SNR conditions: increasing the
weight of low-SNR sequences in the training loss, or running
speech enhancement algorithms on low SNR areas for instance.

Figure 3: Investigating speaker diarization errors. Distribution
of SNR (left) and C50 (right) predicted by Brouhaha as a func-
tion of whether a pretrained speaker diarization system [19]
assigns a speech frame to a wrong (red) or to the right speaker
(blue).

5.6. Assessing the reliability of an ASR system

We ran Whisper large ASR system [20] on highly naturalistic
speech utterances from the American English Bergelson corpus
[31, 32] (child-centered recordings, similar to the ones used in
Section 5.2). We evaluate the performance of Whisper using the
percentage hits (i.e., percentage of words correctly transcribed).
We include a total of 804 utterances at least 5-words long (as
short sequences most often led to a score 0% or 100%).

Figure 4 shows the average percentage of hits obtained by
Whisper for utterances binned according to their predicted SNR
(top panel) or C50 (bottom panel) decile. On average, Whis-
per correctly transcribes 83% of the words on utterances whose
SNR belongs in the [12, 24] dB (last SNR decile, top panel).
This number decreases as the SNR decreases until Whisper
successfully transcribes only 38% of the words on utterances
whose SNR is in the [−9,−4] dB range (first SNR decile). Al-
though utterances whose predicted C50 is high tend to be better
transcribed by Whisper, the trend with respect to the C50 is less
clear (bottom panel). In conclusion, by using Brouhaha, we
demonstrated the low reliability of Whisper on noisy utterances
found in child-centered long-forms.

Figure 4: Assessing the reliability of an ASR system. Per-
centage of hits obtained by Whisper large as a function of pre-
dicted SNR decile (top panel) and predicted C50 decile (bottom
panel). Bars represent the percentage of hits averaged across
utterances. Thin black lines represent standard errors.

6. Conclusion and future work
We proposed Brouhaha, a model jointly trained on the voice
activity detection, SNR, and C50 estimation tasks. After eval-
uating the performance of our system and demonstrating that
the multi-task training regime is beneficial, we illustrated two
use cases showing how our model can be used on real data. Be-
yond investigating errors made by speech processing systems or
assessing their reliability in noisy and reverberant conditions,
we foresee other potential downstream tasks, e.g., SNR- or
C50-based microphone selection [33] or SNR-aware speech en-
hancement [34]. Future work could explore these downstream
tasks, the use of spontaneous clean speech to improve VAD per-
formance, or the estimation of other room acoustic parameters,
such as T60 or DRR. Both a pre-trained model and our audio
contamination pipeline are shared with the community1.

1https://github.com/marianne-m/brouhaha-vad
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1.5 Conclusion

In this first chapter, we discussed how artificial neural networks could provide
researchers with automatic speech processing tools to analyze children’s language
environment captured with child-centered long-form recordings. Using a state-of-
art automatic speech recognition system, we highlighted some of the challenges
in processing complex and noisy real-world audio recordings and illustrated why
off-the-shelf tools built with their own purposes in mind would likely not work on
long-forms. Next, we presented the LENA® system, which aims to measure children’s
language environment and has profoundly impacted language acquisition research.
We also presented our collaborative efforts in proposing a free, open-source, and
more accurate alternative to the LENA® speech processing software. Lastly, we
presented Brouhaha, a system to estimate the background noise and reverberation
levels in an audio stream.

As we conclude this chapter, I would like to highlight the importance of going
beyond the measures designed by LENA® researchers. I will then go on to discuss
two important aspects of this line of research, namely: diversity and accessibility.
This conclusion will be the opportunity to reflect on the limitations of current
approaches and potential future work.

Going beyond LENA® measures. Undeniably, the LENA® system has enabled
language development researchers to reach unprecedented scales and obtain a
uniquely naturalistic viewpoint of language use in everyday life. Nevertheless, one
potential pitfall of the widespread use of the LENA® system is the temptation to rely
solely on the limited set of measures designed by its designers. With ALICE, Räsänen
et al. (2021) made a step forward in extending the set of measures by introducing
phoneme and syllable count estimations. Many other speech processing algorithms
hold the potential to provide us with insightful measures once deployed on child-
centered long-forms. Language identification, i.e., which language is being spoken
and when, would be highly relevant to study children growing up in multilingual
environments, e.g., Bartz et al. (2017) or Draghici et al. (2020). As suggested in
G. Jones and Rowland (2017), one could also measure lexical diversity, i.e., the
number of different word types produced by the caregivers, rather than absolute
word count. Beyond looking at what speech is being delivered, looking at how it is
delivered might also be relevant. For instance, child/adult addressee detection, i.e.,
classifying whether speech is directed towards an adult or a child, was proposed
in the Interspeech 2017 computational paralinguistics challenge (Schuller et al.,
2017). Certainly more challenging to implement, one could imagine a system to
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estimate referential transparency, i.e., how easily individual caregivers’ words can
be identified from the surrounding linguistic or visual contexts – see Cartmill et al.
(2013) for an example of how such a measure has been derived from 218 adult
participants using a word masking task strikingly similar to how language models
are trained in NLP.

Promoting diversity. Soon after its release, one could read in scientific publications
about the promises of the LENA® system to add objective measures to the battery
of tests used to measure language development (Richards et al., 2008; Oller et al.,
2010). Has this goal been met? Regarding objectivity, neither the LENA® algorithm
nor any other algorithm can be claimed to be objective. Biases arise throughout the
various stages of algorithm development, including during data collection, manual
annotation, and algorithm design – see Waseem et al. (2021) for a discussion
on the illusion of objectivity in ML algorithms. Acknowledging the limitations of
algorithms, particularly machine learning algorithms, is crucial if one wants to start
documenting biases and building more inclusive algorithms. The baby step in this
direction, presented in Section 1.3, is to incorporate under-represented languages
into the training set. Despite more than 7000 languages being spoken worldwide,
English dominates language acquisition studies, comprising 54% of current research
(Kidd & Garcia, 2022). Building more inclusive speech processing algorithms will
likely require a cultural shift within the research community, but see Singh et al.
(2023) for guidance on making infant research more representative.

Maximizing accessibility for non-expert users. Another important aspect of this
line of work concerns accessibility. Building more efficient algorithms is a laudable
goal but has limited impact if targeted non-expert users (i.e., language development
researchers) can not run them. My collaborator, Okko Räsänen, and I made a great
effort to make our tools accessible to non-expert users. This includes providing: 1)
comprehensive documentation; 2) a simple installation; 3) a one-line command to
run the system; 4) assistance through emails and Github issues in case of difficulties;
and 5) time to fix ever-arising installation bugs, i.e., uninteresting but essential
things sometimes neglected in ML research but necessary to allow for accessible, re-
producible, and open science. However, despite our efforts, there are still limitations.
At the time of writing this manuscript, neither the voice type classifier nor ALICE is
compatible with Windows platforms, and inference on CPUs is incredibly slow.

This brings us to an equally important matter that impedes accessibility: hardware
requirement. For instance, to process a 12-hour audio recording, the voice type clas-
sifier requires 16 minutes on a single Nvidia® Tesla V100 GPU with 32 GB memory
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but 3 hours on four Intel® Xeon® Gold 6230 CPUs, and language development
researchers do not usually have access to GPUs.

With these considerations in mind, how can accessibility to machine learning models
be improved for non-expert users? One proposal put forward in Le Franc et al.
(2018) is the use of a virtual machine, which has the advantage of assuming
minimal technical skills from users but fails to address the issue of GPUs accessibility.
Another potential solution is the development of a cross-platform drag-and-drop
user interface, which would allow researchers to deposit audio files and retrieve
the output of pre-trained models with ease. However, this solution is costly to
develop and would still not solve the issue of GPUs accessibility. A third solution
is a GPU cloud computing platform where audio files could be uploaded (possibly
encrypted), and inference could be performed on a remote server equipped with
GPUs. Although this solution would possibly burden the host laboratory financially,
it would enable researchers to perform fast inference with state-of-the-art machine
learning algorithms.

To conclude, the large majority of the work presented in this first chapter was carried
out in collaboration with various researchers from different fields. Interdisciplinarity
and diversity are critical to identifying the right questions, accessing data, designing
computer-readable annotation schemes, building robust tools, validating them, and
making them accessible.

In this first chapter, we explored the usage of artificial neural networks to analyze
children’s language experiences. Another application of these networks in the realm
of language development research is computational modeling. In the remainder
of this manuscript, we will shift our focus to the exciting enterprise of building
computational models of infant language learning.
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Modeling language
acquisition from audiobooks

2

There is a long tradition of modeling in the context of language acquisition. For many
years, scientists spanning various fields, from formal linguistics to developmental
psychology and artificial intelligence, have contemplated the prospect of running
computer-based language learning simulations. Such simulations are important
for both theoretical and practical reasons. On the theoretical side, simulations
can help prove or disprove hypotheses – and formulate new ones – about how
infants learn their native language, thus contributing to building more precise
language acquisition theories (Pinker, 1979; Frank, 2011). On the practical side,
language learning simulations enhance language skills in machines, allowing them
to comprehend and produce language more effectively, potentially yielding, one
day, machines that exhibit learning abilities on par with those of young children, as
envisioned by Turing (1950).

This chapter aims to acquaint our readers with the literature on infant language
development, with a specific focus on early developmental milestones and learning
mechanisms in infants – what we want to model. We then provide a bird’s eye view of
the methodological landscape of language learning simulations – how we approach
the modeling process. To conclude, we present our contribution with a model of
early phonetic and lexical learning that reproduces the parallel and gradual learning
observed in infants. We also reflect on important areas for future improvement and
exploration.

2.1 Early language acquisition in infants

We begin by providing an approximate and simplified timeline of infants’ language
development. Following that, we review and illustrate three influential learning
mechanisms proposed to drive early language acquisition in infants.
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2.1.1 A sample of developmental milestones

Language acquisition studies have produced a wealth of results informing us on the
language capabilities of young children, some of which are presented in Figure 2.1 –
see Ambridge and Rowland (2013) for a review of the experimental methods.
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Fig. 2.1.: Sample studies illustrating the timeline of infant’s language development. The
left edge of each box is aligned to the earliest age at which the result has been
documented. 1 Tincoff and Jusczyk, 1999; Bergelson and Swingley, 2012 2 Man-
del et al., 1995 3 Jusczyk and Aslin, 1995 4 Mehler et al., 1988 5 Jusczyk et al.,
1999 6 Hirsh-Pasek et al., 1987 7 Jusczyk et al., 1992 8 Kuhl et al., 1992 9 Eilers
et al., 1979 10 Jusczyk et al., 1993 11 Werker and Tees, 1984 12 Mazuka et al.,
201113 Yeni-Komshian et al., 2014. Figure adapted from Dupoux, 2018.

For instance, between 6 and 12 months, infants show an improvement in discrimi-
nating sounds of their native language, while their ability to discriminate non-native
sounds declines (Kuhl et al., 1992). In addition to acquiring knowledge about
the sounds of their native language, infants also begin learning about words early
on. Evidence for word learning starts as early as 4 months when infants begin to
recognize their own names (Mandel et al., 1995). By 8 months of age, most infants
recognize the auditory form of frequent words (Jusczyk & Hohne, 1997; Carbajal
et al., 2021), segment words from fluent speech (Jusczyk & Aslin, 1995), and know
the meanings of many common nouns (Bergelson & Swingley, 2012). Remarkably,
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this knowledge of lexical and semantic aspects of their native language emerges
before infants fully develop their sound discrimination abilities (McMurray et al.,
2018), and before they produce their first words, typically around the end of their
first year of life (Yeni-Komshian et al., 2014).

Admittedly, the picture is far more complex than depicted in Figure 2.1. First,
most studies focused on English-learning infants from relatively high socioeconomic
status, but developmental trajectories may change as a function of cultural or
socioeconomic variables (Scaff, 2019; Christiansen et al., 2022). Second, beyond
group-based differences, strong inter-individual differences have been reported –
e.g., Rowe et al. (2005) and Schwab and Lew-Williams (2016); see Kidd et al.
(2018) for a review. And finally, results might be confirmed or revised as new studies
or meta-analyses are published, e.g., Tsuji and Cristia (2014) and Gasparini et al.
(2021).

Nonetheless, the timeline depicted in Figure 2.1 illustrates the gradual and parallel
trajectory of infants’ language development. Instead of a stage-like developmental
trajectory in which learning would unfold sequentially in a hierarchically-organized
manner (i.e., from low-level to high-level linguistic structures), we observe that learn-
ing occurs simultaneously across all levels. This gradual and parallel developmental
trajectory observed in infants will be the focus of Section 2.3.

For now, the developmental timeline observed in infants invites us to return to
fundamental questions: How do infants learn so much in so little time? How do they
effortlessly unravel the structure and rules of the intricate and hierarchical system
that is language? These questions are at the core of the upcoming section.

2.1.2 Learning mechanisms

Many theories have been proposed to explain how children learn language. Although
there might be disagreements in the details of the implementation or how useful
each mechanism may be for solving specific problems (Johnson & Tyler, 2010; Lidz
& Gagliardi, 2015; Y. Zhang et al., 2019), there is a consensus that infants are
prodigious pattern finders capable of integrating cues within a single modality (e.g.,
the auditory stream) and across multiple modalities (e.g., between the auditory and
visual streams). Here, we review three non-mutually exclusive mechanisms thought
to drive early language acquisition in infants1.

1More than non-mutually exclusive, these mechanisms are sometimes grouped under the term
‘statistical learning’, which then becomes another word for ‘learning’. Here, we adopt the view
whereby statistical learning primarily relates to the auditory stream, cross-referential learning
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Statistical learning might be the most prominent learning theory in cognitive and
developmental sciences. In the context of language acquisition, it refers to the
mechanisms by which infants use "statistical properties of linguistic input to discover
structure, including sound patterns, words, and the beginnings of grammar" (Saffran,
2003).

Numerous pieces of evidence corroborate the view that infants are statistical learners
– see Saffran and Kirkham (2018) for a review. A first piece of evidence lies in the
developmental decline in non-native sound discrimination during the first year
mentioned in the previous section, which suggests that infants are sensitive to the
statistical cues of speech sounds in their native language (Werker & Tees, 1984;
Kuhl et al., 1992; Maye et al., 2008; Tsuji & Cristia, 2014). A second piece of
evidence lies in a seminal study from Saffran et al. (1996) who showed, using
an artificial language, that 8-month-olds can track transitional probabilities across
syllables to identify word boundaries. Beyond phonological and word acquisition,
the statistical learning hypothesis has also been proposed to account for syntactic
acquisition (Seidenberg, 1997; Gomez & Gerken, 1999; Mintz et al., 2002; Solan
et al., 2005).

Since its initial discovery in human infants, statistical learning has been studied
in countless experiments across ages, domains, and species (Hauser et al., 2001;
Kirkham et al., 2002; Saffran & Kirkham, 2018).

Cross-situational learning refers to the infants’ ability to integrate cues across
the auditory and visual streams. This mechanism, proposed by many authors like
Pinker (1989) or Gleitman (1990), explains how infants associate words with their
meanings, namely, by aggregating information from word-referent co-occurrence
data. The experimental and computational evidence supporting this mechanism
is reviewed by Smith et al. (2014). One example is Smith and Yu’s (2008) study
in which 12-month-old infants were exposed to pseudowords (e.g., ‘bosa’, ‘kaki’,
etc.) paired with a particular shape. The results indicate that infants rapidly learn
multiple associations between pseudowords and their corresponding shapes.

Social learning theories emphasize the role of social factors in language acquisition
(Vygotsky, 1962; Bruner, 1985; Tomasello, 1992) and the importance of human
interaction, including imitation and reinforcement (Skinner, 1957), joint attention
(caregivers’ and children’s coordinated attention to each other and to a third object

involves both the auditory and visual streams and social learning involves both the auditory stream
and the social context. However, it is important to note that social learning mechanisms can still
incorporate visual and statistical cues, and cross-situational learning mechanisms can also integrate
statistical cues.
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or event, Akhtar and Gernsbacher, 2007), communicative feedback (Goldstein &
Schwade, 2008), etc.

Although social learning theories have first been proposed to account for early word
learning, evidence suggests that social interaction contributes to an even more basic
aspect of language – the learning of sounds. A notable example comes from a study
by Kuhl et al. (2003). In a first experiment, the authors found that 9-month-old
American English-learning infants who spent time in laboratory sessions with native
Mandarin speakers could discriminate between phonemes that occur in Mandarin.
Conversely, infants in the control group exposed only to English sessions failed to
discriminate the Mandarin phonemes. In a second experiment, the researchers
exposed infants to the same Mandarin speakers and materials via audiovisual or
audio-only recordings, with no human interaction. In this condition, infants could
not discriminate the Mandarin phonemes, suggesting that exposure to recorded
Mandarin with no human interaction did not affect the discrimination abilities of the
infant participants. According to Kuhl’s study, it appears that infants cannot integrate
statistical cues from their auditory input without experiencing social interaction. To
the fundamental question "What does a live person provide that a DVD cannot?",
the authors reply "social cues may be critical".

Despite thousands of laboratory experiments attempting to isolate learning mech-
anisms in infants and thousands of hours of observations, language acquisition,
much like many other cognitive processes, is essentially a black box and can only be
studied as such. In other words, we cannot access the learning mechanisms infants
use and can only base our theories on indirect cues: the variables that correlate
with learning outcomes, the acoustic, visual, or social factors infants are sensitive to,
what infants are capable of learning and at which age – much of which have been
encountered in this manuscript. However, there is another method, computational
modeling or language learning simulations, which we have yet to introduce but
plays an important role in the study of language acquisition.

2.2 In-silico language learning simulations

The ultimate test of any language acquisition theory should be that of implementa-
tion, as advocated by Dupoux (2018). After all, if language acquisition in infants oc-
curs through learning mechanisms M , then implementing these mechanisms should
yield similar learning outcomes as the child. However, given the phenomenon’s com-
plexity, running language learning simulations that account for the various aspects
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Fig. 2.2.: General outline of a learning simulation in relation to real infants. A simulation
consists of 1) an environment model, which should ideally be a subset of the real
environment; 2) a learner model, i.e., the mechanisms through which learning
occurs in interaction with the environment; and 3) outcome models, i.e., how the
learning outcomes are evaluated. The simulated learning outcomes allow us to
compare humans to machines, test hypotheses and formulate predictions about
how learning occurs in infants. Taken from de Seyssel, Lavechin, and Dupoux
(2022).

of human languages is a challenging enterprise. Before we get an artificial learner as
good as children themselves, language learning simulations can still provide proofs
of learnability under the form of "Learning outcomes O can be acquired from input
I using mechanism M ", e.g., "Words can be segmented from strings of phonemes
from co-occurrence statistics". Before we go any further, this small introductory
paragraph invites us to define what we mean by language learning simulations.

As illustrated in Figure 2.2, a learning simulation can be defined as the combination
of three components: 1) an environment model, i.e., the learning material available
to the learner; 2) a learner model, i.e., the learning algorithm whose parameters
are updated based on its interaction with the environment; and 3) a model of
the outcome measures, i.e., how the language skills developed by the learner are
evaluated.

Adopting this tripartite description, we propose a bird’s eye view of the methodolog-
ical landscape in language learning simulations. Our objective is not to propose an
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in-depth literature review, which would be out of the scope of this manuscript, but
to narrow down the space of possibilities in order to better outline the work done
during this Ph.D. while also acknowledging the work of others.

2.2.1 The environment model: from what is language learned?

Regarding the environment model, there is a clear trend towards more complex and
naturalistic input. In the early days, the input was kept simple in the form of, for
instance, synthetic language in Elman’s (1990) syntactic learning model or vowels
spoken in isolation in Vallabha et al.’s (2007) simulation of phonetic learning. While
written sentences are still routinely used (e.g., Bernard et al., 2020 or Stärk et al.,
2022), recent developments have witnessed the emergence of models working with
corpora of raw speech (Räsänen et al., 2018; Schatz et al., 2021). This will be the
focus of this manuscript.

However, infants do not rely exclusively on speech to learn their native language,
as suggested in Section 2.1.2. For studies exploring the contribution of the visual
modality, we will refer to Alishahi and Fazly (2010) for models operating on im-
age/caption pairs, or Räsänen and Khorrami (2019) and Nikolaus et al. (2022) for
models operating on videos – see also Chrupała (2022) for a recent review. Similarly,
embodied or socially grounded language learning agents have been proposed in Yu
and Ballard (2003), Hermann et al. (2017), Lair et al. (2019), and Oudeyer et al.
(2019).

2.2.2 The learner model: how is language learned?

Regarding the model of the learner, rule-based models were the first to emerge
(e.g., Anderson, 1975). These models are most commonly used in the context of
syntactic acquisition, with rules defining how words can be combined, either hand-
crafted or learned from data. A second historical trend emerged with probabilistic or
distributional models (e.g., Brent, 1996; de Marcken, 1996; Schatz et al., 2021) that
are trained on a relatively large amount of data to learn distributional information
of their input, whether it would be written or spoken sentences (see Chater and
Manning, 2006 for a review). A third historical trend came with the emergence of
connectionist models (e.g., Rumelhart and McClelland, 1986; Elman, 1990) and
deep learning models, more recently, that learn complex and non-rule-like patterns
from large amounts of data (see Joanisse and McClelland, 2015 for a review).
Although this manuscript reflects the connectionist tradition, we do not take a stand
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in favor or disfavor of any of the abovementioned approaches. In particular, no
approach appears unequivocally more psychologically plausible than others2.

2.2.3 The outcome models: what is learned?

Regarding the model of the outcome measures, there are multiple approaches to
assess what has been learned. With my collaborators, I have already laid out most
of the arguments below in de Seyssel, Lavechin, and Dupoux (2022) and Lavechin,
de Seyssel, Gautheron, et al. (2022). See also Blandón et al. (2021) for an in-depth
discussion of the different approaches to which we owe some of the arguments
exposed here.

Evaluating models on downstream tasks is a common approach (e.g., phoneme
classification accuracy, word error rate, etc.). This approach is relevant in the context
of speech processing technologies and can inform us about the artificial learner’s
capabilities to capture patterns of their input data. However, this approach may not
be relevant in the context of language acquisition modeling as the learner needs to
receive supervision, e.g., in the form of phonetic or orthographic transcripts, for this
evaluation to be possible.

Evaluating models against linguistic theories and abstract representations
constitutes a second approach that involves assessing the presence of phonemes,
words, and so forth. This approach is most commonly used to evaluate speech
segmentation models by computing the proportion of retrieved boundaries, whether
it would be phone (Scharenborg et al., 2007), syllable (Räsänen et al., 2018), or
word boundaries (Räsänen et al., 2015; Stärk et al., 2022). The same principle is
often used in phonetic category learning studies, where the learned clusters are
compared to ground-truth phonetic categories, e.g., Vallabha et al. (2007).

This approach has the undeniable advantage of being easy to interpret and provides
learnability proofs when a model successfully learns linguistic structures to a satis-
factory degree. However, the underlying assumption is that the end goal of learning
is to acquire abstract linguistic representations. This assumption can be contentious
as linguistic representations are precisely the area in which theories of language
(acquisition) diverge most fiercely – for phonemes, we will refer to Feldman et al.
(2021) and McMurray (2022), see also Twaddell (1935) for a general criticism on
inferring mental entities. In other words, such an assumption may not reflect human
processing, neither in infants nor in adults. Although some may disagree, we posit

2See Frank’s (2023) blog post explaining why psychological plausibility critiques can be harmful and
how to adopt an evidence-based approach necessary to move the discussion forward.
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that the evaluation of language capabilities in an artificial language learner should
be theory agnostic. By not forcing extra assumptions on the learned representations
on either the human or the machine learner, the findings have a higher chance of
being relevant to a broad range of theories.

Evaluating models against empirical data, as proposed by Dupoux (2018), con-
stitutes a third approach that offers the advantage of being independent of any
specific linguistic theory. Indeed, rather than aiming to demonstrate the presence of
linguistic representations, our objective is to compare artificial learners with human
participants based on observable evidence. Specifically, we discuss two sources of
data: brain measures and behavioral measures.

Evaluating models against brain measures involves comparing the activation patterns
of neural networks with those of the human brain when performing a similar task
(e.g., ‘listening’ to a story) – see Yamins et al. (2014), Millet et al. (2022), and
Caucheteux et al. (2023). While this approach holds promise for gaining insights
into how the human brain processes information, it has some limitations in the
context of early language acquisition. First, neuroimaging devices that precisely
capture brain activities in both time and space are rarely used with infants – e.g.,
Bosseler et al. (2021). Second, neural activities in infants are typically noisier, and
studies necessitate an even larger sample size than those conducted with adults
(Cusack et al., 2018; Turner et al., 2018). Therefore, a substantial accumulation of
results in the infant neuroimaging literature will likely be necessary before we can
use it to establish benchmarks.

Now we turn to the approach followed in this manuscript, namely, evaluating models
against behavioral measures. This approach involves comparing responses returned
by both machines and humans while undergoing the same psycholinguistics tasks.
These tasks are designed to evaluate the subject’s ability to process, comprehend, or
produce language and encompass a broad range of experimental methods, including
sound discrimination, auditory word form recognition, grammaticality judgment,
looking-while-listening, language elicitation, etc. Common challenges with neu-
roimaging experiments include designing tasks that isolate the phenomenon of
interest, known as test validity, with an appropriate signal-to-noise ratio, known as
test reliability, both of which are crucial aspects of psychological testing (Gregory,
2004). Regarding the noise inherent to psychological testing, see Blandón et al.
(2021) for a proposal to evaluate artificial learners against robust empirical data
gathered through meta-analyses.

Experimental methods that probe the subject’s language ability at the neural or
behavioral level should ideally be administrable to machines, infants, and adults
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to allow for direct human/machine comparison and account for developmental
trajectories. However, this is rarely possible, especially with infants for whom age-
specific test apparatus have to be constructed (high-amplitude sucking or head-turn
preference procedure – see Ambridge and Rowland, 2013 for an exhaustive list).
As of today, it is also not possible for the artificial learner to undergo a sound
discrimination experiment in the laboratory, and specific strategies must be designed
to extract the measure of interest. That is why a language learning simulation
comprises a model of the outcome that should best approximate experimental
methods used with human participants.

Having familiarized ourselves with what we aim at modeling and how one can
approach the modeling process, we now delve into the proposed approach at the
core of Chapters 2 and 3.

2.2.4 Proposed approach

The approach we adopt in Chapters 2 and 3 of this manuscript builds upon re-
cent advances in self-supervised learning models that learn from spoken language.
These models have demonstrated remarkable linguistic capabilities in various tasks,
whether it involves assessing the acceptability of spoken words or sentences (T. A.
Nguyen et al., 2020; Dunbar et al., 2021) or generating meaningful and coherent
speech (Kharitonov et al., 2021; Lakhotia et al., 2021). By developing linguis-
tic capacities solely from exposure to speech, without the need for human labels,
these models promise to advance our understanding of how infants learn language
(Lavechin, de Seyssel, Gautheron, et al., 2022; Warstadt & Bowman, 2022).

In particular, we focus on the model used in our STELA (for STatistical Learning of
Early Language Acquisition) simulation, which we briefly describe below, adopting
the same tripartite description as introduced above – see Section 2.3 for more
details.

Our learner model consists of two main components: 1) an acoustic model that
incorporates a Contrastive Predictive Coding (CPC) algorithm followed by a K-means
algorithm, which is in charge of learning discrete representations of the audio; and
2) a language model made of Long Short-Term Memory (LSTM) layers trained on
the learned discrete units. The primary learning objective is to predict future audio
observations from present and past ones, a process known as auditory predictive
coding at the core of the predictive brain hypothesis that has attracted the attention
of the neuroscience community (Barlow et al., 1961; Keller & Mrsic-Flogel, 2018;
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Hueber et al., 2020). As a statistical learning algorithm, the proposed model can
provide us with insights about the aspects of language that can be acquired through
statistical learning mechanisms applied to raw speech.

For this chapter, our environment model consists of 3,200 hours of raw, unsegmented,
multi-speaker, and untranscribed speech. The speech is collected from either English
or French audiobooks, simulating the environment of an English-learning or French-
learning infant.

Concerning the outcome models, we use two behavioral probing tasks to evaluate our
learner’s language capacities at the phonetic and lexical levels. At the phonetic level,
the evaluation consists of an ABX sound discrimination task, a protocol routinely
used in psycholinguistics, e.g., Gottfried (1984) or Levy and Strange (2008a). At the
lexical level, we use a spot-the-word task in which the model is asked to discriminate
between a real word (e.g., ‘cookie’) and a pseudoword matched in phonotactic
probabilities (e.g., ‘coonie’) – see Baddeley et al. (1993), Yuspeh and Vanderploeg
(2000), and Barker-Collo et al. (2008) for examples of studies in adults.

After presenting our approach and situating it within the broader context of cur-
rent methodologies for modeling infant language acquisition, we present our first
contribution to this line of research.

2.3 Can statistical learning bootstrap early language
acquisition?

Lavechin, M.*, de Seyssel, M.*, Titeux, H., Bredin, H., Wisniewski, G.,
Cristia, A., Dupoux, E. (2023) Statistical learning bootstraps early language
acquisition. Submitted to Developmental Science

Motivation

Human languages are intricate systems composed of discrete linguistic categories
arranged in a hierarchical structure with interdependent levels. Learning any
of these levels depends on the others, thus creating a chicken-and-egg dilemma.
As words are composed of phonemes, acquiring words seems to require learning
phonemes first (Morgan & Demuth, 2014). But phonemes are defined as the smallest
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sound contrast between two words (e.g., ‘book’ vs. ‘look’) that make a difference in
meaning, therefore suggesting that infants would need words to learn phonemes first
(Feldman et al., 2009; Martin et al., 2013). Neither of these learning trajectories is
satisfactory, as in-lab experiments suggest that infants do not learn sounds and words
separately but jointly, as evidenced in Section 2.1.1. Although widely documented
in infants, this gradual and parallel learning constitutes a developmental pattern for
which no formal theory has been proposed (Dupoux, 2018). We are therefore left
with the following question: How do infants bootstrap into language?

This is the central question we explore in Lavechin, de Seyssel, Titeux, et al. (2022),
a manuscript under submission to the Journal of Developmental Science, and for
which we give a summary below. This work has been done in close collaboration
with Maureen de Seyssel, with whom I share co-first authorship.

Paper summary

In Lavechin, de Seyssel, Titeux, et al. (2022), we introduce STELA, a language
learning simulation in which we evaluate the language capabilities of our model at
the phonetic and lexical levels. It is worth explaining two essential characteristics of
our methodology. First, we follow a cross-linguistic approach whereby the learner
is exposed either to English or French but evaluated on both languages. The
comparison between native (training and testing on the same language) and non-
native scores (training and testing on different languages) allows us to identify
what our model has learned due to exposure to its native language, as opposed to
exposure to another language. Second, we follow a developmental approach whereby
we vary the quantity of speech given to the artificial learner to study the impact of
input quantity on the learning outcomes.

The learning trajectories displayed by our artificial learner show a strong positive
effect of native language, i.e., the native learner obtains higher phonetic and lexical
scores than the non-native learner, and this holds with as few as 50 hours of speech.
We also found a strong effect of input quantity, i.e., the native model gets better
at discriminating sounds and recognizing auditory word forms as the quantity of
speech in the training set increases. Interestingly, we observe a moderate positive
correlation between the native phonetic score and the native lexical score obtained
by models trained on 50 or 100 hours of speech. In other words, models that are
better at discriminating sounds are also better at recognizing auditory word forms –
models trained on a higher quantity of data were too few for this to be checked.
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Further analyses aimed to understand the nature of the learned representations
better and assess the extent to which they were similar to linguistic categories like
phonemes and words. Our analyses reveal that linguistic categories structure the
learned representations, although our model never learns categories per se. As the
quantity of speech increases, phonetic and lexical categories become more linearly
separable, which suggests that linguistic categories are not necessary during the
learning process but could instead emerge as an end product of learning.

Our simulation is compatible with the gradual and parallel learning trajectory
observed in infants and constitutes evidence that statistical learning mechanisms are
sufficient to bootstrap early phonetic and lexical learning, such as measured by our
sound discrimination and spot-the-word tasks.
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Can statistical learning bootstrap early
language acquisition? A modeling investigation

Marvin Lavechina,b,c,1,2, Maureen de Seyssela,b,d,1,2, Hadrien Titeuxa,b, Hervé Bredine, Guillaume Wisniewskid, Alejandrina
Cristiaa, and Emmanuel Dupouxa,b,c

aLaboratoire de Sciences Cognitives et de Psycholinguistique, Département d’Etudes cognitives, ENS, EHESS, CNRS, PSL University, Paris, France; bCognitive Machine
Learning Team, INRIA, Paris, France; cMeta AI Research, Paris, France; dLaboratoire de linguistique formelle, Université de Paris Cité, CNRS, Paris, France; eIRIT, Université
de Toulouse, CNRS, Toulouse, France

Before they even produce their first word, infants become attuned to
the phonetic properties of their native language, recognize the audi-
tory form of an increasing number of words, and develop a rudimen-
tary knowledge of grammatical categories. What kind of learning
mechanism could produce such a puzzling pattern of gradual and
overlapping improvement at different linguistic levels ? In-laboratory
experiments have shown that young infants are exquisitely sensi-
tive to fine-grained statistical regularities of their language input,
leading researchers to propose that "statistical learning" could pro-
vide such a mechanism. Yet, statistical learning abilities have only
been demonstrated in infants with simple artificial languages and
remain controversial as a cornerstone for early language bootstrap-
ping. Two questions remain lingering: could statistical learning work
at all when fed with the full complexity and variability of natural lan-
guage? Could it account for overlapping learning at multiple levels?
Here, we introduce STELA, a computational model that simulates
how infants might bootstrap into language from raw audio signals us-
ing statistical learning principles. STELA is built from machine learn-
ing algorithms that predict future representations of speech based
on past ones. When fed with increasing quantities of raw continuous
speech from multiple speakers in French and English (no preprocess-
ing nor human annotation), STELA reproduces the observed pattern
of gradual and overlapping specialization to the "native" language
across levels: it improves in discriminating sounds, recognizing the
auditory form of words, and organizing sounds and words along lin-
guistic dimensions. STELA provides a proof of feasibility that statisti-
cal learning from raw speech is sufficient to bootstrap early language
acquisition at the sound and word levels. Subsequent analyses indi-
cate that this process occurs without the use of linguistic categories
at these levels.

language acquisition | artificial intelligence | self-supervised learning |
statistical learning | predictive learning

Infants master critical aspects of the language(s) spoken
around them well before they produce their first word. Be-
tween 6 and 12 months, infants’ discrimination of native sounds
shows an improvement, while those of non-native sounds shows
a decline (1–4). Not only do infants learn to discover sounds of
their native language, they also start learning words very early
on. Evidence for word learning starts as early as 4 months,
where infants have been shown to recognize their own names
(5). At 6-7 months, infants recognize the auditory form of
frequent words (6, 7), show a preference for content over func-
tion words (8), and segment words from fluent speech (9). For
their first birthday, a typically-developing American English
infant comprehends around 80 words (10). Evidence suggests,
therefore, a scenario of early language acquisition where learn-
ing sounds and words develop concurrently. However, it has

proved devilishly difficult to understand how infants break
into the intricate system that human language is. In other
words, it remains unclear how infants manage to bootstrap
phonetic and lexical learning from sensory information only.

One mechanism that has been proposed to explain lan-
guage acquisition is statistical learning (11): learning from the
statistical regularities of the speech input, i.e. frequency, distri-
bution, variability, transitional probabilities, etc. Concerning
phonetic acquisition, in-laboratory experiments suggest that
infants use distributional information to discriminate between
sounds (12–14). Regarding word learning, in a seminal ex-
periment, Saffran et al. (15) used an artificial grammar to
show that infants can track transitional probabilities across
syllables to identify word boundaries. Since then, statistical
learning has been studied in countless experiments across ages,
domains, and species (16). Although there is a consensus
among researchers that infants are sensitive to statistical reg-
ularities of their speech input, the extent to which statistical
learning can explain language acquisition is at the heart of
heated debates (17, 18).

One of the most prominent criticisms of the statistical
learning hypothesis is that infants are embodied in a much
more diverse and complex environment than what is typically
present in laboratory experiments. In particular, many exper-
iments use synthetic stimuli and artificial languages, which
has the undeniable advantage of isolating the contribution
of individual variables, but makes it hard to generalize to
real-life language input. Indeed, two critical aspects of natural
language are missing in artificial languages used in experi-
ments. First, language is highly variable. However, in word
segmentation experiments, it is common to employ artificial
languages where every word shares the same length; when
more variability in length is introduced, infant’s ability to use
transitional probabilities to segment words is severely dimin-
ished (17). Similarly, sound discrimination experiments use
prototypical sounds and cherry-picked contrasts that fail to
account for the large variability found in natural languages
(19). Second, language is hierarchically organized into linguis-
tic levels. In artificial languages, variability is typically frozen
from all levels except the one under study. For instance, in
phonetic learning experiments the language introduces pho-
netic variations (usually along a single dimension) but is made
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only of two monosyllabic utterances. Vice versa, in lexical
learning experiments, the language contains more syllables
and long "utterances", but syllables are identical copies with
no phonetic variability or coarticulation effects. Even though
infants have been shown to use statistical learning mechanisms
in these simplified languages, could similar mechanisms work
when faced with the complexity and variability of real lan-
guages and reproduce some of the observed developmental
patterns?

In face of the lack of ecological validity of laboratory ex-
periments, one possible answer consists of building computa-
tional models of language acquisition, adopting the reverse-
engineering approach (20). After all, if language acquisition
occurs through statistical learning, algorithms should be able
to reproduce behavioral patterns observed in infants when
fed with similar input. Unfortunately, the development of
language learning algorithms addressing the full complexity
and variability of language from raw speech input is not an
easy enterprise (see (21) for a review). This is why early at-
tempts at simulating language acquisition through computer
models had also to resort to simplifying assumption and/or
focus only on one aspect of language at a time. For instance,
early statistical models of phonetic learning (22) did not use
real continuous speech input but synthetic data generated
from average formants measured in isolated syllables. Sim-
ilarly, statistical models of word learning worked not from
real speech, but from phonetic transcription of this input by
adults who have already learned the language(23), thereby im-
plicitely assuming that phonetic learning is completed before
word learning can take place. These algorithms are useful in
advancing our understanding of language acquisition as they
provide proofs of learnability under certain hypotheses. How-
ever, to the extent that their simplifying assumptions are not
met in real life, they do not allow to assess whether statistical
learning can really address the full complexity and variability
of language, from lower-level sound units to higher-level word
units.

Recent advances in machine learning have provided some
hope that some of these roadblocks can be lifted. For instance,
Schatw et al. (24) proposed a phonetic learning model that,
for the first time, learns from raw speech. They showed that a
representation learning algorithm based on mixtures of Gaus-
sian applied English or Japanese recordings could reproduce
patterns of phonetic attunement as found in infants. Hitczenko
et al. (25) showed that, even though language-specific statisti-
cal patterns are often obscured by the variability in running
speech, such variability can be reduced by taking into account a
larger window of analysis incorporating local phonetic context.
Both studies constitute substantial evidence in favor of the
feasibility of statistical learning hypothesis for early phonetic
development. However, both studies are still only addressing
one linguistic level in isolation. Would learning algorithms
as applied to raw speech result in sufficiently abstract repre-
sentations to sustain learning at other levels? This question
is not a trivial one, given that Schatz et al. (24) found that
their model was unable to converge to interpretable phonemic
or even phonetic categories. Is it possible to learn words or
syntax on top of such non-linguistic representations? In other
words, is statistical learning restricted, in practice, to patterns
of attunements to the phonology of the native language? Or
can higher levels of language acquisition be reached through

statistical learning?
Here, we introduce STELA (STatistical Learning of Early

Language Acquisition), a learning simulation addressing for
the first time the joint learning of phonetic and lexical informa-
tion from raw speech. Building on recent advances in speech
processing and unsupervised representation learning (26, 27),
we show in Experiment 1 that a neural network trained to
predict the near-future from raw speech signal, and tested
with psycholinguistically-inspired discrimination and prefer-
ence tasks can reproduce gradual and simultaneous learning
at both the phonetic and lexical levels. At the phonetic level,
the network is increasingly better at discriminating native
than non-native sounds, reproducing the so-called perceptual
narrowing effect documented in infants (2). At the lexical
level, the network reproduces patterns of preference for real
words over pseudo-words, i.e. non-existent but plausible words
(9). This constitutes the first demonstration that statistical
learning is sufficient to bootstrap early phonetic and word
learning in a simultaneous fashion. In Experiment 2, we in-
vestigate whether the learned representations correspond to
interpretable linguistic categories. We show that, as the quan-
tity of speech received by the network increases, phonetic and
grammatical categories become more linearly separable in the
learned representations. However, the learned acoustic rep-
resentations remain shorter and more variable than phonetic
categories (24). A similar phenomenon occurs at the lexical
level: the network does not explicitly represent words or word
boundaries. Thus, in addition to providing a proof of feasi-
bility to statistical learning potentially explaining multilevel
language learning, our STELA simulation further suggests a
new hypothesis, i.e., that linguistic categories are not needed
to account for patterns of early language development. In
the General Discussion, we discuss the consequences of these
findings for theories of early language acquisition.

Approach

STELA follows the reverse engineering approach described
in (20) whereby a full computational simulation of language
acquisition addresses three components of the learning situa-
tion: the environment, the learner, and the outcome measures
(see Figure 1). Here, we give only a high-level sketch of these
components described in more details in the Methods Section.

As in (24, 28), we take the environment of the infant to be
composed of raw speech input. Here, we extract 3,200 hours
of speech from French and English audiobooks, which corre-
sponds to the upper limit of what infants could hear during the
first three years of their life (29). For each training language
(English or French), we built training sets by randomly split-
ting the whole set of audio segments into mutually exclusive
training sets of 50 hours. These 50-hours training sets were
then merged two by two to build the 100-hours training sets.
This procedure was repeated until convergence, which left us
with 64, 32, 16, 8, 4, 2, and 1 training sets of 50h, 100h, 200h,
400h, 800h, 1,600h and 3,200h of speech.

We simulate the learner by using the winning entry of
the ZeroSpeech 2021 international challenge on unsupervised
representation learning (26). It consists of two components.
The Acoustic Model takes as input raw audio and outputs a
discrete unit every 10ms slice of time. The Language Model
takes the discretized version of the audio as input and outputs a
prediction for the next units, similarly to text-based language
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Fig. 1. Overall setup for the training and testing of STELA. a. The audio environment of learners of different ‘ages’ are modeled using audiobooks segmented and
aggregated in increasingly larger sets matched for number hours and of speakers across two languages (See Table 1). b. The learner is composed of an ‘Acoustic Model’, first
trained with predictive coding and followed by a K-means algorithm returning discrete units and a LSTM ‘Language Model’ trained to predict future units based on past units. c.
Outcome measures are obtained by modeling an ABX sound discrimination task at the (discretized) output of the Acoustic Level, and an auditory lexical preference task
(Spot-the-Word) by using the ability of the Language Model to compute the probability of stimuli.

models except that the latter are trained on words. The
two components are trained by minimizing self-supervised
objective functions on the same chunk of data. In other
words, the model learns from the raw speech only, without
any human annotation intervening in the loop. It thus obeys
a critical constraint for modeling infant language development.
Children are never explicitly given linguistic knowledge, so
neither should computational models. Once trained, a model
constitutes a simulation of an infant exposed to a particular
language for a given amount of exposure.

We measure our learners’ language outcomes at two lin-
guistic levels: the phonetic level (sounds) and the lexical level
(words), drawing inspiration from psycholinguistic studies (see
Section A.3). At the phonetic level, we simulate an ABX
auditory discrimination task using phonetic contrasts, e.g. /I/
versus /E/as in “bit” versus “bet”. At the lexical level, we
simulate a spot-the-word task: the model is asked to identify
which of two audio stimuli (e.g., “brick” and “blick”) is a word
(the former), and which is a pseudo-word (the latter). For each
trained model and each target language, we obtain a phonetic
and a lexical score, such that 100% and 50% indicate perfect
and chance-level accuracy, respectively. We compute the av-
erage phonetic and lexical scores in the native condition (the
English model evaluated on English, and the French model
evaluated on French) and the non-native condition (English
model on French, French model on English). Contrary to hu-
mans, machines can be presented with thousands of trials for
a given stimulus type (words or phonetic contrasts), allowing
us to extract robust measures of learning outcomes.

The comparison between native and non-native scores al-
lows us to identify what our model has learned due to exposure
to its native language (as opposed to exposure to another lan-
guage). In other words, the non-native model acts as a control
for the native model. By assessing our models’ language ca-
pabilities as a function of the quantity of speech they have

been exposed to, we draw developmental trajectories and ask
whether or not learning outcomes exhibited by our model
share similarities with infant language development. Finally,
we supplement these two tasks with in-depth analysis of the
representations learned by the system.

1. Experiment 1 : Can statistical learning bootstrap
both phonetic and lexical learning?

The objective of our first experiment is to investigate whether
our model demonstrates phonetic and lexical learning outcomes
and whether such learning occurs gradually and concurrently,
similar to how it does in infants, as aligned with the primary
question presented in the introduction.

A. Material and Methods. In this section, we provide a more
comprehensive description of the model’s implementation, in-
cluding details on the input data, learner design and outcome
measures.

A.1. Training sets. We used 10,000 hours of English audiobooks
from the Librivox platform (30) and 10,000 hours of French
audiobooks from litteratureaudio (31). We constructed 64
twin chunks of 50 hours of speech (3200 hours total) made of
entire book chapters in each language, such that the number
of speakers would be as matched as possible across the two
languages. To achieve this, we applied a stochastic sampling
algorithm that matches across English and French: 1) the
cumulated duration, 2) the number of speakers per chunk
of 50h, and 3) the number of chunks per speaker. We then
randomly aggregated the 64 chunks of 50 hours two by two
to obtain 32 chunks of 100, until we obtained one large 3200h
chunk in each language. Table 1 provides further statistics that
demonstrate the matching between the English and French
training sets.

56 Chapter 2 Modeling language acquisition from audiobooks



Table 1. Statistics for the French and English training sets varying in
quantity of speech. Average number of speakers per training set,
average quantity of speech for the least talkative and the most
talkative speaker per training set.

Training French English
sets N min (h) max (h) N min (h) max (h)
64x50h 9.7 0.33 16.96 9.7 0.75 15.84
32x100h 17.0 0.19 24.11 17.3 0.55 20.81
16x200h 28.7 0.14 35.61 29.6 0.41 29.90
8x400h 46.9 0.06 58.45 49.1 0.32 45.22
4x800h 73.7 0.05 94.84 74.7 0.23 75.43
2x1600h 107.0 0.04 187.89 108.5 0.19 133.75
1x3200h 147.0 0.01 334.17 147.0 0.17 267.50

A.2. Learner design. We describe below our proposed model
learning speech representations from the raw waveform (26).
The learner is composed of two components: 1) the Acous-
tic Model that learns discretized representations of the the
raw waveform, and 2) the Language Model that takes the
discretized representation as input and returns a probability
distribution over the set of discrete units.

The acoustic model. It consists of a Contrastive Predictive
Coding (CPC) algorithm (27, 32). The key idea behind CPC
is to predict the near future of a sequence given its past
context (see Appendix for more details). The learner is given
an example that is drawn from the near future up to 120
ms (called positive example), and multiple examples that are
not drawn from the near future (called negative examples).
Given the past context of a sequence, the learner is asked
to maximize the categorical cross-entropy of classifying the
positive sample correctly (see Appendix 1.1 for more details).
The continuous context-dependent representations output by
CPC are then fed to a simple K-means clustering algorithm
that returns a discrete representation of the audio.

The language model. The language model takes as input the
discrete representation of the audio file returned by the acoustic
model. It is trained to predict the next discrete unit via a
cross-entropy loss function (see Appendix 1). At test time, the
model is simply used to produce a probability of a stimulus
S = q1, q2, ..., qT by applying the following formula:

P (q1, ..., qT ) = − 1
T

T∑

t=1

log p(qt | q1, ..., qt−1)

Based on this probability, it becomes possible to simulate a
preference task between two stimuli. A stimulus A is preferred
over B if its probability, as estimated by the language model,
is higher.

A.3. Outcomes measures. Phonetic evaluation: the machine
ABX sound discrimination task
General principle. The ABX sound discrimination task was
first proposed by (33) to offer a way to evaluate models’ pho-
netic discrimination capabilities in a setup comparable to how
humans are evaluated. The task consists of generating a wide
range of triplets of sounds in the format A, B and X, with
A and X corresponding to different variations of the same
triphone (’bop’) and B to another triphone where the central
phone changes (’bap’). Distances between A and X, and B and
X are then computed using Dynamic Time Warping (DTW)
based on a frame-to-frame cosine distance. A score of 1 is given

if d(A, X) < d(B, X), otherwise the score is 0. An average
score is finally computed over all possible triplets.

The ABX task can be used on any type of speech represen-
tation, and has already proven robust with the CPC+K-means
architecture presented here (26). In this paper, we use the
discrete representations output from the K-means algorithm
to compute the ABX score.
Materials. The triplets are generated over carefully tailored
English and French speech test sets, which are subsets of the
CommonVoice dataset (34). These test sets, already presented
in (35) and (28), consist of 10 hours of read speech balanced
between 24 speakers (12 males and 12 females). All utterances
from the English and French test sets are tagged as "US accent"
and "France accent" respectively in the original CommonVoice
dataset. The phone-level alignment was obtained by aligning
the audio stream with its transcript using Kaldi recipes (36),
eventually allowing us to generate triplets for the ABX task.
The ensuing phonetic inventory in International Phonetic Al-
phabet (IPA) standard for both languages is shown in Table
S1.

Lexical evaluation: the spot-the-word task
General principle. The evaluation of lexical knowledge in a
recurrent neural network was first proposed in (37) using the
spot-the-word task. It consists of presenting the network with
a minimal pair of word and non-word (e.g., ’brick’ versus
’blick’) and evaluating whether the probability given by the
network to the word is higher or lower than the probability
given to the non-word, yielding an accuracy score, which was
averaged across all of the pairs in the test set.
Materials. The pairs are constructed using the Wuggy toolbox
(38), which generates lists of nonwords matched for syllabic
and phonotactic structure with a given list of words. To build
our test set, we first selected the list of words present in our
environments and constructed for each word a set of associated
non-words using Wuggy and pronunciation dictionaries for
French and English (39). We then reduced this list to a single
non-word by applying a filter maximizing the frequency of
unigrams and bigrams of phonemes between the words and
the non words. We then synthesized the words and non-words
using the Google text-to-speech API (40) in 4 voices (2 males,
2 females) in each language.

The resulting list of word/non-word pairs was further sorted
into frequency bands by intersecting them with the different
environments. The highest frequency band was constructed
by selecting the words that appeared at least once in each of
the 64 50-hours environments. The second highest frequency
band was made of words that appeared at least once in each of
the 32 100h environments and that were not in the preceding
list, and so-forth until we had the corresponding 7 frequency
bands. In Figure 2, we only displayed the results of the highest
frequency bands. The results for each frequency band can be
found in Supplementary Figure S5.

B. Results and discussion. Panels (a) and (b) of Figure 2
show the scores obtained on the phonetic and lexical tasks,
for the native and the non-native learners, as a function of
input quantity. Results indicate that native models trained
on 3,200 hours of speech succeed in discriminating sounds
(81.64% phonetic score) and, to a lesser extent, recognize the
auditory form of words (62.98% lexical score).
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Fig. 2. Gradual and parallel learning across the phonetic and the lexical levels. a) Phonetic score, in terms of ABX accuracy, obtained by the discrete representations for
native and non-native input. b) Lexical score, in terms of accuracy on the spot-the-word task, on the high frequency words for native and non-native input. For a) and b),
two-way ANOVAs with factors nativeness and training language were carried out for each quantity of speech. Significance scores indicate whether the native models are better
than the non-native ones. c) Correlation between the phonetic and lexical scores obtained across individual native models trained for 50h, 100h and 200h in English and French.
R is the Pearson correlation coefficient. Significance levels: na: not applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001

The developmental aspect of STELA also allows us to as-
sess the evolution of the learning trajectories. In the native
condition, both phonetic and lexical scores increase gradually
as a function of quantity of speech. Phonetic and lexical scores
obtained by the native model are systematically higher than
those obtained by the non-native model. This difference in-
creases with input quantity, reaching a relative difference of 5%
for the phonetic score, and 18.97% for the lexical score between
our native and non-native learners trained on 3,200 hours of
speech. Using two-way ANOVAs with factors nativeness and
training language, we found that native scores were signifi-
cantly higher than non-native scores for as little as 50 hours
of speech (F(1, 252) = 18.95, p<.001 for the phonetic score,
F(1, 252) = 15.81, p<.0001 for the lexical score). Significance
tests on 1,600 and 3,200 hours of speech are not available due
to the low number of models. To summarize, the proposed
algorithm learns key aspects of its native language at both the
phonetic and the lexical levels in a gradual and simultaneous
fashion, consistently with what has been observed in young
infants (7, 41–43).

The phonetic score obtained by the non-native model im-
proves with input quantity (as previously noticed in (24)).
This developmental pattern might seem to run counter to
experiments that report a loss in non-native sound discrimina-
tion in infants (2). However, our setup differs from the usual
infants experiments, as we systematically average performance
over all possible phonetic contrasts in the present study (see
Supplementary Table S1 for the list of evaluated phonemes,
and Supplementary Section 4 for similar comments on the non-

native lexical score). In infant studies, the non-native sound
discrimination loss was documented only for a small number
of carefully selected phonetic contrasts which are known to
be difficult for the non-native language tested (such as the
“r” versus “l” as in /rock/ versus /lock/ in Japanese infants ).
Besides, we know that many non-native contrasts map onto
native ones (44), which would explain the phonetic learning
even in the non-native condition. For instance, interdental
fricatives can map from one language to the other (/s/ and
/T/ in English map to /s/ and /z/ in French). The increase
in phonetic score by the non-native model is an interesting
observation that could be tested in infants. On the other hand,
this non-native learning is not observed in the lexical task.
This was expected as, contrary to the phonetic task, there is
no overlap between auditory word forms in the two languages.

Further evidence for lexical learning in the native condition
is provided by an additional analysis (Supplementary Section 7)
showing that the higher the frequency of the evaluated words,
the higher the lexical score obtained by the native model. This
frequency effect has been widely documented in young infants
and has been argued to be an important requirement for any
successful account of language acquisition (45). Investigation
of a large-scale study of human reaction times in auditory
lexical decision (deciding whether a word exists) revealed that
word probabilities computed by the native model correlate with
linguistic factors shown to influence human lexical decision
times (such as the duration, the frequency and the number of
phonological neighbors of the word; see Supplementary Section
8). All in all, we found evidence for learning at the phonetic
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and lexical levels using an algorithm exclusively based on
statistical learning.

Two models exposed to the same quantity of speech can
perform differently on the phonetic and lexical tasks. This is
due to: 1) the training set itself that may constitute a more
or less adequate language experience; and 2) the randomness
in the weights’ initialization and in the way data is presented,
which may advantage or disadvantage the model. With this in
mind, we can attempt to characterize the relationship between
phonetic and lexical outcomes obtained by our models. Panel
(c) of Figure 2 shows significant positive correlations between
the scores obtained on the phonetic and lexical tasks, respec-
tively, across models trained on 50h, 100h, or 200h of speech
(there were fewer than 8 models trained on larger quantities of
speech, not enough to compute meaningful correlations). This
result indicates that models that are better at discriminating
native sounds are also better at solving the spot-the-word task.
This is compatible with infant studies suggesting a positive
correlation between native discrimination and vocabulary size
at 11 months (46, 47). Similarly, multiple longitudinal studies
show that early sound discrimination capabilities predict later
language development (48–50). Further work could assess
specifically whether there exists a positive correlation between
native discrimination and auditory word form recognition.

All the analyses presented in this section can also be found
separately across the English and the French model in Supple-
mentary Sections 4 and 5.

2. Experiment 2 : Are linguistic categories required?

In the previous Experiment, we have shown that our models
improve in both lexical and phonetic tasks, more so for native
than non-native tests, which parallels findings with human
infants. In an attempt to better understand the nature of the
learned representations, we dedicate the current section to a
deeper analysis of how similar these representations are to
linguistic categories.

A. Methods. Additional analyses are carried out to compare
the model’s representations to linguistic categories. Linguistic
categories are analyzed at two levels: at the acoustic model for
the phonetic categories (phone class/sonority, place of articu-
lation, and voicing) and at the language model for the lexical
categories (broad function vs. content word differentiation,
and content words’ part of speech). For these analyses, the
same English and French test sets as presented in Section A.3
are used, consisting in speech-to-phones and speech-to-words
alignments.

For each category, a qualitative and quantitative analysis
is run. The qualitative analysis consists of a 2D visualiza-
tion of the output speech representations from the model
trained on most data (3200h), colored in terms of their lin-
guistic category. We extracted the output acoustic (language)
model representation of every test sentence in the language the
3200h model was trained on (the representations are therefore
context-dependent). We then extracted the representation for
every phone (word) and used a mean-pooling function to ob-
tain a fixed-dimension representation for each of these phones
(words). We applied a t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) algorithm to reduce the representations to
2 dimensions on a subset of the data (N=6,000). Finally, we
plotted the resulting dimensions and color-coded the data

points based on their target characteristic category (phone
class / place of articulation / voicing / part of speech).

The second, quantitative, analysis focuses on the emergence
of linguistic categories as a function of input quantity. This
allows an understanding of whether the models’ speech rep-
resentations become closer to the linguistic categories when
trained on more data. To do so, we split the test set into
sub-training and sub-test sets. The sub-training set contains
models’ representations of all phonemes minus one phoneme.
The sub-test set contains models’ representations of the final
phoneme (the same is done at the lexical level with repre-
sentations of 50 word types per category chosen out of the
100 most frequent word types - the other 50 being used as a
development set - see below). A logistic regression model is
then trained for all sub-training set representations, using the
desired linguistic categories as targets, before being tested on
the sub-test representations. This process is done iteratively
with all possible phonemes (word type) being part of the test
set, using Leave-One-Out cross-validation. This allows us to
retrieve an average classification error for the model on the
specified information. This is done on all models of all different
training sizes, allowing us to draw developmental curves of
these classification errors. The chance classification error and
error calculated on raw MFCCs were also computed. Finally,
we check the significance of the developmental curve’s slope
(correlation between classification score and quantity of input)
using Spearman’s rank correlation.

For the phonetic analyses, representations were extracted
from the last hidden layer of the CPC model (these are the
same representations used for the ABX task). We use all
phones for the ’sonority’ analyses, however we only keep con-
sonants for the ’place of articulation’ and ’voicing’ categories,
as vowels are not relevant here∗. Regarding the lexical analy-
ses, we chose the hidden layer yielding the best classification
error scores on the 3200 hours model, using a development set
also formed of 50 word types per category sampled out of the
100 most frequent word types per category. The best hidden
layer was the third (last) for both the English and French
models (logistic regression scores on all layers are available in
Supplementary Table S2).

B. Results and discussion.

B.1. The emergence of phonetic categories. Although our model
works with 10-ms frames, the Acoustic Model often assigns
the same discrete unit to multiple successive frames. Do these
duplicated discrete units share commonalities with phonemes,
in terms of duration and perplexity? Our analysis reveals both
that these units are much shorter than actual phonemes (see
Figure 1), and that a same unit can encode multiple phonemes
(see Supplementary Section 10). These conclusions mirror
results with a different acoustic model found in (24). We also
found that this pattern does not change with the amount of
training data. If anything, the learned units become shorter
as the amount of data increases (top graphs of panels (b)
and (d) of Supplementary Figure S8). At the same time, we
observe an opposite trend for the number of units associated
to each phoneme: the unit-to-phone perplexity decreases with
input quantity. This indicates that the more speech the model
receives, the more fine-grained the learned discrete units are.

∗We also discard approximants from the place and voicing analyses, as well as the English h and
the French K, as they are alone with their place of articulation label.
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Fig. 3. Emergence of latent linguistic categories at the phonetic level for the
English models. Left: tSNEs of the continuous representations of the acoustic
model (last layer) pooled within phones in a test set, according to sonority (a), place
(b) and voicing (c) for the 3200h English model. Right: developmental curves from
a leave-one-phoneme-type-out classification errors as a function of input quantity
(taking all 256 dimensions into account). Chance level and MFCCs performances are
also given. The asterisks indicate a significant correlation of classification error and
input quantity. na: not applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001

Although linguistic categories are not hard-coded and there-
fore do not exist per se in our model, could the learned rep-
resentations encode important linguistic information? Us-
ing a t-distributed stochastic neighbor embedding (t-SNE)
method on the representations learned by the English acoustic
model trained on 3,200h of speech, Figure 3 shows that the
learned acoustic representations encode multiple phonetic fea-
tures. Phone representations are organized along a continuum
spanning from sounds that are very sonorous (vowels) to not
sonorous (fricatives) (panel (a)). Similarly, consonant repre-
sentations are clustered by place of articulation (place where
the constriction and obstruction of air occur when producing
the consonant), and by voicing (whether or not produced with
vocal cord vibration) (panels (b) and (c)).

The projection of high-dimensional representations in 2D
spaces results in an important loss of information and consti-

tutes only a qualitative analysis of the learned representations.
Therefore, we use logistic regressions as probes to analyze quan-
titatively the information encoded within the models (51, 52).
We train a linear classifier on top of the continuous acoustic
features to measure the extent to which previously studied
phonetic features (sonority, place of articulation, and voicing)
are present in the learned representations (Figure 4). We
compare the classification scores of our probes with those ob-
tained both by a random linear classifier (representing chance
level, in green) and by one trained with mel-frequency cepstral
coefficients (MFCCs, representing acoustic representations, in
blue). Results indicate that sonority, place of articulation,
and voicing are encoded in the learned representations even
by the model trained on the smallest quantity of input (50h)
of English speech, since all scores are better than both the
random baseline in green and the acoustic representations in
blue. Classification errors on sonority and place of articu-
lation improve with data quantity, showing a positive effect
of exposure. This does not hold for voicing, for which the
linear classifier obtains a high classification score. Equivalent
analyses on the French model and further details can be found
in Supplementary Section 6.

Results presented in this section show that, although the
learned representations are too fine-grained to correspond to
phonetic categories as defined by linguists, they nonetheless
contain information that encodes critical phonetic features. In
addition, our study found that for two of the three phonetic
features we examined, such a perceptual organization emerges
in a gradual fashion, with a positive effect of input quantity.

B.2. The emergence of lexical and grammatical categories. Next, we
look at whether lexical and grammatical information is present
in the representations learned by the language models. We
follow the same procedure as above and analyze word represen-
tations in a qualitative way using t-SNE and in a quantitative
way using linear classifiers. In particular, we probe two dimen-
sions: 1) the distinction between function and content words;
and 2) part-of-speech categories among content words (nouns,
verbs, adjectives).

Experimental studies suggest that infants know at least
some of the function words of their native language around
one year of age (53), and that they use this information to
infer part-of-speech categories among content words in their
second year of life (54, 55). Mainstream theories like prosodic
bootstrapping hold that both the distinction between function
and content words, and the part-of-speech categories among
content words are crucial cues in early language acquisition,
particularly in lexical segmentation and syntactic parsing (56).

A 2D t-SNE projection of the word-level representations
learned by the language model does not reveal a clear sepa-
ration between function and content words (left of panel (a),
Fig. 4), although some regions of the space seem specific to
each grammatical class. The same conclusion can be drawn
when coloring content word representations according to their
part of speech categories (left of panel (b), Fig. 4).

However, it is not because t-SNE does not exhibit a clear
separation between linguistic categories that the information
is not present in the learned representations (as mentioned
in the previous section, t-SNE leads to a loss of information).
As a matter of fact, linear probing on the learned represen-
tations suggests that linguistic information is indeed present.
Specifically, it is possible both to classify whether a word is a
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Fig. 4. Emergence of latent linguistic categories at the word level. Left: tSNEs of
the continuous representations of the language model (last layer) pooled over words
according to (a) function/content distinction and (b) part of speech for the 3200h
English model. Right: corresponding developmental curves of leave-one-word-out
classification error as a function of input quantity (taking all dimensions into account).
Chance level and MFCCs performances are also given. The asterisks indicate a
significant correlation of classification error and input quantity. na: not applicable, ns:
not significant, * p<.05, **, p<.001, *** p<.0001

function word or a content word (right of panel (a), Figure 4)
and to classify the part-of-speech categories of content words
(right of panel (b), Figure 4). Linear classifiers trained on
the learned representations of the language model are indeed
better than chance and better than the MFCC baseline on
both classification tasks. Importantly, accuracy increases when
the representations are learned on a larger quantity of data,
showing that categories become more linearly separable as
the quantity of speech increases, showing a positive effect of
exposure (p<.0001).

All in all, results in this section suggest that the learned
representations are somewhat structured by word categories.
This organization emerges in a gradual fashion, with a positive
effect of input quantity.

3. General Discussion

Whether statistical learning can account for infant early lan-
guage acquisition, despite plethora of experimental infant
studies on the topic (see (16) for a review), still remains an
open question (17, 57, 58). Besides studies carried out directly
on infants, some computational models showed the feasibility
of language acquisition in statistical learning, but these models
either only focused on a single aspect of language acquisition
(phone discrimination (24); word learning, (59)), or they made
strong assumptions on the input data (using processed signal
or text), making their plausibility as a model of infants ques-
tionable. Recent studies (24, 25) provided strong evidence

in favor of the statistical learning hypothesis for early pho-
netic learning. Can statistical learning account for higher-level
aspects of early language learning?

STELA constitutes the first proof of feasibility of statisti-
cal learning to account for early language acquisition at the
phonetic and lexical level. We further showed that phonetic
and lexical learning was possible without linguistic categories.
More generally, we proposed the first developmental psycholin-
guistic analysis of a state-of-the-art machine learning model.
In this section, we reflect on STELA key findings and limita-
tions.

Statistical learning is enough to bootstrap language learning In
our STELA simulation, we have shown for the first time that
a self-supervised learning model built within the scope of the
statistical learner hypothesis can reproduce developmental
patterns of gradual learning at both the phonetic and lexical
levels when provided with untranscribed, raw, clean speech
data. The model works by implementing a neuro-cognitively
motivated statistical learning mechanism (predictive coding)
within a linguistically interpretable division of levels (discrete
acoustic vs. high-level abstract), trained on raw audio data.
We found that linguistic knowledge at these two levels (pho-
netic and lexical) emerges gradually and in parallel, as attested
by psycholinguistic-inspired tests and analyses. Such results
constitute strong proof of feasibility for the statistical learning
hypothesis, suggesting that such computations are sufficient
to bootstrap phonetic and lexical knowledge when provided
with raw, clean speech.

However, there are several limits that need to be addressed
before claiming that statistical learning alone can bootstrap the
entire linguistic system. First, we only analyzed two linguistic
levels: phonetic and lexical, the latter being restricted to word
forms. Bootstrapping language would require to show the
other linguistic levels that have been documented as emerging
in young children (prosody, syntax, semantics) also emerge
thanks to the same mechanisms. Specific tests inspired by
infant psycholinguistics probing these levels would need to be
developed and applied to the model†. Second, we used as input
audiobooks, which are much less noisy than the audio available
to infants. It is possible that additional mechanisms besides
statistical learning are needed to cope with such variability
(28).

Finally, infants are much more than simple statistical learn-
ers, and previous studies have found that cross-modal learning
and social interactions play a significant role in infants’ lan-
guage acquisition (58, 64–66). We want to point out that our
study does not question this, and that these other types of in-
put could well be critical in the development process. Instead,
our proof of feasibility shows that relying only on a statistical
learning mechanism to start bootstrap language is possible.

Phonetic and lexical learning without linguistic categories The
seminal work carried out by Schatz et al. (24) suggested that
statistical learning can be used to reproduce developmental
patterns in phonetic learning without creating phoneme-like
units, therefore questioning the presence of such categories
in infants (see also (67)). Analyses carried out on the repre-
sentations learned by our model point in the same direction:

†Work in spoken language modeling (60–63) suggests that these levels can emerge from statistic
mechanisms applied to the raw speech, but such models typically require much more input data
than is available to infants and it remains to be seen that they can reproduce plausible developmen-
tal curves.
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the learned units do not correspond to the usual phonetic
categories. The discrete level itself (acoustic units) is not
linguistically interpretable and does not tend to become more
phoneme-like with more input data, but rather to correspond
to more fine-grained sub-phonetic units, mirroring Schatz’
results with a different model.

Examining the lexical level for the first time, we surprisingly
found a similar pattern: the learned representations do not
directly map to word-level categories such as part-of-speech.
Two main lessons can be drawn from these results: 1) sub-
phonetic units are sufficient to learn higher-level aspects of
language; and 2) word categories are not required to recognize
the auditory form of words. Thus, our work questions the
need for any linguistic categories, and not only phonetic ones,
in the early stages of language acquisition. Similarly, even
though we found evidence for the emergence of lexical and
grammatical information, this information does not seem to
be grounded into a segmentation of the input into word-like
chunks (see Supplementary Section 9).

Gradual and parallel learning in STELA Within the STELA
framework, we introduced a carefully designed developmen-
tal setup, which allows us to compute the effect of quantity
on phonetic and lexical learning, to generate their respective
developmental curves, and to compare them to experimental
results.

At a qualitative level, the developmental curves show a
gradual and parallel increase in both phonetic discrimination
and lexical preference. How can we account for such a pat-
tern? Our algorithm works by minimizing quantities called
loss functions. We use three such functions that are minimized
jointly. The acoustic model minimizes the prediction errors
over continuous acoustic representations (predictive coding)
and then discretize them using a compactness score (discretiza-
tion). The language model minimizes the prediction error over
the discrete units. The two prediction errors are minimized by
the stochastic gradient descent algorithm and the compactness
score by a variant of the expectation-maximization algorithm.
The gradual and parallel aspect of the results is due to the fact
that these three loss functions are optimized to lower values
as more data is presented (see Supplementary Figure S1).

Does statistical learning actually bootstrap early language acquisi-
tion? The core demonstration of our work consists in showing
that a statistical learning mechanism can exploit the informa-
tion present in the raw speech signal and reproduce patterns
of early stages of language acquisition, such as measured by
our psycholinguistically-inspired evaluation tasks. This shows
that infants could rely on statistical learning mechanisms to
bootstrap language acquisition, but it does not show that they
necessarily do.

In other words, while STELA is valuable in providing a
proof of feasibility of the statistical learning mechanism in
early language learning, it cannot at present be considered a
fully fledged model of the infant because of several limitations.
One limitation of the current implementation of STELA is
that while it provides a series of cross-sectional predictions (by
simulating infants of different ages), it does not allow for lon-
gitudinal studies: models are trained anew for every quantity
of input, and led to convergence every time. Implementing a
longitudinal framework would require larger datasets, with,
ideally, each training set representing a single child’s input, and

a modification of the learning algorithm to yield incremental
results for each increasing amount of input.

Regarding the model of the learning outcomes, although
heavily inspired by psycholinguistic experiments, it does not
directly simulate the experiments as they are run in a labora-
tory setting: preferential looking, high-amplitude sucking, etc.
These procedures have been designed to explore processes at
different stages of the infant’s speech perceptual development
and aim at eliciting specific behavioral responses from the
infant. In this regard, the machine evaluation tasks are far
simpler and directly interpretable in terms of: 1) distance
between sound representations for the phonetic evaluation;
2) prediction error of words and pseudo-words for the lexical
evaluation. The next challenge will likely consist in allowing
better comparison between infants’ language learning out-
comes and those obtained via our in-silico simulations, i.e.,
moving beyond qualitative comparison. The noise inherent to
infants’ behavioral responses might prevent us from doing that
in the near future, but a promising approach might consist in
comparing learning outcomes obtained by the machine against
large-scale cumulative empirical infant data.

Finally, the model of the environment adopted in the present
study used relatively well-articulated speech without back-
ground noise. As shown in (28), infants have the additional
task of separating speech from noise, which is not taken into
account in the present simulation. Once these limitations
are addressed, it may be possible to more directly compare
the predictions of STELA with actual infant’s outcomes, and
validate or invalidate it as a possible model for early language
acquisition.

4. Conclusion

Overall, this proof of feasibility shows that self-supervised
learning models are good a priori candidates to help us under-
stand trajectories in infant language development. Machine
learning solves deep puzzles in cognitive development and
provides quantitative models that make numerical predictions
as a function of the amount of input data. While this proof
of feasibility shows that phonetic and lexical bootstrapping
is possible using only statistical learning mechanisms, there
remain many challenges, including going further towards eco-
logical audio data and benchmarking against actual infant
experimental results. Even more challenging will be the issue
of closing the gap between computational models and the
actual cognitive learning processes used by infants: To what
extent do infants actually make use of statistical learning mech-
anisms during language acquisition? And what is the place
of other mechanisms (social learning, intrinsic motivation) in
the developmental pathway?

STELA offers the potential to simulate the entire language
acquisition process in the early years of life using a fully
implemented model that operates on real audio input. This
could generate a wealth of quantitative predictions that can be
compared to data on infants. By open sourcing the model, we
hope to inspire a shift towards a more quantitative approach
in infant research.
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Supplementary material
1. Proposed model

In this section, we described the proposed model which corre-
sponds to the low-budget baseline architecture from the zero
resource challenge 2021 (1).

A. Acoustic model.

A.1. Training objective. As originally proposed in (2), we used
a contrastive loss which forces the latent space to retain in-
formation that is useful to predict future samples. Precisely,
the input sequence of observations xt is mapped to a sequence
of latent representations through an encoder genc, such that
zt = genc(xt). Then, all z≤t are aggregated with an auto-
regressive model that produces a context-dependent latent
representation ct = gar(z≤t). Given the past context ct, a
predictor gpred is asked to predict future representations zt+k

for k ∈ {1, ...,K}. Given a set X = {x1, ..., xn} of N random
samples containing one positive sample from the true positive
distribution p(xt+k | ct) and N − 1 negative samples from
the proposal negative distribution p(xt+k), we optimize the
categorical cross-entropy loss of classifying the positive sample
correctly:

L = − 1
K

K∑

k=1

log




exp
(
gpred(ct)T zt+k

)
∑

xj∈X

exp (gpred(ct)T zj)




On top of the context-dependent representations ct, we
train a simple K-means algorithm to minimize the within-
cluster sum of squares:

L =
K∑

k=1

∑

ct,i∈Si

d(ct,i, µi)

where K is the number of clusters, Si is the set of points
belonging to the ith cluster for i ∈ [1..K], µi is the centroid of
points in Si, d is a distance function defined on the context-
dependent representations ct.

A.2. Implementation details. As proposed in (3), the encoder genc

consists of a 5-layer convolutional neural network with kernel
sizes [10, 8, 4, 4, 4] and strides [5, 4, 2, 2, 2] that returns a 256-
dimensional vector every 10 milliseconds. The auto-regressive
model gar is a 2-layer long short-term memory network of
dimension 256. The model is asked to predict up to K = 12
time steps in the future (which is equivalent to 120 ms). The
predictor gpred is a single multi-head transformer layer with
K = 12 heads, each predicting at time step k ∈ {1, ..., 12}.
Negative samples are drawn from sequences that are temporally
close to the sequence the positive sample are drawn from. More
precisely, creating a batch consists of selecting 64 successive
sequences in the case of the domain-general learner (or 64
successive sequences that have been pronounced by the same
speaker for the domain-specific learner). For a current sequence
seqi, negative samples are taken from all other sequences seqj ,
with j 6= i. All models have been trained on 8 GPUs with
batches of 64 sequences, and each sequence has a duration of
1.28 seconds. All models are trained until convergence, and
the best epoch is selected according to validation loss (5% of
the original training set).

The K-means algorithm was trained with K = 50 using a
euclidean distance function. All K-means were trained online
with 200 sequences of 0.64 seconds using 1 GPU. All models
are trained until convergence. At inference time, the input
10ms-frame is assigned the cluster label whose centroid is the
closest.

B. Language model: LSTM.

B.1. Training objective. We train a language model on the dis-
cretized version of the audio files returned by the Acoustic
Model. The Language Model is trained to predict the next
unit of a sequence given its past context via a cross-entropy
loss function:

L = − 1
T

T∑

t=1

K∑

k=1

yt,k log(ŷt,k)

where T is the length of the input sequence, K is the number
of clusters, yt,k is the real cluster at time t, and ŷt,k is the
predicted probability at time-step t for cluster k.

B.2. Implementation details. The language model is a 3-layer
LSTM with an embedding layer of size 200, hidden layers
of size 1024 and a feed-forward output layer of size 200. We
used the implementation proposed in (4).

2. Analysis: the training objectives computed on the
evaluation set

A. Experimental protocol. We compute the training objectives
of the Acoustic model and the Language model on the set of
audio files used in the ABX discrimination task. Note that
these audio files have never been seen during training.

B. Results. Figure S1 shows the 3 training objectives averaged
across the native models (English evaluated on English, French
evaluated on French) for the Acoustic Model and the Language
Model. Results indicate that the higher the quantity of speech
in the training set, the lower the test losses. This indicates
a positive effect of exposure on the training objectives. This
result is achieved via gradient descent.

3. Analysis: Detailed phonetic and lexical scores

Detailed phonetic and lexical scores are presented in Figure
S2. Here, the scores are presented separately for each of the
English and French test set.

When tested on English, both phonetic and lexical results
follow the trends discussed in the main paper. When tested
on French, however, the phonetic scores yielded by the English
(non-native) models are closer to the scores yielded by the
French (native) models. For the lexical task, the French
(native) models do yield higher scores than the English (non-
native) models, but the difference between the two curves is
lesser than the one observed on the English test set.

Such results could indicate a potential asymmetry between
languages. Although it is difficult to provide precise evidence,
the fact that the English model tested on the French lexical
task (bottom right graph) gets progressively above chance
with input quantity might be explained by the high number
of cognates and loanwords in English.
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Yet, one should stay cautious about such comparisons. As
mentioned in the Results Section, such patterns can also be the
effect of the training set themselves. For example, (5) found
that the presence of non-speech in such models can deteriorate
their quality, and it is possible that such differences exist
between the French and English training sets (with one being
noisier than the other). This is why we recommend focusing
on results aggregated symmetrically over the native and non-
native conditions, as presented in the results. Still, further
work could focus on potential asymmetries between languages.

4. Analysis: Phonetic scores predict lexical scores

A. Experimental protocol. For this analysis, we consider mod-
els trained on 50h, 100h, or 200h of English or French speech.
We evaluate their phonetic score using the ABX discrimination
task, and their lexical score using the spot-the-work task, both
described in the Methods Section. Both scores are evaluated
in the native condition, i.e. on the training language. Lexical
scores are computed either on: 1) words belonging to the 64th
frequency band (high frequency words); 2) words belonging
to the 1st frequency band (low frequency words) or 3) as the
average accuracy across all frequency bands.

B. Results. Figure S3 shows the correlation between the pho-
netic score and the lexical score obtained by individual models
for different training set sizes (column-wise) and for a lexical
score computed on different frequency bands (row-wise). Re-
sults indicate that, in general, models that are less accurate
at discriminating native sounds, are less good in the spot-the-
word task. This effect seems more important on high frequency
words as shown by the 50h English model that exhibits a
Pearson’s R correlation coefficient of .52 (p<.0001) on high
frequency words, .36 (p<.05) across frequency bands, and .12
(non-significant) on low frequency words. While the 100-hours
and the 200-hours English models seem to exhibit a similar
pattern, models trained on French speech show more constant
correlation scores across the different frequency bands.

5. The emergence of latent linguistic structure

A. Layer-wise LOO classification scores for the lexical analy-
ses. Leave-One-Out classification scores for the function vs.
content (FC) and part-of-speech (POS) categories were com-
puted on a development set for all hidden layers of the 3200h
English and French models (see Methods). Results are pre-
sented in Table 2. Layer 3 yielded the best scores overall for
both the English and French models, and was subsequently
chosen to carry out the lexical probing analyses.

B. Results on the French models. In the Results Section, we
presented qualitative and quantitative analyses of the emer-
gence of phonetic and lexical categories in the English models.
The same analyses on the French models are presented in
Figure S4. Experimental methods are the same as described
in the Methods).

As for the English model, qualitative analyses carried out
on the French 3200h model suggest that this model clearly
encodes information about sonority, place and voicing, with the
categories being visually well separated (panel a). Moreover,
all of these three types of information get progressively better
encoded with more training data (panel b). Interestingly,

contrary to results on the English models, even the voicing
information present in the models gets significantly better.

Regarding the emergence of the lexical and proto-syntactic
categories, the patterns are the same as for the English models.
No clear categories of function vs content and Part of Speech
(POS) can be qualitatively distinguished from the t-SNE(s)
on the 3200h French model (panel c). Yet, probing analyses
carried out on all models show that this categorisation can be
better learnt with models trained on more data, suggesting that
this information gets gradually better encoded (panel d). The
main simplifying assumption regarding the word segmentation
problem in this work is that utterances are represented as
strings of phonemes. Any computational model comes with
its set of simplifying assumptions, which is fine. However, the
authors should discuss this in more detail. In particular, the
assumption mentioned above is problematic for two reasons.
First, this assumes that children can assign a single phoneme
to each phone they hear in an error-free manner. However,
evidence suggests that children segment some words way before
their perception have reached that of an adult

6. Analysis: the frequency effect

We evaluate the Language model using the spot-the-word task
described in the Methods. The lexical score obtained by the
native model is displayed in the diagonal of Figure S5 (panels
(a) and (d)). The anti-diagonal shows the lexical score obtained
by the non-native model (panels (c) and (d)). The number
of trials per frequency band is presented in Table 3. In the
native condition, results indicate that the higher the quantity
of speech, the higher the lexical score, showing a positive effect
of exposure. We only observe a slight increase in the non-
native condition, which suggests that the non-native model
is mostly unable to solve the lexical task. The positive effect
of exposure in the native condition seems more important on
high-frequency words than low-frequency words (native curves
are steeper as the frequency increases).

7. Analysis: the emergence of lexical factors

A. Dataset. We use the Massive Auditory Lexical Decision
(MALD) dataset (6) that contains reaction times of human
participants on the auditory lexical decision task. In this
psycholinguistic task the participant hears an audio stimuli
and has to classify it as either a word or a nonword. The
MALD contains reaction times for 26,793 words and 9592
nonwords. This sums up in reaction times for 227,179 auditory
lexical decisions from 231 unique monolingual English listeners.
In addition to reaction times, each stimuli is annotated for
various lexical descriptors: the duration of the stimuli, the
frequency of the stimuli, the number of phonological neighbors,
the phone index of the phonological uniqueness point of the
stimuli within the CMU-A dictionary (7), the mean phone-
level Levenshtein distance of the item from all entriers within
the CMU-A, etc. A detailed description of all descriptors can
be found in (6). All data on nonwords were discarded and
only words were included in the present analysis.

B. Experimental protocol. We compute the probability of each
word of the MALD dataset with the Language Model, and
look at which lexical factors are significant predictors of this
probability. We do so using a nested linear regression analysis.
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We first start with the predictor that leads to the highest R2.
Then, we add the second predictor that increases the R2 in the
most significant way (i.e., the selection criterion is the p-value
such as computed by a likelihood-ratio test). We do until the
addition of predictor does not yield a significant increase in
R2.

We run the same analysis with human reaction times and
then compare the lexical factors for both target: pseudo-
probabilities returned by the Language Model, and human
reaction times.

C. Results. Panel (a) of Figure S6 shows the various descrip-
tors (duration, frequency, phonological features, part-of-speech
categories, etc.) that are: 1) significant predictors of human
reaction times (in green); 2) significant predictors of the Lan-
guage Model probability (in red); 3) both 1) and 2) (intersec-
tion of green and red surfaces); or 4) not significant for both
human reactions times and pseudo-probabilities (in white).

Results indicate that the duration and the frequency of the
word are significant predictors of both the human reaction time
and the Language Model probability. PhonND which indicates
the number of phonological neighbors (defined as one phone
edit away) for the word within the CMU-A dictionary, and
PhonUP which indicates the phone index of the phonological
uniqueness point of the item within the CMU-A are also
significant predictors of both the human reaction time and
the Language Model probability. Significant predictors of the
Language Model probability capture 31% of its variance, while
significant predictors of the human reaction time capture 26%
of its variance.

Panel (b) of Figure S6 shows the R2 obtained by the nested
linear regression models as a function of quantity of speech in
the training set. The blue curve corresponds to a linear model
containing only Duration as a predictor, the orange curve both
Duration and PhonLev (the mean phone-level Levenshtein
distance to all entries within the CMU-A dictionary), etc.
Results indicate that the higher the quantity of speech in the
training set, the higher the R2 obtained by the different nested
models. In other words, as the Language Model receives more
speech, the abovementioned linguistic factors become more
predictive of the probability.

8. Analysis: the emergence of word boundaries

In this analysis, we look into whether the emerging grammati-
cal structure learned by our model is grounded on some notion
of words or morphemes as a cohesive sequence of phonemes.
In a seminal paper, Elman (8) presented a language model
trained on letters and discovered that the probability assigned
at each time step gradually increases inside words and sharply
decreases between words. This important result suggests that
the language model trained on letters implicitly performs word
segmentation, although the model is not provided with breaks.
In this section, we perform a similar analysis, with, contrary
to Elman, our language model that is trained from the raw
acoustic input.

A. Experimental Protocol. The analysis shows the probability
assigned by the language model as the sentence unfolds over
time. We consider either words or sentences from the Com-
mon Voice audio files that have also been used in the ABX
discrimination task, and that have never been seen during
training.

B. Results. Figure S7 present behaviors of the Language
Model probability as the audio unfolds over time. The model
considered was trained on 3200 hours of English speech.

Panel (a) shows probability curves as a function of length
rank (1st rank contains shortest words, 10th rank contains
longest words). Probability curves are linearly interpolated
so that each word belonging to the same length rank share
the same target length (median length for this rank). Results
show a length effect, with the probability increasing as the
word unfolds over time. Sharp decreases in the beginning and
the end of words can be noticed which seems to indicate that
the Language Model has a harder time predicting the next
token on word boundaries.

Panel (b) shows a similar analysis on sentences. Sentences
are sorted depending on their number of words, linearly in-
terpolated so that sentences with the same number of words
share the same target duration (median duration)), and aver-
aged. Results show a sharp increase in the probability at the
beginning of sentences, then a slight decrease as the sentence
unfolds over time. A sharp increase can be noticed at the
end of sentences, which indicates that the Language Model
is better at predicting the next token at the end of sentences
than at the beginning/middle.

Panel (c) shows the probability for the sentence "I can see
a smiling face in the clouds" (in grey) and the probability
estimated by averaging N=500 words of the same size (in red).
Results indicate a noisy behavior when considering a single
stimuli, despite having applying a moving average of 10 frames
(100 ms). However, when considering the average profile of the
probability, we notice that the probability slightly increases
inside words, and sharply decreases between words.

We draw on the same conclusion than Elman: the language
model seems sensitive to word boundaries, but only when
averaging across hundreds of inputs. The acoustic variabil-
ity infants are facing bring a much more difficult problem:
normalizing the input across the various acoustic dimensions
(speaker, speech rate, etc.)

9. Analysis: the learned units

A. Experimental protocol. Here, we compare the discrete units
learned by the K-means algorithm to phones as recognised
by an Automatic Speech Recognition (ASR) algorithm. To
compute the ASR phones, we use the MLS speech corpus (9),
which is an aggregation of read speech taken from the LibriVox
project (10). For each language, we select 100h of speech data.
We first train a phone bigram language model on each training
set using the SRILM toolkit (11). We then train for each
language a hybrid GMM-DNN phone recogniser based on a
time-delay neural network architecture (12), adapting the s5
librispeech recipe from the Kaldi speech recognition toolkit
(13). Finally, we infer ASR phones for our English and French
Common Voice test sets using the English and French newly
trained phone recognizers respectively∗.

A.1. Analyses. We can now compare how K-means units and
ASR phones compare to the gold phones from the test set. For
each model, we compute p2u (phone-to-unit), the perplexity
of gold phones given the ASR phones or the K-means units
distribution, and u2p (unit-to-phone), the perplexity of ASR

∗The phone accuracy yielded by the phone recognisers on the English and French test sets of 24.7
and 24.6% respectively.
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Table 1. Evaluated phonetic inventory in Metropolitan French and American English in International Phonetic Alphabet (IPA) standard.

Manner of articulation Metropolitan French American English
Consonants

Stops: p,b,t,d,k,g p,b,t,d,k,g
Nasals: m,n,ñ m,n,N
Fricatives: f,v,s,z,S,Z,K f,v,T,D,s,z,S,Z,h
Approximants: j,w,l j,ô,w,l
Affricates: Ã Ã,Ù

Vowels
Oral i,y,e,ø,œ,E,a,@,O,o,u i,I,E,æ,Ä,2,5,u,U,O,A
Nasal: Ã, Ẽ, œ̃,Õ
Diphtongs: aI,OI,aU,eI,oU

Table 2. Leave-One-Out Classification Scores (CS). Scores are computed on the English and French 3200h models using the dev sets for the
function vs content (FC) and part-of-speech (POS) categories classification tasks. Best average classification scores are indicated in bold.

Language
Hidden
layer

FC CS POS CS Average CS

English 1 57.07 46.15 51.61
English 2 58.26 50.57 54.41
English 3 60.42 55.89 58.16
French 1 61.37 39.21 50.29
French 2 62.91 47.41 55.16
French 3 66.34 45.43 55.89

Table 3. Number of trials in the spot-the-word task. The numbers have to be divided by 4 (number of synthesised voices) to get the number
of word/nonword pairs.

Frequency band

test language 1st (rare) 2nd 4th 8th 16th 32th 64th (frequent)

English 70,136 60,664 49,324 40,204 28,132 17,544 15,108
French 51,956 53,700 42,944 32,032 23,168 16,336 12,976

Acoustic model (CPC) Quantizer (K-means) Language model (LSTM)
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Quantity of speech (h) Quantity of speech (h) Quantity of speech (h)

Fig. S1. Graduality and parallelism of the training objectives. The three losses, computed on the test set, for the 2 components of our model: the acoustic model minimizes
the cross-entropy of classifying the positive sample correctly (contrastive predictive coding); and the within-cluster sum of squares (K-means); the language model minimizes
the cross-entropy of predicting the next token correctly.

68 Chapter 2 Modeling language acquisition from audiobooks



Quantity of speech (h) Quantity of speech (h)

Le
xi

ca
l s

co
re

 (%
)

P
ho

ne
tic

 s
co

re
 (%

)

English test French test

Fig. S2. Phonetic and lexical scores per training and test languages. Phonetic and lexical scores are presented on both English and French test sets, separately for each
trained language. Phonetic scores are presented on the top row and lexical scores on the bottom row. On the left column, we show scores calculated on the English test set,
and on the right column, scores calculated on the French test set. For the lexical scores, scores are first averaged over each frequency band then per training size. Error bars
for the phonetic and lexical scores correspond to the standard deviation between the averaged scores for all models of a same training size and language.
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Fig. S3. Phonetic scores predict lexical scores. Correlation between the phonetic and lexical scores across English (in blue) and French (in orange) models trained on 50h
(first column), 100h (second column) and 200h (third column) of speech. The lexical score is evaluated on the high frequency words (first row), the average across frequency
bands (second row), or low frequency words (third row). R is the Pearson correlation coefficient. Significance levels: na: not applicable, ns: not significant, * p<.05, **, p<.001,
*** p<.0001

70 Chapter 2 Modeling language acquisition from audiobooks



b) Emergence of place (consonants)

c) Emergence of voicing (consonants)
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Fig. S4. Emergence of latent linguistic structures at the phonetic level for the French models. Left: tSNEs of the continuous representations of the acoustic model (last
layer) pooled within phonetic tokens in a test set, according to sonority (a), place (b) and voicing (c) for the 3200h English model. with their corresponding developmental curves
of leave-one-phoneme-type-out classification errors as a function of input quantity (taking all 256 dimensions into account). Chance level and MFCCs performances are also
given. Right: tSNEs of the continuous representations of the language model (last layer) pooled over words tokens according to (d) function/content distinction and (e) part of
speech for the 3200h English model with their corresponding developmental curves of leave-one-word-out classification error as a function of input quantity (taking all 1024
dimensions into account). Chance level and MFCCs performances are also given. The asterisks indicate a significant correlation of classification error and input quantity. na:
not applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001
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Fig. S5. The frequency effect on the lexical task. Effects of input frequency and input quantity on phonetic and lexical tasks. Left: Right: Lexical scores obtained by English
(first column) and French (second column) models on the English (first row) and the French (second row) lexical test. Panels (a) and (d) on the diagonal show lexical scores
obtained by native models. Panels (b) and (c) on the anti-diagonal show lexical scores obtained by non-native models. Scores are given as functions quantity of speech
available in the training set, and class of frequency of evaluated words. Words in the 64th class of frequency are present at least one time in the 50-hours training sets, two
times in the 100 hours, four times in the 200 hours. Words belonging to the 32th class of frequency are present at least one time in the 100 hours training sets, 2 times in the
200 hours, etc. Error bars represent standard errors computed across mutually exclusive training sets whose number depends on the quantity of data available. The last data
point along the x-axis is computed on a single learner (trained with all available data), then the number of learners doubles with each step along the x-axis, as the quantity of
audio is divided by two.
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2.4 Conclusion

In this chapter, we reviewed some of the early developmental milestones in infants’
language acquisition and gave a bird’s eye view of the methodological landscape in
computational models of language acquisition. We presented our simulation, STELA,
an implementation of the statistical learning hypothesis at the core of learning
theories in developmental sciences (Saffran & Kirkham, 2018). Our simulation
constitutes evidence in favor of the statistical learning hypothesis to bootstrap early
phonetic and lexical learning.

To conclude, we highlight some limitations of our approach and reflect on potential
future work.

Quantitative comparison against empirical data. Where are we with respect to
the comparison against empirical data advocated in Section 2.2.3? In our simulation,
we evaluate how well the model’s language capabilities align with the available
empirical data in infants. However, this comparison remains limited to a qualitative
level, despite our evaluation framework providing quantitative measures. In other
words, we are not trying to predict or capture a certain proportion of variance of
infant empirical data. Although this limitation has little bearing on our conclusions,
it is important to understand the underlying reasons.

First, infant behavioral data are influenced by various factors in ways that are
not fully understood, often resulting in noisy measures. For example, behavioral
measures can be influenced by the experimental protocol used to elicit responses and
by other cognitive systems not considered in our simulation, like memory or attention
– see Ambridge and Rowland (2013) for relevant discussions. Second, infant data are
often sparse. For example, the majority of studies about speech sound discrimination
in infants only cover a few languages, and within those languages, only a few specific
contrasts, mostly consonantal, are examined (Tsuji & Cristia, 2014). It is important
to note that researchers are not at fault here, as the methodological difficulties in
experimenting with infants are particularly great. Nonetheless, these limitations
often result in behavioral studies focusing on statistically significant differences
between experimental conditions (typically across two age ranges), which are
are then used to draw conclusions on infants’ language capabilities. Due to the
aforementioned reasons, it remains difficult to make a quantitative comparison
with infant empirical data. However, keep an eye on Jing Liu’s ongoing work on
comparing models against parental questionnaires using the Child Development
Inventory (CDI, Ireton, 1992). Another promising direction proposed in Blandón
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et al. (2021) consists in comparing models against robust empirical data from
meta-analyses.

Although some of the limitations above also apply to adult empirical data, a quan-
titative comparison with adults appears to be within reach. This is evidenced by
numerous studies comparing the performance of humans and machines on the
ABX sound discrimination task Millet et al. (2019) and Millet and Dunbar (2020,
2022). While I am unaware of any studies performing a similar comparison on the
spot-the-word task, this has been done on the auditory lexical decision task, e.g.,
Brand et al. (2021) or Nenadić et al. (2022).

Evaluating language capabilities in their full complexity. In STELA, we adopt a
methodology inspired by experimental psycholinguistics to evaluate the language
capabilities of our learners using an ABX sound discrimination and a spot-the-word
task. While these tasks have the advantage of being theory-agnostic, as seen in
Section 2.2.3, they only measure a fragment of phonetic and lexical capabilities.

Regarding phonetic capabilities, other tasks could aim at evaluating the invariance
of the learned representations with respect to: 1) competing noises, by sampling
triphones across background noises; 2) speaker identity, by sampling triphones
across speakers as done in T. A. Nguyen et al. (2020); or 3) co-articulation effects,
by sampling triphones across phonetic contexts as done in Hallap et al. (2022).

Similar complexities arise to evaluate lexical capabilities. What does it mean to learn
a word? Is it the ability to differentiate it from pseudowords, as done by Ngon et al.
(2013)? Is it the capacity to segment it from continuous speech, as done by Jusczyk
and Aslin (1995)? Or is it the capacity to associate it with the correct referent,
as done by Bergelson and Swingley (2012)? These experiments conducted with
infant participants presumably all measure different aspects of lexical capabilities.
Similarly, it may be necessary to implement different tasks when assessing language
capabilities in the machine, especially if one wants to understand the interplay
between the various possible measures.

In the same light of thought, (early) language acquisition encompasses more than
simply acquiring knowledge about the phonetic and lexical aspects of one’s native
language, and language development is known to occur through a series of develop-
mental cascades with mutually interacting systems (Iverson, 2021; Guo et al., 2023).
Although science often proceeds by breaking down large problems into smaller ones,
the intricacies and co-dependencies inherent to human languages might well require
us to study the problem in its full complexity, as advocated in de Seyssel, Lavechin,
and Dupoux (2022). Our simulation, STELA, represents one step forward in this
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direction by addressing the joint problem of early phonetic and lexical learning, but
joint models are still sparse in the computational modeling literature – see Elsner
et al. (2012) for phonetic and lexical learning; Khorrami et al. (2023) for phonetic,
lexical, and semantic; or Abend et al. (2017) for syntax and semantic. Assessing
speech perception and production, from low-level phonetic to high-level pragmatic
aspects, will require the development of a range of psycholinguistic tasks tailored
for machines. Several proposals outlining such tasks are discussed in the following
chapter, Section 3.1.

Assumptions regarding the environment model. Every modeling study makes
different assumptions and compromises regarding the input material available to
the artificial learner. For instance, some use phonetically transcribed sentences
from children’s language environments (B. Jones et al., 2010; Cristia, Dupoux,
et al., 2019), abstracting away speech variability (e.g., pace, speaker variability, co-
articulation effects, etc.). Others, like us, use raw untranscribed sentences extracted
from audiobooks which has the undeniable advantage of being more realistic with
respect to speech variability but also deviate further from the actual language input
received by children. These considerations give rise to a fundamental question: How
can we be sure that our findings generalize to the actual learning problem solved by
infants?

Children’s language experiences are significantly more complex than an error-free
string of phonemes and greatly vary from audiobooks recorded under controlled
conditions. And there are numerous ways in which assumptions about the learning
environment may simplify the learning problem and fail to generalize to the real
world.

For instance, modeling the learning process over an error-free string of phonemes
is akin to assuming that: 1) infants have access to phone categories and their
boundaries, a hypothesis for which there is currently little evidence (Feldman et al.,
2021); and 2) perception occurs in an error-free manner, which is unlikely the case,
neither for infants nor adults.

While considering raw speech as input undoubtedly helps relax some of the as-
sumptions exposed here, it is not devoid of other simplifying assumptions. Using
long stretches of speech recorded under controlled conditions (e.g., in a studio)
is difficult to reconcile with what infants truly hear, namely, short utterances that
can be produced far from the child and distorted by various background noises.
Similarly, in real life, people do not speak in full and well-articulated sentences
as in audiobooks but may speak in ways that distort the speech signal: people
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may produce short turns that sometimes overlap across speakers, and they may
under-articulate, mumble, shout, whisper, sing, or laugh while speaking.

In the best-case scenario, using recordings collected under controlled conditions
to abstract away the difficult acoustic conditions that infants typically encounter
is akin to placing high computational and perceptual demands on their abilities to
normalize the input signal across irrelevant dimensions and discard non-linguistic
information. But in the worst case, it can lead us to consider a different learning
problem altogether – see Clerkin et al. (2017) for a thought-provoking study on how
word-referent statistics differ in real infant egocentric scenes from that of training
sets typically used in computational modeling studies.

The remainder of this manuscript is dedicated to revisiting the simplifying assump-
tions pertaining to the input, which are at the core of the modeling enterprise in
infant language acquisition studies. Namely, using child-worn microphones encoun-
tered in Chapter 1, we propose to feed our learning algorithms directly with what
infants hear.
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Modeling language
acquisition from
child-centered long-form
recordings

3

A key mission in science in general, and modeling studies in particular, is to un-
derstand the extent to which our findings generalize to the real world. Regarding
language acquisition, the conditions infants face differ widely from those typically
considered in most modeling studies.

Infants learn their native language through exposure to everyday language use,
which is filled with many peculiar phenomena (filled pauses, word repetition, specific
vocabulary, ungrammatical constructions, etc.). Furthermore, adults often engage in
unique forms of communication when interacting with young children. This type
of communication is referred to as child-directed speech, and it follows its own
rules with specific prosodic, phonological, lexical, and syntactic properties – see
Soderstrom (2007) for a review. Besides, infants face various listening conditions
that may facilitate or impede their speech perception. A large proportion of the
speech received by infants is not directly addressed to them but to other adults. And
even when speech is directed to infants, it can be laced with various background
noises, echoes, as well as the speech of other individuals.

How does the complexity of children’s real language environment impact language
acquisition? Do existing theories adequately account for what children truly hear?
Do our computational models exhibit the same learning outcomes when trained on
carefully curated or ecological data? These questions are at the core of the present
chapter.

Revisiting what might be the most critical simplifying assumption made by the
vast majority of computational modeling studies, and by ourselves in Chapter 2,
we propose a different approach: directly feeding computational models with the
auditory input received by infants. We argue that using ecologically-valid input data
allows us to tackle the learning problem in its full complexity and to derive more
realistic predictions regarding how the infants’ perception adapt to the language(s)
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they hear. Additionally, by feeding our artificial language learner with input that
faithfully represents the input children are exposed to, we can rule out effects that
would reflect the specificities of the input itself. Thus, any match or mismatch
between the artificial language learner and the human learner can be explained by
other aspects of the computational experiment: 1) the learning mechanism; 2) the
amount of data; or 3) the evaluation protocol.

We begin with a manifesto outlining how a research program centered around
modeling language acquisition from realistic data could proceed. Putting our words
into action, we present a simulation of early phonetic acquisition that illustrates the
importance of considering ecologically-valid input data when modeling language
acquisition. Next, we present an open-source benchmark to evaluate models trained
on realistic input. Our benchmark uses zero-shot probing tasks to evaluate models at
the lexical and syntactic levels and has been designed with the vocabulary typical of
children’s language experiences. To conclude, we present an ongoing project aimed
at gaining a deeper understanding of the type of information learned by statistical
learning algorithms trained on real-life audio recordings. Furthermore, we take
a step back to reflect on the extent to which child-centered long-form recordings
effectively capture the full sensory signal available to infants, suggesting potential
avenues for improving the recording devices.

3.1 Reverse engineering language acquisition

Lavechin, M., de Seyssel, M., Gautheron, L., Dupoux, E., Cristia, A. (2022)
Reverse engineering language acquisition with child-centered long-form
recordings. Annual Review of Linguistics

Motivation

As seen in Chapter 1, child-centered long-form recordings profoundly impacted the
field of language acquisition. These recordings collect the full range of commu-
nicative situations encompassing a child’s entire day, offering a uniquely ecological
view of the language input children are exposed to as well as their production.
Although long-forms are now commonly used in fieldwork, they are vanishingly rare
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in computational modeling studies. Building upon Dupoux (2018), we set recom-
mendations on how a research program centered on modeling language acquisition
using long-forms could proceed.

Paper summary

In Lavechin, de Seyssel, Gautheron, et al. (2022), we present how long-forms can
be used in a reverse engineering approach to the study of language acquisition. In
short, the reverse engineering approach involves designing scalable learning systems
fueled with realistic language experiences. By observing what the system learns and
how it develops, we can revise our algorithms and formulate hypotheses about how
infants learn language.

The envisioned approach brings one question: Why would one use a black box (the
deep learning algorithm) as a proxy to study another black box (the infant)? Indeed,
language development researchers are faced with studying an intricate cognitive
process whose inner workings and mechanisms still need to be understood. The
same could be said of artificial intelligence researchers studying large models whose
responses cannot be explained or interpreted, despite the model’s state being fully
known at any given time. In Lavechin, de Seyssel, Gautheron, et al. (2022), we argue
that artificial learners have two key advantages over their biological counterparts.
First, artificial learners are tireless. We can study their responses over thousands or
millions of stimuli in ways that would be impossible – and unethical – with infants.
This allows us to draw statistically robust conclusions on the artificial learner’s
language capabilities. Second, artificial learners are adaptable. We can tweak their
input data and/or learning mechanisms and observe how these modifications impact
the learning outcomes, running ablation studies that are not feasible with infants.

Combined with the recent advances in self-supervised algorithms that learn from raw
speech, these two advantages open up new modeling opportunities that may inspire
development researchers to run new infant studies and advance our understanding
of how infants acquire language. One way in which we can use the reverse engineer-
ing approach is by holding the learning mechanisms constant and controlling the
input to measure its downstream effects. Indeed, the literature on infant language
development points to the importance of input quantity (Brookman et al., 2020)
and quality (Weisleder & Fernald, 2013) and their potential influence on the later
language skills developed by children.

For instance, by controlling the quantity of input, we can simulate data deprivation
and/or proliferation experiments. Similarly, we can compare the input afforded to
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different infants or groups of infants. Instead of simply describing qualitative and
quantitative differences between the children or the groups, a reverse engineering
approach involves exposing the exact same artificial learner to long-form recordings
of these different groups, and then assess whether significant differences in learning
outcomes are observed. Likewise, certain research investigates the language input
received by children exposed to multiple languages using long-form recordings
(Orena et al., 2020). In addition to examining variations in the learning outcomes
following exposure to naturally occurring multilingual audio, we can also simulate
specific scenarios more accurately by creating bilingual and/or multilingual corpora.
This allows us to precisely control for the distribution of these languages during the
exposure phase and to use all languages to check for skills in each language during
the evaluation phase.

To make the most out of the reverse engineering approach, we advocate that lan-
guage learning simulations should closely emulate real-life situations. Besides using
ecological data to simulate the learning environment, we recommend the use of
machine-adapted psycholinguistic tasks to evaluate the learning outcomes developed
by the artificial learner, as argued in Section 2.2.3.
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Abstract

Language use in everyday life can be studied using lightweight, wear-
able recorders that collect long-form recordings—that is, audio (including
speech) over whole days. The hardware and software underlying this tech-
nique are increasingly accessible and inexpensive, and these data are revo-
lutionizing the language acquisition field. We first place this technique into
the broader context of the current ways of studying both the input being
received by children and children’s own language production, laying out the
main advantages and drawbacks of long-form recordings.We then go on to
argue that a unique advantage of long-form recordings is that they can fuel
realistic models of early language acquisition that use speech to represent
children’s input and/or to establish production benchmarks. To enable the
field to make the most of this unique empirical and conceptual contribution,
we outline what this reverse engineering approach from long-form record-
ings entails, why it is useful, and how to evaluate success.
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1. INTRODUCTION

Recent years have seen the rise of data collection through wearable, lightweight, unobtrusive de-
vices that collect audio for tens of hours at a time, allowing a uniquely naturalistic viewpoint of
language use as people go about their everyday activities (Oller et al. 2010, Sun et al. 2020,Wu et al.
2018). Although this technique could be used to investigate language use at any age (see Figure 1),
it has been extensively used with children; as a result, this body of work has important concep-
tual, methodological, and ethical contributions that are relevant across fields of linguistics. There
exist recent systematic overviews of this prior research (see, e.g., Ganek & Eriks-Brophy 2018).
Technical aspects of long-form recordings (including step-by-step how-tos and ethical recom-
mendations) have already been largely covered in prior work (see Casillas &Cristia 2019,Cychosz
et al. 2020; see also the Supplemental Appendix). Thus, after positioning the methodology in the
broader context of language acquisition research methods, we devote most of the article to laying
out the promise of the technique in the context of a reverse engineering approach to the study of
early language acquisition. Indeed, now that it is possible to capture the full complexity of child
language experiences, artificial language learners trained on realistic data can help us build better
theories about how humans develop their language perception and production skills.

2. POSITIONING LONG-FORM RECORDINGS IN A BROADER
METHODOLOGICAL LANDSCAPE

In typical long-form recordings, infants and young children wear a custom-made piece of cloth-
ing with a breast pocket, within which a recording device is inserted. This device typically records
over many hours. When the full waking day is represented, we may talk of daylong recordings.

a

b c

Accelerometer/
gyroscope

Heart rate

Smartwatch Smartphone Server

Audio

Figure 1

Examples of wearable recorders. (a) Smartwatch recording audio, heart rate, and movement. (b) Body camera
on a South Carolina police officer. (c) A small audio recorder and photo camera worn by a Mayan child in
Southern Mexico. Panel a adapted with permission from Liaqat et al. (2018, figure 1). Photo in panel b
provided by Ryan Johnson (CC BY-SA 2.0). Photo in panel c provided by Marisa Casillas.
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Table 1 Main strengths and weaknesses of the four key methods to study language input afforded to children as well
as children’s language production

Study method Context sampling Ecological validity Reusability Complexity
Long-form recordings High High High High
Third-party observations Medium–high Medium–high Low Low
Parental reporting Medium Low Low Low
Short audio/video recordings Variable Medium High Medium

In this review, however, we use the term long-form recordings to highlight the fact that some re-
searchers do not capture the whole waking day but only 8+ hours,whereas others may also capture
nighttime.

Language acquisition can be studied by a variety of means, each of which has unique strengths
and weaknesses (see Table 1). It is most reasonable to reflect on the place the use of long-form
recordings can have by comparing it with other methods to study (a) children’s production and
(b) the input afforded to children. By and large, productions and input can be studied jointly using
one of four methods: (a) long-form recordings, (b) long observations by third parties (third-party
observations, for short), (c) parental reporting, and (d) shorter audio/video recordings. Next, we
define each of these techniques and highlight the relative strengths and weaknesses by comparing
the methods according to the following criteria: context sampling (what proportion of the context
of the child experiences is sampled), ecological validity (to what extent the acquired data reflect
real characteristics of the situations), reusability (how reusable the acquired data are in light of
new hypotheses), and complexity (in analyzing the acquired data).

Long-form recordings rely on a sampling of the full range of a child’s experiences in one or
several days (and sometimes also during nights) and across all the contexts the child may be in (in
or out of the house). Among the four methods we discuss here, long-form recordings are therefore
closest to third-party observations, such as those that anthropologists employ for time allocation
research (Gross 1984) and those that psychologists use for some behavioral observations. For
instance, Roopnarine et al. (2005) observed families for 3 h at a time for four separate visits, each
time completing a checklist of observed behaviors every 30 s. Long-form recordings and third-
party observations have the relative advantage over other techniques that the child’s carers do
not have to do anything special (not even stay in the same room as the camera). Furthermore, the
novelty effect of having an observer should, if anything, decrease over the long observation period,
resulting in greater ecological validity for long observations and long-form recordings than the
other methods.

Nonetheless, long-form recordings present three advantages compared with third-party ob-
servations. First, the observer is less salient, which may result in even lower awareness and fewer
perturbations of the natural behavior of participants (high ecological validity). Second, setting
aside the potentially longer initial investment to learn the technique and obtain ethical approval,
long-form recordings require less effort and time from experts than third-party observations, par-
ticularly since the recorder can be mailed. In terms of reusability, recordings, unlike third-party
observations, can be consulted, reannotated, and reanalyzed, including to measure behaviors that
were not considered before collecting the data. That said, third-party observations have an im-
portant advantage over long-form recordings in that the observer has access to multimodal cues
and other information, allowing more nuanced interpretations using the full 360° context. More-
over, such third-party observations often rely on standardized checklists, which are then easy to
analyze (low complexity), while long-form recordings require the use of manual and/or automatic
annotation tools to extract information of interest (high complexity).
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Among parental reporting techniques, the method closest to long-form recording is proba-
bly the use of smartphone apps or a similar setup to collect reports from caregivers over a long
time period. Diaries that ask bilingual parents to report on how frequently they use one or an-
other language, at different moments of the day over a whole week, would fall under this category
(e.g., Orena et al. 2020). Although apps are not yet prevalent, they could be useful for sampling
behavior at different timescales. For instance, we could ask the caregiver to report who is talk-
ing to the child right now (through push notifications that pop up at different points in the day)
or to report which words the child says or understands at different child ages (as in Wordful;
http://wordfulapp.com). Like long-form recordings and third-party observations, such reports
could sample from the full range of experiences afforded to children. That said, there could be
reporting biases due to relying on caregiver report, lowering both context sampling and ecological
validity. As to the former, caregivers may be less able to respond to the app’s request about who
is talking to the child when they are engaging in hygiene or other hands-on routines. As to the
latter, caregivers will be keenly aware of being observed when reporting on their own behaviors
and may align their reporting with their beliefs instead of accurately representing what occurs—
for instance, a bilingual parent who consistently reports that they use each language 50% of the
time. Another limitation of parental reports is that, as with third-party observations, they cannot
be revisited to code other behaviors not foreseen in the original design (i.e., low reusability of
the method). Nonetheless, parental reports have a key relative advantage over long-form record-
ings and third-party observations in that caregivers can incorporate their background knowl-
edge about the family and the child in their interpretations. Similarly to third-party observations,
data acquired through parental reports are also easier to analyze than long-form recordings (low
complexity).

Finally, shorter audio/video recordings are probably themost commonway inwhich psycholin-
guists have described children’s input as well as their production. For example, Bergelson et al.
(2019) studied input and production in a longitudinal study on infants aged 6–18months by setting
up a video recorder on a tripod and having each infant wear two head-mounted video recorders.
Families were thus recorded at home for 1 h, after which the researchers returned to pick up the
equipment. Such shorter audio/video recordings share with long-form recordings the relative ad-
vantage that they can be revisited as new hypotheses arise (high reusability).One relative disadvan-
tage of short observations over all other methods discussed so far is that investigators must choose
whether they want to keep activity heterogeneity low, by asking all families to record during a spe-
cific activity (e.g., mealtime, play, hygiene), or whether they want to represent the full range of ex-
periences, in which case they still need to choose how to sample from each (e.g., whether to record
the same number and length of each, or whether to sample them at the frequency at which they
occur in a natural day). Such short observations also probably result in increased consciousness of
being observed,which potentially affects participants’ behavior and lowers ecological validity.This
also leads to a key advantage of short recordings over all the other methods, which is that the in-
vestigator can purposefully target an activity or setting that is most relevant to their purposes—for
instance, by providing a set of toys that leads to an increased use of a relatively rare structure (e.g.,
eliciting defining and nondefining relative clauses with a purpose-made book or deck of cards).
Although shorter audio/video recordings are less complex to analyze than long-form recordings,
working on audio and/or videos still requires the use of automatic or manual annotation.

Importantly, no method is perfect, but the various available methods are to a certain extent
mutually compatible, such that researchers can try to design data collection using one or more
in a complementary scheme. For example, Bergelson et al. (2019) collected one full day’s audio
recording in addition to the hourlong video recording, on separate days, and found some diverging
results (notably a larger quantity of speech in the hourlong videos than in the long-form audios)
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as well as considerable convergence (e.g., in terms of who spoke to the child). Additional mixed
methods can be devised to serve the researcher’s goals: An investigator could ask families to record
over two full days and could send in an observer for part of one of those days, or they could ask the
families to play an elicitation game and write down the time and day they did so. The investigator
could then extract the sections of the recording that contained these dual methods and analyze
them further, in order, for instance, to establish the extent to which behaviors are affected by the
presence of a third-party observer in the first example, or simply to transcribe and study the speech
occurring during the elicitation game in the second example.

Without denying the complementarity of the four methods, we believe that there are three
ways in which long-form recordings are unparalleled. First, long-form recordings are a promising
technique to collect naturalistic big data in various populations. Nielsen et al. (2017) documented
that developmental journals are heavily skewed toward publishing articles with data fromWEIRD
(Western, educated, industrialized, rich, and democratic) populations. This sampling bias can lead
behavioral scientists to wrongly identify culturally specific findings as universal traits. Although
researchers using systematic behavioral observations and short recordings have certainly made an
attempt to broaden the languages and cultures represented in the literature, both of these meth-
ods require so much investment and expertise that, in reality, it is mostly outsiders who document
language acquisition in such settings. Therefore, despite our best intentions, we may misrepre-
sent the language and culture, and furthermore, our research questions and output may not have
the optimal impact they can have on the population from which the participants are drawn. Ad-
mittedly, most current adopters of long-form recordings are from WEIRD societies (Cychosz
& Cristia 2022), but we hope that this method will be increasingly used by diverse researchers,
including members of underrepresented and underserved linguistic and cultural communities, so
that themainstream literature can better represent their viewpoints and interests, and so that these
populations stand a higher chance of benefiting from the research.

Second, long-form recordings may be ideally suited to address current needs for replicable
and reproducible research. To begin with, reproducibility is heightened by the use of audio and
video archiving and sharing repositories such as HomeBank (VanDam et al. 2016) and Databrary
(Simon et al. 2015), in the wake of the CHILDES tradition (MacWhinney 2000). What is more,
by capturing a maximally unbiased sample of the child’s language experience while also ensuring
maximal ecological validity, the use of long-form recordings should, overall, increase the proba-
bility of conceptual replications. Additionally, many of the analyses rely on automated methods
that are shared across many laboratories. As a result, it becomes easier to quantify (and possibly
fix) biases that may be present in measures extracted by these automatic tools than when relying
on human annotation.

Third, such recordings may be ideally suited to fostering a new direction of research within
the broader field of modeling early language acquisition—namely, a reverse engineering approach
to the study of infant language development.We dedicate the rest of this article to laying out this
new research direction.

3. REVERSE ENGINEERING LANGUAGE ACQUISITION

There is a long tradition of modeling in the context of language acquisition (e.g., MacWhinney
2005). A complete review would be beyond the scope of this article, but to illustrate the field of
possibilities we can cite Anderson (1975) for an example of a syntax-learningmodel or Brent (1996)
for a word-discovery model. While computational models of language acquisition traditionally
assumed that speech was represented as an error-free string of adult-like phonemes (which is
unlikely the case for infants), more recent studies address the problem of language learning from
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raw speech. This line of research can be illustrated with a study by Nguyen et al. (2020), the
last iteration of a challenge1 organized in the speech processing community that revolves around
spoken language modeling without annotation or text.

In view of the substantial progress of these past years in algorithms that can learn from raw
speech, there is a clear interest in a greater integration of artificial intelligence (AI) and language
development studies. Dupoux (2018) set down recommendations for such an enterprise, which we
will not repeat here. Like Dupoux, we assume that unsupervised language learning models should
be exposed to realistic data and that they should be evaluated on psycholinguistic benchmarks
to compare humans’ and machines’ language capabilities at various linguistic levels. In this new
research direction, child-centered long-form recordings play a crucial role by providing artificial
language learners with ecologically valid input data in the form of the speech by adults and other
children present in the audio recordings, which is then directly comparable to the input afforded
to children. Our proposal builds on and extends the work of Dupoux (2018) by spelling out how a
research program centered on long-form recordings could proceed, considering such recordings
as an information source on not only children’s input but also children’s production.

In Section 3.1, we describe the reverse engineering approach to the study of infant language
acquisition. In Section 3.2, we explain why language acquisition researchers should consider using
machines as a proxy to study infants.We then lay out how to study input effects in Section 3.3. Sec-
tion 3.4 presents our psycholinguistic-driven framework to measuring language skills of artificial
language learners. This benchmarking framework is based on behavioral correlates of language
learning observed in humans and allows us to compare the language skills of the artificial language
learner with those of the human.

3.1. What Does the Reverse Engineering Approach to the Study of First
Language Acquisition Include?

Since we are discussing reverse engineering in the context of long-form recordings, by and large
the experiences under discussion are unimodal, based only on speech, as the vast majority of long-
form recordings being gathered are audio only. That said, recent AI work begins to address the
problem of learning language from audiovisual exposure (Alishahi et al. 2021, Chrupała et al.
2017, Harwath et al. 2020), although admittedly these studies do not use realistic data. Using
long-form data to train these sighted artificial language learners would require using devices that
capture both what children hear and what they see (such a setup has been used in, e.g., Casillas
et al. 2020, 2021). Capturing child language experiences across multiple modalities would offer
us opportunities to compare audio-only models with audiovisual models and could help us better
understand the role of visual experiences during the language acquisition process. Importantly,
while audiovisual long-form recordings could be used, touch and smell cannot (yet?) be digitized,
particularly at the long-form scale, yet these senses can help in the language acquisition process
(Abu-Zhaya et al. 2017). This is a current limitation of the technique, and thus we discuss only
audio-based and video-based models in this review.

By and large, the models we discuss in this review are passive learners, in the sense that they
cannot affect the input data they receive.This aspect of themodelsmakes them somewhat different
from human children, who are able to explore and interact with their environment. For example,

1Challenges in the machine learning community are events during which participants (usually researchers,
including students) work on improving the performance of a baseline model on one or multiple tasks—from
audio classification (e.g., Schuller et al. 2019) to unsupervised language modeling (e.g., Nguyen et al. 2020).

394 Lavechin et al.

3.1 Reverse engineering language acquisition 87



if a learning human child formulates the hypothesis “Cats are those little hairy animals” and wants
to check whether this hypothesis is true, the child could interact with their environment to prove
or disprove the hypothesis, such as by pointing at the cat while waiting for a caregiver’s reaction.
This connects with the importance of embodiment in first language acquisition (Yu 2014) and of
the child’s role in shaping their environmental input (Tamis-LeMonda et al. 2018). Although the
artificial learner may benefit from the child’s interactions with their environment, if the two types
of learner are not at the same learning stage and/or have not formulated the same hypothesis,
ultimately the child will profit more from their own experiences than will an artificial learner who
is simply reexperiencing the human child’s experiences.

With those considerations in mind, the reverse engineering approach to the study of first lan-
guage acquisition via long-form recordings can be summarized as follows:

1. We design a computer program to have some learningmechanism(s) we believe are useful to
learn language (i.e., we control the mechanisms). Those are discussed in the current section.

2. We provide this programwith a controlled and realistic language experience (i.e.,we control
the input; see Section 3.3).

3. We observe what the system learns and how it develops (i.e., we observe the learning out-
comes;2 see Section 3.4).

Let us take the example in which our goal is to understand perceptual development. In such a
case, there is often a learning phase and an evaluation phase. The learning phase includes expos-
ing the artificial language learner to a naturalistic and controlled language experience (typically
represented by adult speech extracted from child-centered long-form recordings). Then comes
the evaluation phase, in which the attuned learner (i.e., the model postexposure) undergoes a bat-
tery of psycholinguistic tests.These psycholinguistic tests are conceptually related to experimental
protocols used in child studies to assess the language capabilities of infants (e.g., looking-while-
listening procedure, conditioned head turning). Behavioral patterns extracted from those tests can
then be compared with those observed in humans undergoing the experimental version of the psy-
cholinguistic tests.Figure 2 provides a diagram illustrating this version of the reverse engineering
approach.

Having described the approach, we can now discuss the benefits of using in silico modeling to
study infant language acquisition.

3.2. Insights that Artificial Language Learners Can Provide Us

Despite thousands of laboratory experiments that isolate learning mechanisms in babies, thou-
sands of hours of observations, and probably millions of hours of study of both bodies of work,
still little is known about the inner mechanisms that underlie human language development in the
wild, the causal role of the input afforded to the child, and the best explanation for the perception
and production outcomes exhibited over the course of acquisition. This is not truly our research
community’s fault. Language acquisition, like most cognitive processes, is essentially a black box
and can be studied only as such by language development researchers.

It is important to note that the term black box is also used in the AI community and can be
defined as the inability to predict an AI model’s decisions. Even though the state of the model is
fully known at any given time, this state is so complex that its inner processes and workings cannot
be fully understood.

2Note that we distinguish output (i.e., production) from outcome (i.e., consequences that could be visible in
production or perception).
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Figure 2

Outline of the reverse engineering approach for language acquisition. (a) First, we perform a language acquisition simulation by
applying learning mechanisms on a controlled and realistic language experience to derive an attuned artificial language learner. These
simulations can be used to check for the effect of variation in those language experiences (e.g., multilingual input, variation in
household size; see Section 3.3). (b) Second, we use behavioral benchmarking to evaluate learning: The attuned artificial language
learner undergoes a battery of psycholinguistic tasks. These tasks are conceptually related to the tasks that are used to study humans,
but they are adapted for the machine (see Section 3.4). Note that the psycholinguistic task can also contain a habituation phase that will
further modify the state of the attuned artificial language learner (hence the two-sided interaction between the two).

It therefore appears that language acquisition and AI researchers face a common challenge:
studying a black box. So one may wonder, Why would one use a black box as a proxy to study
another black box?

First, artificial language learners are tireless.We can study their responses over a large quantity
of stimuli in ways that would be impossible (or unethical) with infants. Observing behavioral pat-
terns in machines may inspire psycholinguists to run new human studies. Indeed, if a behavior of
interest is observed in machines but has never been documented in infants, then it may be worth
checking whether infants also exhibit this given behavior. Using thousands or millions of stimuli
allows us to generate robust predictions.

The second advantage of the AI black box over the infant’s is the adaptability of the former:
We can easily tweak an AI model’s input data as well as parameters of the learning mechanism(s).
Thus, we can observe consequences of the simulated language experience on the language skills
of the machine while keeping control over the learning mechanisms, and vice versa.

If there is a mismatch between the learning outcomes of an artificial language learner and the
human learner, then we can think of ways to make themachinemore human-like. In cases in which
we are using input that faithfully represents the input that children are exposed to, we can rule
out an issue with the input and thus infer that the mismatch might be due to other aspects of our
experiment: namely, (a) the learningmechanisms in themodel, (b) details of the experience presen-
tation (e.g., the quantity of data), or (c) the computational implementation of the psycholinguistic
tests used to measure learning outcomes.

In the opposite case, if a computer program yields outcomes similar to those of the infants when
provided with the same experience infants had, then we are faced with the tantalizing conclusion
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that we have found one viable model (probably among many others) of human behavior. Then,
based on the results of that viable model, we can suggest new testable predictions regarding how
infants’ language develops.

3.3. Controlling the Input to Measure Its Downstream Effects

In this section, we assume that we hold mechanisms constant, and we illustrate how the reverse
engineering approach can shed light on the causal role of the input, with the goal of measuring
learning outcomes through procedures described in Section 3.4.

One way in which we can use this approach is by comparing the input of different infants
or groups of infants. Some discussions of, for instance, group variation are based on the idea that
some childrenmay be afforded qualitatively (Brookman et al. 2020) or quantitatively (Weisleder &
Fernald 2013) different input. Instead of simply describing qualitative and quantitative differences
between the children or the groups, a reverse engineering approach would expose the exact same
artificial learner to long-form recordings of these different groups and then assess whether there
are substantial differences in learning outcomes.

In fact, one advantage of a reverse engineering approach is that we can go beyond attested
environments. Since we can control the quantity of data the artificial language learner is exposed
to, we can simulate data deprivation and/or proliferation experiments. We can also plot develop-
mental curves that show the evolution of the model’s language skills as a function of the quantity
of data it has had access to.

Similarly, some research studies the language input of children exposed to multiple languages
using long-form recordings (Orena et al. 2020). Along with checking for outcome differences
after exposure to naturally occurringmultilingual audio,we canmore precisely simulate additional
cases by creating bilingual and/or multilingual corpora. This allows us to precisely control for the
distribution of these languages during the exposure phase and to use all languages to check for
skills in each language during the evaluation phase.

The approach can be generalized to many other aspects of language exposure that are currently
hard to control and tease apart, although for some it may be harder to do so well. For instance,
we think it is technically possible to vary speaker distribution in terms of household size, number
of siblings, and gender distribution because we can start with recordings done in households with
only one adult caregiver and only one child and then mix them together to create families with
one to ten caregivers and one to ten “siblings,” since in the original setting we can trust that
the adult and child sections will have been correctly attributed to one adult and one other child,
respectively. Even so, the siblings in these simulated large families will be easier to tell apart than
siblings found in natural recordings of large families because they will not necessarily sound similar
to each other (since they are originally drawn from different families). Other dimensions may be
hard to create because the tools they rely on are not necessarily mature yet. For instance, varying
vocabulary size would require an accurate automatic speech-to-text model, which is beyond the
state of the art at present; varying the frequency of book readings would require automatically
extracting book-reading interactions, but there is no automatic tool to detect such interactions to
date. Nonetheless, and given the fast pace of AI research, it is useful to think about this feature of
in silico modeling in general terms.

3.4. Evaluating Language Skills of the Artificial Language Learner

Let us start by assuming that we want to check what was learned. In this case, one may be tempted
to ask, “Do models learn phonemes, nouns, and so forth?” This is akin to attempting to establish
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whether the model has a given linguistic representation. We see two problems with this option.
First, it is devilishly difficult to demonstrate that a representation is in place; doing so involves, for
instance, additional levels of agreement in terms of how to prove its presence (e.g., for phonemes,
see Jaeger 1980; for a general criticism on inferring mental entities, see Twaddell 1935). Second,
representations are precisely the area in which theories of language (acquisition) diverge in the
fiercest manner (e.g., Ambridge & Lieven 2015). Although some may disagree with us, we would
like to posit that psycholinguistic benchmarking tasks should be theory-agnostic. By not forcing
extra assumptions of representations on either the human or the machine learner, the findings
have a higher chance of being relevant to a broad range of theories.

A second definition of learning may be to ask about representations in terms of their neural
implementation. In the avenue of human–machine comparison, an approach that has interested
the AI and neuroscience communities involves comparing activation patterns of neural networks
with those of the human brain while being asked to perform a similar task (e.g., Yamins et al.
2014).While this approach promises interesting scientific insights about human brain information
processing, it also shows some limitations in the context of early language acquisition. First, data
acquisition devices that locate activity precisely in both time and space are very seldom used with
infants (but see, e.g., Bosseler et al. 2021). Second, these techniques require large sample sizes
for reproducible results even among adults (Turner et al. 2018), and given that measurements in
infancy are typically even noisier than those gathered in adulthood, we can infer that it is possible
that the body of literature on infant neuroimaging will require substantial accumulation of results
before we can employ it for our benchmarks.

Therefore, given the current theoretical andmethodological landscape,we propose a behavior-
oriented approach in which we study the behavior of infants in parallel to the behavior of
machines.3

To extract behavioral patterns for the machine, we additionally need to reflect on how numbers
returned by the machine can be related to the kinds of behaviors elicited and/or observed among
human learners. By numbers, we mean either the output representations4 of the input stimuli for
perception models or the vocalizations produced by production models.

With that in mind, we turn to the following question: What behaviors do infants and adults
exhibit through the course of language learning, and which could serve as benchmarks for artifi-
cial learners? We discuss these issues in two subsections, targeting perception (Section 3.4.1) and
production (Section 3.4.2).

3.4.1. Measuring perception. Much of the language acquisition literature has attempted to
look at perception, mainly through infants’ reactions to specific stimuli in clearly defined lab-
oratory tasks. This work suggests that much goes on in the child’s mind even before there are
obvious changes in production. In this section, we reflect on how long-form recordings paired
with computational modeling can help us understand the development of these markers.

3In this review, we are simplifying matters by not going into detail about the fact that, in reality, a perfectly
comparable artificial learner would develop not only language but also all of its other cognitive systems, which
would allow the influence of attention, memory, and other systems orthogonal to language to be accurately
represented in the model. In other words, this would entail not only modeling language development but
also modeling how the child approaches the psycholinguistic task. For relevant discussion, we refer readers to
Robinaugh et al. (2021).
4Representations learned and returned by the model should not be confused with linguistic representations.
Output representations returned by the machine are numbers describing and/or organizing the input that was
given to the model. By linguistic representations, we mean hypothesized mental units that represent elements
of language (e.g., phonemes, morphemes).
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As described in Section 3.1, there are two phases in the reverse engineering approach. The
first one involves exposing the artificial language learner to a controlled and realistic language ex-
perience extracted from long-form recordings, which can be selected to vary certain dimensions
parametrically, as explained in Section 3.3. As described in this section on perception, the second
phase is one of evaluation of perception skills. Since perception cannot be directly investigated in
either human or artificial agents, in this section we rely on behavior that is elicited in controlled
conditions. Thus, the AI learner is presented with stimuli like the ones submitted to children in
the laboratory, to elicit numbers that can be interpreted as behavioral perceptual patterns in the
artificial learner. In other words, we create a computational implementation of infant perceptual
benchmarks, to which the artificial language learner is submitted. In Table 2, we draw examples
mainly from studies on infants aged 0–12 months, but we trust that our reasoning can be general-
ized to perception tasks beyond 1 year of age. We want to highlight that this is not an exhaustive

Table 2 A sample of human behavioral correlates of language skills that have been reported in the literature along
with their computational implementation

Age (months) Task Data set Literature
Sound-only behaviors
Discriminate across rhythmically
distinct languages

0 Distance-based Bilingual set of stimuli Gasparini et al. 2021

Discriminate native and nonnative
consonants

6–8 Distance-based Phonetically aligned clean
speech

Werker & Tees 1984

Accept novel content words more
easily than novel function words

6 Few-shot learning +
probability-based

Jabberwocky sentences Shi et al. 2006

Prefer high over low phonotactics 9 Probability-based Made-up words varying in
phonotactics

Jusczyk et al. 1994

Prefer high- over low-frequency
content words

11 Probability-based Real words varying in
frequency

Jusczyk et al. 1994

Do not discriminate nonnative
consonants

12 Distance-based Phonetically aligned clean
speech

Jusczyk et al. 1994

Cross-modal behaviors
Treat words and monkey
vocalizations, but not beeps or
coughs, as possible labels

3 Few-shot learning +
distance-based

Images paired with words,
monkey vocalizations,
beeps, or coughs

Ferry et al. 2010

Treat words but not monkey
vocalizations as possible labels

6 Few-shot learning +
distance-based

Images paired with words or
monkey vocalizations

Ferry et al. 2010

Treat content but not function
words as possible labels

6 Few-shot learning +
distance-based

Images paired with function
words or content words

Hochmann et al. 2010

Know the meanings of many
common nouns

6–9 Distance-based Images paired with common
nouns

Bergelson & Swingley
2012

Few-shot learning of new
word–object pairings

9 Few-shot learning +
distance-based

Images paired with words Yeung & Werker 2009

Treat words with native but not
nonnative sounds as possible
labels

10 Few-shot learning +
distance-based

Images paired with first-
and second-language
words

May & Werker 2014

The Task column describes the task that is meant to be submitted to the artificial language learner. Distance-based tasks consist of computing the distance
between the output representations of the input stimuli. Probability-based tasks consist of computing the probability of the output representations. Few-
shot learning tasks involve a learning phase during which the model is given some examples. The Data Set column describes the test stimuli that need to be
gathered to submit the task of interest. Labels are audio stimuli consistently paired with a visual stimulus—for instance, a monkey vocalization systematically
followed by a fish picture. The Literature column suggests entry points in the psycholinguistic literature.
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list, and we would be delighted if other researchers created computational implementations of
other infant perceptual benchmarks.

The top section of Table 2, dedicated to sound-only behaviors, represents experiments where
the audio is key for eliciting infants’ responses, whereas the second half of the table shows cross-
modal behaviors where both audio and visual stimuli are used.

Test tasks may be of two types: distance-based and probability-based. Distance-based bench-
marks rely on computing the distance between different stimuli,whereas probability-based bench-
marks require the machine to compute the probability of each stimulus. We illustrate these con-
cepts with examples below.

Let us start with a distance-based example. Newborn humans can discriminate across rhyth-
mically distinct languages (Nazzi et al. 1998). One can measure a discriminability score in the
machine by submitting to it three audio stimuli, A, B, and X, such that A comes from a first lan-
guageL1,B comes from a second languageL2, andX comes fromL1 but is different fromA.Under
a distance function d, one may expect that d(A, X) < d(B, X) as A and X have been drawn from
the same language. While this might not be true for a given stimulus, repeating the procedure
across thousands of stimuli allows us to extract robust patterns in the artificial language learner.
In other words, we use here the computational implementation of the ABX discrimination task
used in psychology. An example of a computational study using this task can be found in the work
of de Seyssel & Dupoux (2020), who tested the language discrimination capabilities of an i-vector
model to assess the role of monolingual versus bilingual exposure, akin to studies on monolin-
gual and bilingual human infants. The same distance-based method can be used to benchmark
the machine’s phoneme discrimination capabilities. In this setup, A, B, and X are triphones with
A and B differing only in their center phone (/bet/ versus /bat/) and X being the same triphone
as A (but another occurrence). In the same way, one may expect that d(A, X) < d(B, X) as A and X
represent the same triphone. Phoneme discrimination capabilities have been evaluated on a Gaus-
sian mixture model by Schatz et al. (2021), who notably showed that a model exposed to Japanese
exhibits a lower discrimination score on the [ô] versus [l] contrast than does a model exposed to
American English. Incidentally, note that Schatz et al. (2021) concluded from their results that
the AI learner solves this task without phonemic representations per se, exemplifying one way in
which not making assumptions about representations may facilitate cross-pollination of findings
between developmental science and computational research.

Next, we turn to a probability-based example. At the age of 11 months, infants have been
shown to prefer high- over low-frequency content words (Carbajal et al. 2021). Checking that this
behavior is present in the machine would consist of submitting to it two stimuli, A and B, with A
drawn from high-frequency content words and B drawn from low-frequency content words. One
should observe that the probability the model returns for A is higher than the probability returned
for B, as the first one is supposed to be more frequent than the second one in the training set.

The same two benchmarking approaches (probability- and distance-based) can be adapted to a
cross-modal setting in which decisions need to be taken by integrating information from the au-
ditory and another (typically visual) modality. As for the visual modality, a task used to test infants’
comprehension of words and sentences that seems particularly easy to adapt for the machine is
the looking-while-listening task (Fernald et al. 2008). In this task, the child sits in front of a screen
that shows two images, only one of which corresponds to the audio the child is concomitantly pre-
sented with. During the computational implementation of this test, the machine would receive an
audio stimulus A1 (e.g., “nose”) and would be presented with two images, one of them represent-
ing the audio stimulus I1 (i.e., a picture of a nose) and the other one, I2, representing something
else (e.g., a picture of a mouth). The machine would then be asked to output the representations
of all three stimuli. To check if the machine was able to map the audio stimuli to the right image,
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we would consider a distance function d and check that d(A1, I1) < d(A1, I2) as A1 and I1 share the
same semantic content. Note that, alternatively, the joint probability distribution between a word
and an image might be used instead.

In Table 2, we highlight the fact that such a test phase can be preceded by a learning phase
during which themachine is presented with some examples.This phase is called few-shot learning;
few-shot means that only a small number of exposure instances are used before the evaluation. For
instance, these exposures can take the form of nonsense words in the audio-only setting or image–
word pairs in the cross-modal setting.

Finally, let us note that the audio stimulus does not have to be a real word. For instance, a fish
picture can be paired with a monkey vocalization, in which case we would evaluate the ability of
the machine to learn this new word–object pairing. Indeed, a sizable literature in developmen-
tal research investigates the (presumably innate) biases infants bring to word-learning tasks, and it
has been found that young infants exposed to words or monkey vocalizations systematically paired
with a visual category (e.g., dinosaurs) will generalize the “label” to a new exemplar of the same
visual category, whereas the same behavior is not observed when dinosaur pictures are systemat-
ically paired with beeps or coughs (for an overview of this line of research, see Vouloumanos &
Waxman 2014). To our knowledge, similar biases have not been investigated in artificial agents.

In sum, the probability- and distance-based evaluation paradigms are extremely powerful.They
have already been used in the ZeroSpeech 2021 challenge for computational implementations of
human psycholinguistic benchmarks across multiple linguistic levels, including phonetics, lexicon,
semantics, and syntax (Nguyen et al. 2020). Nonetheless, it is important to bear in mind that most
of the previous computational studies used relatively manicured recordings (such as audiobooks),
and to our knowledge, none of them has tried to tackle language learning after exposure to audio
from long-form recordings.

3.4.2. Measuring production. In this section, we turn to production, although we start by
admitting that this line of research is a great deal less developed than the perception one, and it
may take considerable time to make progress in this area. As with perception, the development
of production involves learning mechanisms that are still the subject of active debate (Long et al.
2020).

There are two key differences regarding how perception and production reverse engineering
approaches can work. First, models of perception development require the extraction from long-
form recordings of only the speech that represents children’s input, whereas to model production
development it is worthwhile to extract both the input and the child’s output. In fact, when con-
sidering production development, there is a strong case to be made about children’s production
being shaped by their own output—and thus their output may, under some accounts, be consid-
ered as input too. Second, while perception models are only required to return representations of
their input, production models need to integrate those evolving representations of the input, with
(a) (potentially changing) biophysical constraints on production (due to the fact that the child’s
body, including their tongue, is changing with age), (b) mechanisms for learning-related changes
in production, and (c) some system for actually generating vocalizations. That said, not all extant
models of children’s language production consider all of these aspects, and others actually con-
sider additional constraints, such as social constraints (Pagliarini et al. 2021). To take a specific
example, Warlaumont et al.’s (2011) model has an articulatory component (which generates the
child’s output in terms of gestures) as well as a perceptual auditory component (which captures
patterns in the input as well as the auditory consequences of the child’s production)—but note
that the articulatory component does not include biophysical constraints per se. Approaches with
realistic models of the developing vocal tract are rare (but see Philippsen 2021).
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At least in principle, then, a reverse engineering approach to production development that
builds on long-form recordings would proceed as follows: If one believes that input speech can
affect production, then the model should use the input to hone perceptual representations (i.e.,
Section 3.4.1); in all cases, one can use children’s production as a benchmark against which to
compare the model learner’s production. As discussed in Section 3.1, one can control the learning
mechanisms and the input in order to measure outcomes.

In reality, however, we see a considerable gap between how production is typically modeled
and long-form recording data, for both the perception and the production aspects of production
development. In current work aiming to model production development, input is most typically
represented in a simplifiedmanner (e.g.,with first and second formant values representing vowels),
and output is similarly reduced to such summary representations (although exceptions exist; see,
e.g., Rasilo & Räsänen 2017). What is more, it is not uncommon to see evaluations akin to an
elicited imitation task,where the system is provided with an adult vocalization as input and is asked
to imitate them (i.e., produce the articulatory activations corresponding to this auditory input).
Such a benchmark does not seem realistic for children under 2 years of age given that eliciting
repetition is methodologically challenging even at around 20 months (albeit possible; see Hoff
et al. 2008). Moreover, it is unclear that studies are actually referring to what human children’s
performance is in actual imitation tasks. Instead, much of this work appears to operate under the
assumption that imitation is prevalent in real-life interaction. However, laboratory observations
suggest that imitation is vanishingly rare (Athari et al. 2021), even in a setting where parents
may be driven to increase their interactions with their child as a consequence of being observed.
Convergence, which is a form of imitation, was not found to be systematic in the analysis of long-
form recordings (Seidl et al. 2018).

A second issue standing in the way of relating long-form recordings and production models
concerns the fact that researchers of production development typically specialize in certain de-
velopment phases and phenomena. For instance, some study the emergence of syllable structure
(Warlaumont & Finnegan 2016), and others study vowel targets (Rasilo & Räsänen 2017). This
specialization entails that models of production developed at present do not generate the whole
range of vocalizations observed in long-form recordings, but are instead dedicated to features of
vocalizations.

When we look at production development more broadly, we see many aspects that should be
accounted for, including the following:

� The presence of both speech-like and non-speech-like vocalizations (Long et al. 2020)
� The increase in canonical vocalizations (having at least one adult-like consonant–vowel or

vowel–consonant transition) with age (Cychosz et al. 2021)
� The appearance of meaningful utterances, starting with single words (de Boysson-Bardies

& Vihman 1991)
� The appearance and increased prevalence of word combinations (Braine&Bowerman 1976)

Not only are these aspects out of reach for any extant model learner, but also the basic de-
scription of these phenomena in long-form recordings is rare. In fact, it was only recently found
that speech-like vocalizations are prevalent in long-form recordings even among newborns (Long
et al. 2020) and that the proportion of vocalizations containing canonical transitions appears to
continually increase well beyond the first year of age, according to long-form data (Cychosz
et al. 2021). Information from long-form recordings on the other phases—namely, the appear-
ance of meaningful speech and of word combinations—has been documented in only two studies
(Casillas et al. 2021, 2020), both of which employed human annotation. It would be ideal to develop
automated techniques so that they can be applied at scale in multiple languages.Moreover, further
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development is needed to create computational implementations of these human psycholinguistic
benchmarks if we are to succeed in our goal of comparing humans and systems.

In sum, reverse engineering the development of production is farther away on the horizon than
the study of perception, awaiting conceptual advances inmodeling approaches,whichmay also ne-
cessitate important changes in the way we do descriptive analyses of production data gleaned from
long-form recordings. As briefly noted, some work in production also takes a social stance, incor-
porating caregivers in the developmental loop. Progress in such conceptual settings will require
even more work, as they necessitate reverse engineering the caregiver as well.

3.4.3. Limitations of the human–machine behavioral comparison. Before concluding the
review, we want to highlight some limitations of our benchmarking approach. All of it relies on
the psycholinguistic human data being empirically solid and unbiased—and we believe progress
on both of these fronts is necessary to support the backward and forward loop between humans
and machines.

To begin with, Table 2 may continue to perpetuate the illusion that infants’ skills can be de-
scribed with simple statements. In reality, conclusions drawn from child studies are rarely as clear
as “children do X” or “they don’t do Y.” Results may vary depending on the sample size, the
methodology used, and the age of the participants, as reported, for instance, in a study of 12 meta-
analyses by Bergmann et al. (2018).Ultimately, we should probably instead look at the distribution
of effect sizes emerging from meta- or mega-analyses rather than an arbitrary yes/no binomial as-
sessment. This point applies both to perception and to production benchmarks.

Another issue with evaluating AI learners against extant human infant literature comes from
the fact that this literature is biased toward specific populations and languages. A study of three
leading developmental journals (where perception experiments are often published) showed that
over three-quarters of their papers bore on North American and/or European infants (Nielsen
et al. 2017), and a study in the Journal of Child Language (which often publishes articles on chil-
dren’s naturalistic production) showed that a shocking 69% of the papers bore on English learners,
with a mere 15% bearing on non-Indo-European languages (Slobin 2014). And although there is
less evidence about this, it is likely that the samples from, for instance, North American infants
are not representative of the greater populations. Thus, a characteristic observed in an American
infant growing up in a high-socioeconomic-status setting may or may not be observed in infants
growing up in other communities. In the absence of systematic observations across cultures, the
AI learner seems doomed to reproduce bias found in the language acquisition literature. Several
researchers are working hard to collect long-form recordings from more diverse populations (see,
e.g., Cychosz et al. 2021), and we hold out hope that, at least in terms of long-form audio, the bias
may be weakened in years to come. However, for our perceptual benchmarks we require some-
thing like laboratory experiments, and there are currently very few researchers collecting percep-
tion data from more diverse communities [but look out for Marisa Casillas’s output in coming
years (Casillas et al. 2020) and the ManyBabies efforts].

Setting aside these two issues of robustness and bias in the data, we foresee that further work
is needed to reflect on which tasks we want to incorporate in our benchmark. Being able to solve
a given task does not tell us whether solving this task is required for language learning. For in-
stance, divergent discrimination responses to rhythmically similar versus different languages may
be neither necessary nor sufficient for language learning. Alternatives include that this difference
in behavior is an acquired response bias or a side effect of auditory development as affected by am-
bient sounds (similar to how infants prefer their mother’s voice but not their father’s voice at birth;
Lee & Kisilevsky 2014)—in other words, behaviors that emerge but that are neither necessary nor
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sufficient for language learning. If such a task is used to evaluate the AI learner, observations in
humans and machines may be divergent for uninteresting reasons.

That said, we think that this problem is less worrisome than the other two. In fact, deciding
which behaviors necessarily occur as a function of language development could be a problem with
which computational models can help. The intuition is that if a behavior is necessary and suffi-
cient for language development, then it should be systematically observed for any and all artificial
agents that do acquire language. Large-scale cross-linguistic studies assessing language skills of AI
learners across different learning mechanisms and language experiences may indeed help us gain
insight into which behaviors are merely side effects and which are necessary for language learning.
In the opposite case, a single computational model solving task T without exhibiting behavior B
would be enough to conclude that B is not necessary for T—as in the case of Schatz et al.’s (2021)
model, which shows perceptual attunement to the exposure language without phonemic represen-
tations. To take another example not yet attested, we can imagine a model that could learn some
level of semantics while being unable to detect word boundaries. This would constitute a proof of
principle of the computational tractability of semantic learning without word boundaries.

4. CONCLUSION

Long-form recordings offer an ecological view of language use in everyday life. Aside from captur-
ing child language experiences in an ecologically valid way, they offer new and exciting research
opportunities in reverse engineering infant language development. Building upon the work of
Dupoux (2018), we have defined two key aspects of the reverse engineering approach: (a) the
language acquisition simulation, or how to use controlled and realistic data to create simulated
language experiences; and (b) the behavioral benchmarking, or how to assess language skills of the
artificial language learner with psycholinguistic tests. This two-sided approach has the potential
to increase our understanding of how language is acquired and how it develops through exposure,
both in humans and in machines. The more we understand language acquisition in humans, the
more human-like artificial language learners we can create. Similarly, the closer artificial language
learners are to humans, the more we understand how language outcomes are shaped by exposure.
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3.2 On the importance of inductive biases for early
phonetic learning

Lavechin, M., de Seyssel, M., Métais, M., Metze, F., Mohamed, A., Bredin,
H., Dupoux, E., Cristia, A. (2023) Statistical learning models of early
phonetic acquisition struggle with child-centered audio data. Submitted to
Cognition

Motivation

Putting our words into action, we present here a modeling investigation of early
phonetic learning from ecological child-centered long-form recordings. Let us first
describe the behavior we aimed to model.

Certain non-native speech contrasts pose a challenge for adult listeners. For instance,
while most French speakers can effortlessly distinguish between [u] and [y] (as
in ‘dessous’, below versus ‘dessus’, above), American English struggle to hear the
difference (Levy & Strange, 2008b). Interestingly, this is not what we observe
in young infants who discriminate not only native contrasts but also non-native
contrasts to which they have never been exposed (Trehub, 1976; Werker et al., 1981).
During their first year of life, infants transition from general listeners to specialized
listeners whose discrimination patterns closely reflect the phonetic system of their
native language(s) (Maye et al., 2002; Kuhl et al., 2006). This process is known as
perceptual attunement or perceptual narrowing.

One influential mechanism proposed to explain these early perceptual changes
is statistical learning, whereby infants track distributional cues from their native
language(s) (Kuhl et al., 2008). These distributions would then cause a language-
specific perceptual space to develop, which in turn alters infants’ perception of
native speech sounds (increasing discrimination) as well as non-native speech
sounds (decreasing discrimination).

Support for the statistical learning hypothesis arises from two sources of evidence.
The first source comes from laboratory experiments demonstrating that infants’
perceptual abilities are sensitive to manipulated linguistic materials with altered
distributional properties (Maye et al., 2002; Reh et al., 2021). The second source of
evidence comes from modeling studies showing that it is possible to reproduce some
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developmental results in speech perceptual learning using self-supervised algorithms
that learn from raw speech, e.g., Schatz et al. (2021).

However, an important limitation of laboratory experiments and modeling studies is
their ecological validity. Laboratory experiments rely on simplified stimuli (typically
isolated syllables) that vary only in a few dimensions (typically the first formants).
Similarly, modeling studies use highly manicured speech as input, with even the
most realistic computational approaches using studio recordings of conversations or
audiobooks (De Boer & Kuhl, 2003; Coen, 2006; Vallabha et al., 2007; Miyazawa
et al., 2010; Schatz et al., 2021). Consequently, it remains unclear if perceptual
attunement can emerge through statistical learning mechanisms applied to real
children’s language environments.

In Lavechin, De Seyssel, et al. (2023), currently under review in Cognition, we
evaluate the presence of perceptual attunement – or absence thereof – in self-
supervised learning algorithms trained on curated audiobooks or ecological child-
centered long-forms.

Paper summary

We begin with a comparative analysis between audiobooks and long-forms. Analyz-
ing the acoustic environments of both sources of data using the voice type classifier
along with Brouhaha presented in Chapter 1, we show that speech utterances ex-
tracted from long-forms have a higher level of background noise (µSNR = 10 dB in
long-forms versus 47 dB in audiobooks). Our analysis also reveals that contrary to
audiobooks, long-forms present a wide variety of reverberant environments with
a C50 varying from −5 to 57 dB. Besides marked differences in terms of acoustic
environments, the speech found in audiobooks differs greatly from that found in
long-forms. Contrary to audiobooks, which consist of nearly 100% speech content,
long-forms only contain approximately 20% speech, with the remainder comprising
a variety of environmental noises such as vacuum cleaner sounds, music, traffic
noise, and moments of silence. Genders are also more balanced in audiobooks than
in long-forms. Finally, while audiobooks contain long stretches of speech read by
the same speaker (estimated median turn duration of 17 minutes), the speech found
in long-forms consists of short turns spoken by different speakers (estimated median
turn duration of 2.4 seconds).

In view of the significant differences between well-articulated clean speech and
the signal available to infants, we propose three inductive biases, i.e., mechanisms
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guiding the learning process in our algorithms. These inductive biases are designed
with two considerations in mind: 1) they should align with documented or plausible
behavior found in infants; and 2) they should alleviate the signal degradations
documented above. These inductive biases take the form of 1) a voice activity detec-
tion mechanism that filters out non-speech segments and forces the system to learn
exclusively on the speech signal; 2) a pseudo-speaker separation mechanism that
helps the system learns speaker-invariant representations; and 3) a data augmen-
tation mechanism that induces invariance with respect to the various reverberant
environments and the multiple voice fundamental frequencies found in long-forms
(see details in the paper enclosed below).

We train our artificial learner on either Metropolitan French or American English,
simulating the learning process of an infant acquiring either American English or
Metropolitan French. The audio data used for training is obtained from either audio-
books or ecological long-forms. Furthermore, our learner comes in two flavors: with
or without inductive biases. Using the same machine ABX sound discrimination task
as used in Section 2.3, we consider two outcome measures: the native discrimination
(to what extent the learner discriminates between native contrasts) and the native
advantage (to what extent it does so better than a non-native learner). The native
advantage is a measure of perceptual attunement. A positive native advantage
indicates that the native learner is better at discriminating the sounds of its native
language than the non-native learner is on the same sounds. A negative native
advantage indicates the opposite, and a native advantage of 0 indicates that the
native and the non-native learners are equally good at discriminating the same
sounds.

Our results indicate that reproducing perceptual attunement when training on
audiobooks is possible, regardless of whether the learner is pre-equipped with
inductive biases. This constitutes a replication of past studies, e.g., Schatz et al.
(2021). However, on ecological long-forms, the picture is drastically different. Only
the learner equipped with inductive biases reproduces perceptual attunement, and
this remains true regardless of the amount of data available for training.

In an ablation study, we evaluate the individual contribution of our three inductive
biases. Although, on ecological long-forms, the most important contribution is
brought by the voice activity detection mechanism, all three inductive biases help
the learner develops a higher native discrimination and native advantage. Finally,
we show that the learning outcomes developed by our system are highly sensitive to
1) the proportion of non-speech present in the training set; and 2) the quantity of
background noise and reverberation.
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By design, statistical learning algorithms learn the underlying structure of their input
data. In children’s language environments, speech exhibits an intricate structure im-
pacted by various factors, including the speaker’s identity, the way sounds propagate
in the environment, and the various sources of background noises. Structure can also
be found in non-speech sounds, which constitute the large majority of the infants’
auditory stream. Yet, infants attune only to speech. Similarly to our artificial learner,
infants likely come pre-equipped with inductive biases that may guide the language
acquisition process. We suspect that these inductive biases are, to a certain extent,
inherited from our evolutionary past, and to another extent, learned. Achieving a
deeper comprehension of how these biases come to be active in human infants will
likely necessitate a collaborative endeavor involving theoretical and empirical efforts
from computational, developmental, and behavioral scientists.

Finally, we showed that the learning outcomes of our artificial learner were exquisitely
sensitive to the details of the input signal, with drastically different behaviors when
training on audiobooks or long-forms. This illustrates how considering input data
that do not reflect characteristics of children’s language environments can lead
us to underestimate the complexity of a given learning problem (that is, we may
believe a problem has been solved when it has only been solved on unrealistic data),
or overestimate the power of a proposed mechanism (that is, we may believe a
mechanism is sufficient to explain the phenomenon that is being modeled when it is
not).
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A B S T R A C T
Infants learn their native language(s) at an amazing speed. Before they even talk, their perception
adapts to the language(s) they hear. However, the mechanisms responsible for this perceptual
attunement remain unclear. The currently dominant explanation for perceptual attunement posits that
infants apply a statistical learning mechanism consisting in learning regularities from the speech
stream they hear, and which may be found in learning across domains and species. Critically, the
feasibility of the statistical learning hypothesis has only been demonstrated with computational models
on unrealistic and simplified input. This paper presents the first attempt to study perceptual attunement
with 2,000 hours of ecological child-centered recordings in American English and Metropolitan
French. We show that, when applied on ecologically valid data, generic learning mechanisms develop
a language-relevant perceptual space but fail to show evidence for perceptual attunement. It is only
when supplemented with inductive biases, in the form of data filtering, sampling, and augmentation
mechanisms that computational models show a significant attunement to the language they have been
exposed to. As inductive biases are necessary for our model to become attuned to their native language,
we reflect on whether similar inductive biases may shape early phonetic learning in infants. More
generally, we show that what our model learns, and how it develops through exposure to speech,
depends exquisitely on details of the input signal. By doing so, we illustrate the importance of
considering ecologically valid input data when modeling language acquisition.

1. Introduction
1.1. Perceptual attunement to sounds

Our ability to discriminate things tends to increase for
frequently encountered stimuli and to decrease for infre-
quently encountered ones. For instance, while most French
speakers have no difficulties distinguishing between [u] and
[y] (as in ‘dessous’, below versus ‘dessus’, above), American
English speakers struggle hearing the difference (Levy and
Strange, 2008). Similarly, Japanese native speakers often
confuse [ô] and [l] (as in ‘right’ versus ‘light’) where
American English speakers do not (Miyawaki, Jenkins,
Strange, Liberman, Verbrugge and Fujimura, 1975). The
way adults perceive speech sounds is therefore shaped by
the language(s) they have been exposed to. In other words,
their perception is attuned to their native language(s).

Meta-analytic evidence suggests that the process of
tuning in to certain sounds, known as perceptual attunement,
begins in early childhood and gives rise to one of the earli-
est language-specific effects in infant speech development
(Tsuji and Cristia, 2014; Singh, Rajendra and Mazuka,
2022). According to the perceptual attunement account,
young infants can distinguish between different sounds
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regardless of the language they are exposed to. However, as
they age, infants’ ability to distinguish between sounds that
are relevant to their native language improves while their
ability to distinguish non-native sounds deteriorates (Kuhl,
2004). As an example, at 6-8 months, American English and
Japanese infants show similar discrimination scores for the
[ô] versus [l] pair. However, by 10-12 months, American
English infants’ discrimination score for the [ô] versus [l]
pair increases, while Japanese infants’ discrimination score
deteriorates (Kuhl, Stevens, Hayashi, Deguchi, Kiritani and
Iverson, 2006), resulting in a native advantage (higher scores
for the infants for whom the contrast is native).
1.2. Can statistical learning account for early

phonetic learning?
These early perceptual changes, which occur before in-

fants talk, have been linked to the statistical learning hy-
pothesis (Maye, Werker and Gerken, 2002; Kuhl, Conboy,
Coffey-Corina, Padden, Rivera-Gaxiola and Nelson, 2008).
This hypothesis states that infants "use statistical properties
of linguistic input to discover structure, including sound
patterns, words, and the beginnings of grammar" (Saffran,
2003). In the case of early phonetic acquisition1, the idea is

1Note that early phonetic learning/acquisition as employed in this
manuscript should not be confused with phonetic category learning. Ev-
idence suggests that sound perception continues to develop well beyond
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that infants track the statistical distribution of sounds in their
native language (Maye et al., 2002; Kuhl et al., 2008). These
distributions would then cause a language-specific percep-
tual space to develop, which in turn alters infants’ perception
of native speech sounds (increasing discrimination) as well
as non-native speech sounds (decreasing discrimination).

A first source of evidence in favor of the statistical
learning hypothesis for phonetic learning is found in lab-
oratory experiments demonstrating that exposing infants
to linguistic materials whose distributional properties have
been manipulated alters infants’ perceptual abilities. Specif-
ically, when exposed to a bimodal distribution of speech
sounds, infants are able to distinguish between the sounds,
but when exposed to a unimodal distribution, they are not
(Maye et al., 2002; Reh, Hensch and Werker, 2021). A key
limitation of these studies, however, is that they rely on
simplified stimuli (typically isolated syllables) that vary only
in a few dimensions (typically first formants). In addition,
a prerequisite of the statistical learning hypothesis is that
native versus non-native contrasts are cued by one versus
two modes along some acoustic dimension, but this is not
the case for many sound contrasts, including vowel length
Bion, Miyazawa, Kikuchi and Mazuka (2013). Thus, from
in-laboratory experiments alone, it remains unclear whether
early phonetic learning from ecological input can occur
through statistical learning.

A second source of evidence in favor of the statistical
learning hypothesis for early phonetic learning lies in com-
putational modeling studies. After all, if infants develop a
language-specific perceptual space via statistical learning,
computers should be able to reproduce it, and they may
be able to do it relying on more complex approaches than
noticing unimodal versus bimodal distributions. Hitczenko
and Feldman (2022) shows that duration cues are sufficient
to recover when vowel length is contrastive, as long as con-
textual cues are considered. Using spectrographic input rep-
resentations, Schatz, Feldman, Goldwater, Cao and Dupoux
(2021) reproduce some developmental results in speech
perceptual learning using a rather simple self-supervised
learning algorithm based on mixtures of Gaussians. Within
the field of machine learning, a myriad of powerful self-
supervised learning algorithms have been recently devel-
oped and tested in several languages (Versteegh, Thiollière,
Schatz, Cao, Miró, Jansen and Dupoux, 2017; van den Oord,
Li and Vinyals, 2019; Schneider, Baevski, Collobert and
Auli, 2019), re-instilling hope that statistical learning is
indeed a plausible mechanism to account for early phonetic
learning in infants. An important limitation of this line of
work, however, is that up to now, it has only been applied
to highly curated inputs, with even the most realistic com-
putational approaches using studio recordings of conversa-
tions or audiobooks (De Boer and Kuhl, 2003; Coen, 2006;
Vallabha, McClelland, Pons, Werker and Amano, 2007;
the first year (McMurray, Danelz, Rigler and Seedorff, 2018) and that
well-defined discrete phonetic categories may only be acquired later in life
(Feldman, Goldwater, Dupoux and Schatz, 2022; McMurray, 2022b).

Corpus Audio Speech Women Median
dur. prop. ratio turn dur.

Audiobooks
R-Eng. 1071h 94.9% 51.0% 14.5mn
R-Fr. 1089h 94.0% 57.3% 20.4mn

Long-forms
E-Eng. 1054h 17.6% 67.6% 2.3s
E-Fr. 1008h 19.0% 69.9% 2.5s

Table 1
Audio duration, proportion of adult speech, proportion of adult
speech pronounced by women, and median turn duration for
our 4 corpora. R-<language> indicates read-speech corpora
from audiobooks. E-<language> indicates ecological audio
corpora from child-centered long-form recordings. Proportions
of speech are estimated using a pretrained model (Lavechin,
Bousbib, Bredin, Dupoux and Cristia, 2020). The median turn
duration is estimated as 1) the median duration of chapters
for audiobooks (each chapter is read by a single speaker);
and 2) the median cumulated duration of successive sequences
produced by the same voice type for long-forms. Data are taken
from (Kahn, Rivière, Zheng, Kharitonov, Xu, Mazar’e, Kara-
dayi, Liptchinsky, Collobert, Fuegen, Likhomanenko, Synnaeve,
Joulin, rahman Mohamed and Dupoux, 2020; Bergelson, 2017;
Canault, Normand, Foudil, Loundon and Thai-Van, 2016a;
Cristia, 2021; Lavechin and Cristia, 2021).

Miyazawa, Kikuchi and Mazuka, 2010; Schatz et al., 2021;
Millet, Chitoran and Dunbar, 2021).
1.3. What infants truly hear

Neither studio recordings of isolated syllables nor au-
diobooks reflect what infants truly hear, constituting cru-
cial limitations of experimental and modeling studies alike.
First, the large majority of what children hear during their
wake time is not speech at all, but various ambient sounds,
noise, music, or non-linguistic vocalizations. Second, the
speech sections, are not isolated syllables but multi-words
utterances. Additionally, speech signals are far from being
recorded in a studio but may be distorted as they are spoken
far from the child and are multiply reverberated and absorbed
by the surrounding obstacles in the environment. Speech sig-
nals may also be covered by a variety of background noises
or crowded by other concurrent speech sounds. Finally, in
real life, people do not speak in full and well-articulated
sentences as in audiobooks, but may speak in ways that
distort the clear articulation of phonemes: people may pro-
duce short turns that sometimes overlap across speakers, and
they may under-articulate, mumble, shout, whisper, sing, or
laugh while speaking. Given what infants truly hear, can we
assume that the statistical learning mechanisms posited from
laboratory study will work in real life?

From this point on, we focus on the difference be-
tween audiobooks commonly used in computational mod-
eling studies and the audio children are exposed to. In Table
1, we compare the statistics of open-source audiobooks,
self-recordings of books by volunteers using home equip-
ment (Kearns, 2014) and long-forms that are captured using
lightweight recorders worn by the infant, which continuously
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Figure 1: The quantity of noise and reverberation in child-
centered long-forms and audiobooks. Speech-to-Noise Ratio
(SNR) and 𝐶50 distributions on 16 hours of speech utterances
in English extracted from long-forms (in purple) or audiobooks
(in blue). Both measures are automatically extracted using the
pretrained model proposed in Lavechin et al. (2022).

collect audio over long periods of time (typically 8+ hours
of the infant’s waking time). Whereas audiobooks contain
nearly 100% of speech, long-forms contain only about 20%
of speech, the rest being various environmental noises (vac-
uum cleaner, music, traffic noise, silence, etc.). Genders are
also more balanced in audiobooks than in long-forms, and
while audiobooks contain long stretches of speech read by
the same speaker (median turn duration of 17mn), long-
forms contain relatively short turns spoken by different
speakers (median turn duration of 2.4s).

Figure 1 displays signal characteristics of the two sources
of audio, notably: 1) the Speech-to-Noise Ratio (SNR) which
measures the strength of the speech signal relative to the
strength of background noise (the higher the SNR the lower
the amount of noise); and 2) the 𝐶50 measure which quan-
tifies the level of reverberation (a higher 𝐶50 indicates less
reverberation). Both measures are computed at the utterance
level (i.e., speech only) on either English long-forms or au-
diobooks using the pretrained model proposed in (Lavechin,
Métais, Titeux, Boissonnet, Copet, Rivière, Bergelson, Cris-
tia, Dupoux and Bredin, 2022). Our analysis reveals that, on
average, speech utterances extracted from audiobooks have
an SNR of 46 dB, while those from long-forms have an
SNR of 10 dB, indicating, therefore, a higher level of back-
ground noise in long-forms. Similarly, audiobooks contain
utterances with a high 𝐶50 indicating a low reverberation
level. On the contrary, utterances extracted from long-forms
span a𝐶50 between -5 and 57 dB indicating a wider variety of
reverberant conditions. In total, audiobooks that are recorded
in a quiet environment, close to the microphone, tend to be of
higher quality than long-form recordings, that are recorded
in uncontrolled environment, with the source of speech being
often far away from the listener child. Note that similar
results for both the SNR and the 𝐶50 were found in our
French corpora.
1.4. Inductive biases to guide early phonetic

learning
The difference between clean and well-articulated speech

and the signal available to infants is so large that one might
rightfully wonder: would statistical learning lead infants to

discover the structure of sounds, or would it rather lead
them to focus on the dominant non-linguistic structure of
the audio?

It remains possible that infants’ early phonetic learn-
ing involves more than simply statistical learning. Indeed,
among other astonishing capacities, human infants have a
preference for listening to speech from birth (Cooper and
Aslin, 1990; Vouloumanos and Werker, 2007), come pre-
equipped with an auditory system capable of source sep-
aration (Bregman, 1994), and display an early ability to
discriminate human voices (Decasper and Prescott, 1984;
Floccia, Nazzi and Bertoncini, 2000). Could these abilities
shape or guide statistical learning in order to improve the
acquisition of species-relevant communication signals?

In machine learning, mechanisms that constraint or
guide the learning process by forcing the algorithm to
learn on specific parts of the signal, or to extract specific
information are called inductive biases(Hüllermeier, Fober
and Mernberger, 2013). In this study, we equip a compu-
tational model with inductive biases, and study how they
affect the learning of our model from ecological signals.
We propose inductive biases that have been designed with
two considerations in mind. First, they must be designed
to address the signal degradations found in long-forms, as
documented in Section 1.3. Second, they should align with
documented or plausible behaviour found in infants (more
details to be found in Experiment 1). To the extent that
our inductive biases are effective in coping with the signal
degradations in long-form recordings, this provides support
to the hypothesis that infants too are using such inductive
biases, in addition to or in conjunction with, statistical
learning.
1.5. Key questions

The aim of this paper is to study the effect of input
realism (audiobooks versus long-forms) and inductive biases
(absence or presence) in a computer simulation of learning.
This is relevant for both theoretical and practical reasons.
On the theory side it helps us assess the kind of learning
mechanisms infants likely need to bring to the task. On the
practical side, it indicates the level of evidence we can obtain
from a given modeling experiment. That is, if results from
audiobooks can not be replicated with truly naturalistic data
(long-forms), then this casts important doubts on any work
relying on audiobooks.

In this study, we examine one of the earliest language-
specific phenomenon, perceptual attunement, and ask:

1. Can statistical learning lead to perceptual attunement
when given such sparse, variable and noisy signals as
found in ecological data?

2. Can inductive biases help overcoming difficult condi-
tions found in long-forms?

3. What characteristics of ecological long-forms impact
the phonetic learning outcomes of our learner?

In Experiment 1, we evaluate whether our base learner
(trained without inductive biases) can reproduce perceptual
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attunement when exposed to either audiobooks or long-
forms. In addition, we measure the impact of our inductive
biases in the long-form condition. In Experiment 2, we
examine the impact of varying the quantity of audio to
determine if conclusions drawn from our first Experiment
remain consistent. In Experiment 3, we conduct a com-
plete ablation study examining the individual contribution of
each inductive bias. In a similar vein, Experiment 4 zooms
in on one of our three inductive biases (Voice Activity
Detection, presented below), progressively degrading it to
study its contribution. In Experiment 5 we check whether
our learner trained with inductive biases is still sensitive to
noise and reverberation, two salient characteristics of long-
forms. Finally, in Experiment 6, we explore the possibility to
simulate ecological long-forms with audiobooks artificially
contaminated with noise and reverberation.

2. Experiment 1: the impact of inductive
biases
In this first Experiment, we ask how native discrim-

ination and native advantage differ as a function of the
learner and broad features of the environment. Whereas
(Schatz et al., 2021) chose a learning algorithm (mixture of
Gaussians) related to the hypothesis that infants track the
modes in distributions of acoustic properties Maye et al.
(2002), but as a result only builds representations in short-
time windows (10ms), we chose a learning algorithm related
to the predictive coding hypothesis Huang and Rao (2011),
that better captures the temporal dynamics of speech. In a
nutshell, the algorithm learns by attempting to predict future
representations of speech based on past ones (details in the
Methods section).

We first train our base learner on audiobooks, which con-
stitutes a conceptual replication of past studies (Schatz et al.,
2021) with a more powerful algorithm and on a different pair
of languages. We separately train a learner with the same
algorithm on realistic child-centered long-forms: If pure sta-
tistical learning suffices, then we should observe perceptual
attunement in this condition as well. In addition, we intro-
duce a modified learner incorporating three inductive biases
aiming at guiding the learning process in our algorithm.
Based on newborns’ preference for speech (Cooper and
Aslin, 1990; Vouloumanos and Werker, 2007), we propose
an inductive bias that helps our learner deal with the high
quantity of non-speech found in long-forms (Table 1) by re-
stricting learning to speech segments. Based on infants early
ability to discriminate human voices (Mehler, Bertoncini,
Barriere and Jassik-Gerschenfeld, 1978; Decasper and Fifer,
1980), we propose an inductive bias that leverage the speaker
information to guide our learner deal with the frequent
speaker change and the gender imbalance (Table 1); this is
done by restricting learning to segments that plausibly come
from the same speaker. Our third inductive bias helps our
learner in achieving better perceptual constancy which is
an important feature of the human auditory system (Kuhl,
1979; Beeston, Brown and Watkins, 2014); this is done by

nudging the learning algorithm to be invariant with respect
to changes in pitch and to audio modifications induced
listening conditions. By comparing the learning outcomes
obtained by our base learner with those of our speech-biased
learner, also trained on long-forms, we measure the impact
of the inductive biases with which our biased learner is
endowed.
2.1. Methods

Our simulation approach consists in implementing three
key components of language learning (Dupoux, 2018): the
environment, the learner and the outcome measure (see Fig.
2). Regarding the environment, we build on 2,000 hours of
child-centered, ecologically valid audio recordings of infants
learning either American English or Metropolitan French,
which represents an essential step forward as compared to
previous modeling studies. Regarding the learner, we em-
ploy one of the best self-supervised learning algorithms as a
key component of our learner (Dunbar, Bernard, Hamilakis,
Nguyen, de Seyssel, Rozé, Rivière, Kharitonov and Dupoux,
2021). The learner’s model we built for this paper comes in
two flavors: the base learner implements a predictive coding
mechanism (introduced below), whereas the speech-biased
learner filters and processes its input before applying the pre-
dictive coding mechanism. Finally, regarding the outcome,
we employ the same outcomes as previous work (Schatz
et al., 2021). In a nutshell, we will study native discrimina-
tion (to what extent the learner discriminates between native
contrasts) and native advantage (to what extent it does so
better than a non-native learner).
2.1.1. Environment: training datasets
Audiobooks. The English and French read-speech corpora
were built from audiobooks using the LibriVox platform
(Kearns, 2014; Kahn et al., 2020).
Long-forms. The long-form training set was built from 156
recordings from 80 children (40 female) aged 2-48 months
from four studies: the American English SEEDLingS study
(Bergelson, Casillas, Soderstrom, Seidl, Warlaumont and
Amatuni, 2019; Bergelson, 2017), and three Metropoli-
tan French studies (Canault, Normand, Foudil, Loundon
and Thai-Van, 2016b; Canault et al., 2016a; Cristia, 2021;
Lavechin and Cristia, 2021). All recordings were collected
using a LENA audio recorder (single channel, 16 kHz; see
Ford, Baer, Xu, Yapanel and Gray (2008) for full specifica-
tion). Half of the recordings came from English infants and
the other half from French infants. The French and English
sets of recordings were matched as much as possible for the
age of the child wearing the recording device, within the
limitations of independently collected corpora. This resulted
in a set of Metropolitan French recordings acquired from 40
children (21 female) whose age varies from 2 to 41 months
(𝜇𝐹𝑅 = 17.3mths, 𝜎𝐹𝑅 = 10.9mths); and a set of American
English recordings acquired from 40 children (19 female)
whose age varies from 6 to 17 months (𝜇𝐸𝑁 = 12.5 mths,
𝜎𝐸𝑁 = 3.3 mths).
Creation of training sets. For each language (English or
French) and each audio source (audiobooks or long-forms),
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Figure 2: Phonetic learning simulation. (a) Simulated language environments in American English and Metropolitan French
built from (top) audiobooks, or (bottom) child-centered long-forms. (b) Simulated learners built from (top) statistical learning
mechanisms (contrastive predictive coding applied on nearby audio sequences), (bottom) with the addition of inductive biases
(filtering of non-speech, speaker-invariant and pitch-/room-resistant training). (c) Outcome measures obtained via an ABX
auditory discrimination task in English and French. Native discrimination measures the ability of the learner to discriminate
sounds in its native language. Native advantage, measures perceptual attunement, i.e., the extent to which the native learner is
better at discriminating sounds of its native language than the non-native learner.

we built mutually exclusive training sets of 128 hours so as to
measure the robustness of the learning outcomes across dif-
ferent language exposures. As our base learner receives both
speech and non-speech, while our speech-biased learner
receives exclusively speech segments, the number of training
sets depends both on the source of the data (audiobooks
or long-forms) and the type of learner considered (base or
speech-biased). We created 8 training sets from audiobooks
and 7 from long-forms for our base learner (containing both
speech and non-speech). We were only able to create one
training set of 128 hours of speech from long-forms, as that
was the amount of speech present in our 1,000 hours of long-
forms, reflecting the scarcity of speech in these naturalistic
data. (see Appendix A for more details about the creation of
the training set).
2.1.2. Learners and baseline
Statistical learning from raw audio. In this section, we
present the mechanism at the heart of both our base and
speech-biased learners.

We chose Contrastive Predictive Coding (CPC) (van den
Oord et al., 2019) as the heart of our learners. In machine
learning, CPC has been shown to be powerful in a wide
variety of modalities ranging from audio and images to
natural language and reinforcement learning (van den Oord
et al., 2019). In the ZeroSpeech 2021 international challenge

on unsupervised representation learning, CPC was the best
system to learn representations that accurately discriminate
speech sounds (Dunbar et al., 2021). The key idea behind
CPC is to predict the future states of a sequence given its
past context. The learner is given an example that is drawn
from the near future up to 120 ms (called positive example),
and multiple examples that are not drawn from the near
future (called negative examples). Given the past context
of a sequence, the learner maximizes the categorical cross-
entropy of classifying the positive sample correctly (see
Contrastive Predictive Coding panel, top right of Fig. 3).

As originally proposed in (van den Oord et al., 2019), we
used a contrastive loss which forces the latent space to retain
information useful to predict future samples. Precisely, the
input sequence of observations 𝑥𝑡 is mapped to a sequence
of latent representations through an encoder 𝑔𝑒𝑛𝑐 , such that
𝑧𝑡 = 𝑔𝑒𝑛𝑐(𝑥𝑡). Then, all 𝑧≤𝑡 are aggregated with an auto-
regressive model that produces a context-dependent latent
representation 𝑐𝑡 = 𝑔𝑎𝑟(𝑧≤𝑡). Given the past context 𝑐𝑡, a
predictor 𝑔𝑝𝑟𝑒𝑑 is asked to predict future representations 𝑧𝑡+𝑘for 𝑘 ∈ {1, ...,𝐾}. Given a set 𝑋 = {𝑥1, ..., 𝑥𝑛} of 𝑁
random samples containing one positive sample from the
true positive distribution 𝑝(𝑥𝑡+𝑘 ∣ 𝑐𝑡) and 𝑁 − 1 negative
samples from the proposal negative distribution 𝑝(𝑥𝑡+𝑘), we
optimize the categorical cross-entropy loss of classifying the
positive sample correctly:
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Figure 3: Base learner versus speech-biased learner. Schematic structure of (a) our base learner (trained without inductive
biases); and (b) our speech-biased learner (trained with inductive biases). Contrastive Predictive Coding (CPC) learns audio
representations from predicting the near future; Voice Activity Detection filters out non-speech segments of the audio. Pseudo
Speaker Separation is used to sort the different speech segments according to by whom they have been pronounced. Data
Augmentation leads to both channel and pitch mismatch between past and future samples.
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A key difference compared to previous implementations
(Rivière, Joulin, Mazaré and Dupoux, 2020; Kharitonov,
Rivière, Synnaeve, Wolf, Mazaré, Douze and Dupoux, 2021)
lies in the fact that we sample negatives from temporally
close sequences from the time series of interest. This strat-
egy ensures that the positive/negative examples used in the
contrastive task takes place in a short time span, therefore
reducing mismatch between both types of examples in terms
of their local environment. Implementation details can be
found in Appendix B.
Inductive biases In this section, we present inductive biases
designed to help our speech-biased learner to overcome
difficulties found in realistic audio (see Section 1.3). For
the present study, these mechanisms are fixed, but other
work could assess whether they may be learned through
exposure or whether they may have been selected throughout
evolution.

Voice Activity Detection. First, based on newborns’ prefer-
ence for speech (Cooper and Aslin, 1990; Vouloumanos and
Werker, 2007), we propose an inductive bias that discards
non-speech segments and induces the learner to learn only
from the speech signal, alleviating the issue of the high
proportion of non-speech found in long-forms (see Table 1).
This is achieved via a pretrained Voice Activity Detection
(VAD) model Lavechin et al. (2020).
Pseudo Speaker Separation. Second, a Pseudo Speaker
Separation2 inductive bias groups the speech segments ac-
cording to by whom they have been produced. By way of
illustration, without this bias, positive and negative examples
could be spoken by different speakers, inducing the learner
to focus on low-level acoustic differences between speak-
ers. Pseudo Speaker Separation decreases the probability of
having a speaker mismatch between the positive and the
negative examples, inducing the learner to learn speaker-
invariant representations (van den Oord et al., 2019). This
bias incorporates the idea that infants have an early ability
to discriminate human voices (Mehler et al., 1978; Decasper

2The prefix ‘pseudo’ refers to the fact that we approximate speaker
identity by combining the gender information with the recording unique
identifier.
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and Fifer, 1980), including unfamiliar ones (Decasper and
Prescott, 1984; Floccia et al., 2000), but that they also
progressively learn representations that are invariant with
respect to a change in speaker (see Seidl, Onishi and Cristia
(2014); Bergmann, Cristia and Dupoux (2016) for behav-
ioral evidence found in infants, and Choi and Shukla (2021)
for a review). This bias aims at alleviating the issues of the
short turns and the gender imbalance found in long-forms
(see Table 1).
Data Augmentation. Third, the Data Augmentation induc-
tive bias consists in applying acoustic transformations to
the past context of each segment, but not to the segments
from which the positive and the negative examples are
drawn (as proposed in (Kharitonov et al., 2021)), therefore
inducing CPC to learn representations that are invariant
with respect to these transformations and achieve better
perceptual constancy (Kuhl, 1979; Beeston et al., 2014).
Here we use two such transformations: artificial reverbera-
tion and pitch modification. Artificial reverberation induces
invariance with respect to the distance of the speaker to
the ‘ears’ of the artificial learner and to the presence of
various sound-reflective objects in the environment. Pitch
modification, on the other hand, induces invariance with
respect to voice fundamental frequency, which varies across
speakers as a function of their vocal cord anatomy. Pitch
modification aims at alleviating the short turn duration and
the gender imbalance found in long-forms (Table 1) while
artificial reverberation aims at alleviating the wide variety
of reverberant environments (Fig. 1).
Auditory baseline Following recommendations to include
a control to check for the effects of learning, we compare the
performance of our learners against a simple auditory base-
line. We first slice the speech signal into 25ms-long frames
sampled every 10ms. Descriptors of each frame consist of
mel-frequency cepstral coefficients (MFCCs) with the first
and second derivatives, resulting in a 39-dimensional feature
vector for each 10ms-frame.
2.1.3. Outcomes: the machine ABX discrimination test

The ABX discrimination test is commonly used to study
human perceptual system (Schatz, Peddinti, Bach, Jansen,
Hermansky and Dupoux, 2013). In this test, the machine is
given three triphones: A, B, and X, with A and X two differ-
ent occurrences of the same triphone (e.g, /bup/) and B an-
other triphone differing only in its center phone (e.g., /bœp/).
Representations of each stimulus (𝑅𝐴, 𝑅𝐵 and 𝑅𝑋) are
extracted and pairwise distances 𝑑(𝑅𝐴,𝑅𝑋) and 𝑑(𝑅𝐵 ,𝑅𝑋)are computed. As representations can have different lengths
(depending on the duration of the input stimuli), the distance
between two representations is computed along their dy-
namic time-warped alignment. Following (Versteegh et al.,
2017), we used the cosine distance function to measure dis-
similarity between individual frames (Supplementary Fig.
9). The machine is considered to be right if 𝑑(𝑅𝐴,𝑅𝑋) <
𝑑(𝑅𝐵 ,𝑅𝑋) as𝐴 and𝑋 represent the same triphone. Context,
as defined by the preceding and the following sound, is
controlled as the same sound can be pronounced differently

in different contexts. Thus, for each contrast (e. g., /u/ vs
/œ/) and each context (e.g., [b_p]), a discrimination accuracy
is computed as the amount of times the learner is right. If
we note, 𝑆(1) the set of sounds from category 1 (e.g.,
all /bup/ triphones of the evaluation set) and 𝑆(2) the set
of sounds from category 2 (e.g., all /bœp/ triphones of the
evaluation set), the non-symmetric discrimination accuracy
between category 1 and 2 can be computed as:

𝜃(1,2) ∶= 1
𝑚(𝑚 − 1)𝑛

∑
𝐴∈𝑆(1)

∑
𝐵∈𝑆(2)

∑
𝑋∈𝑆(1)
𝑋≠𝐴

(
𝟙𝑑(𝑅𝐴,𝑅𝑋 )<𝑑(𝑅𝐵 ,𝑅𝑋 ) +

1
2
𝟙𝑑(𝑅𝐴,𝑅𝑋 )=𝑑(𝑅𝐵 ,𝑅𝑋 )

)

with 𝑚 and 𝑛 the cardinal of 𝑆(1) and 𝑆(2) respectively, 𝟙
the indicator function, and 𝑅𝐴, 𝑅𝐵 and 𝑅𝑋 the represen-
tations of sounds 𝐴, 𝐵 and 𝑋 respectively. A symmetric
discrimination accuracy is obtained by averaging 𝜃(1,2)and 𝜃(2,1).Representations are extracted from the last layer of the
auto-regressive model, which results in a 256-dimensional
feature vector for each 10ms frame.

The ABX discrimination test was built from 10 hours of
speech downloaded from Common Voice (Ardila, Branson,
Davis, Henretty, Kohler, Meyer, Morais, Saunders, Tyers
and Weber, 2020) for each of the two target languages,
English and French. More information about the test data
can be found in Appendix C. The evaluated phonetic inven-
tory for each of the two target languages can be found in
Supplementary Table 4.

Based on this ABX discrimination test, we consider two
outcome measures, which we call native discrimination and
native advantage. Native discrimination is the average ABX
accuracy of both learners when tested on all contrasts of
the language they have been exposed to, measuring how
good the learner is at discriminating sounds of their na-
tive language. Native advantage is the relative difference
between native and non-native learners averaged across the
two languages. It measures to which extent our learners
develop a language-specific perceptual space. A positive
native advantage indicates that the native learner is better
at discriminating the sounds of its native language than the
non-native learner is on the same sounds, similarly to what
we observe in infants towards the end of the first year of life
Kuhl et al. (2006). A negative native advantage indicates
the opposite, and a native advantage of 0 indicates that
the native and the non-native learners are equally good at
discriminating the same set of sounds.
2.2. Results and discussion

Panel (a) of Fig. 4 shows the native discrimination of
our base learner (in blue) and our speech-biased learner
(in orange). In all conditions, learners outperformed the
baseline (the dashed black line), indicating performance
improvements with language exposure over generic audi-
tory processing. That said, performance was not equivalent
throughout.
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Figure 4: Results of Exp. 1: The impact of inductive biases.
(a) Native discrimination and (b) native advantage obtained
by our base learner (trained without inductive biases, in blue)
and our speech-biased learner (trained with inductive biases,
in orange). Both learners are trained on 128 hours of audio
in each of the two target languages (American English and
Metropolitan French) as a function of data type (audiobooks,
long-forms). The dashed black line corresponds to the score
obtained by a spectral representation typically used for speech
recognition (39 mel-frequency cepstral coefficients). Each dot
represents an independent replication on a separate training
set of 128 hours. The number of independent replications, i.e.,
number of points, for each condition depends on the amount
of data available.

A comparison between the two blue bars in this panel
indicates that our base learner is better at discriminating
sounds of its native language when trained on highly curated
audio from audiobooks (result that conceptually replicates
Schatz et al., 2021) than when trained on ecological audio
from long-forms, with a drop in performance of 5%.

Interestingly, our speech-biased learner (in orange), en-
dowed with inductive biases, performs much better in the
same condition, reaching the same level of native discrim-
ination as the base learner trained on curated data. These
results suggest that inductive biases help overcome difficult
learning conditions found in long-forms.

Panel (b) of Fig. 4 shows the native advantage obtained
by both types of learners. First, let us consider our base
learner. When trained on audiobooks, our base learner is
9.7% better at discriminating native sounds than the same
non-native learner (first blue bar; a conceptual replication of
Schatz et al., 2021). That is, the American English model
has learned to discriminate American English sounds better
than the Metropolitan French model (and vice-versa). How-
ever, our base learner trained on ecological long-forms fails
to show any native advantage (second blue bar). In other
words, when exposed to realistic data, the American English
learner discriminates American English sounds as well as
the Metropolitan French learner (and vice versa). Therefore,

our base learner trained on long-forms has failed to develop
a language-specific perceptual space.

Turning to our speech-biased learner in orange, we ob-
serve that the inductive biases allow the learner to ex-
hibit a native advantage when faced with long-forms. How-
ever, unlike native discrimination results, performance is not
matched to that with curated data, which suggests that native
advantage is relatively more fragile to noisy environments
than native discrimination.

3. Experiment 2: the effect of data quantity
Experiment 1 suggested that inductive biases helped

overcome difficulties found in long-forms; in particular,
inductive biases allowed our learner trained on 128 hours of
audio to develop a language-specific perceptual space. Be-
fore concluding that inductive biases are truly necessary for
our learner to develop a language-specific perceptual space,
we must ask: could difficulties found in long-forms disappear
when learning on more audio? After all, in machine learning,
one can often replace specially engineered mechanisms with
generic ones fed with enough data.3.
3.1. Methods

In Experiment 1, learners were provided with 128 hours
of audio. In the present Experiment, learners were provided
between 8 and 1,024 hours, depending on the condition.
We generated mutually exclusive training sets of varying
lengths. Given limitations in data availability, we could
provide our base learner up to 1,024h from audiobooks or
512h from long-forms (containing both speech and non-
speech). As for our speech-biased learner, it receives up to
1,024h from audiobooks, or up to 128h from long-forms
(containing exclusively speech). We vary the quantity of data
by splitting larger training sets into two mutually exclusive
subsets. Hence, our base learner exposed to audiobooks is
trained separately on 2 training sets of duration 512h, 4 of
duration 256h, etc. Our speech-biased learner exposed to
long-forms is trained separately on 2 training sets of duration
64h, 4 of duration 32h, etc (see Appendix A for more details).

Apart from the training data quantity, we employ the
same auditory baseline, learners, and ABX discrimination
test as in Experiment 1.
3.2. Results

Let us first focus on the top panels (a) and (b) of Fig.
5 showing the native discrimination and native advantage
obtained by learners trained on audiobooks. Panel (a) shows
that the native discrimination obtained by learners supple-
mented with inductive biases plateaus at 89.4% after 128
hours of data, resulting in native learners that are 16.6% bet-
ter at discriminating native sounds than non-native learners
(solid orange lines of panels (a) and (b)). Without inductive
biases (blue curve), the base learner exhibits significantly
worse performance, both in terms of native discrimination

3The Bitter Lesson of Rich Sutton: http://incompleteideas.net/

IncIdeas/BitterLesson.html
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and native advantage. However, on the 1024-hour-long train-
ing set, both types of learners eventually catch up. This
can be explained by the highly curated nature of the data
our learners are trained on, as we will see in subsequent
Experiments.

Figure 5: Results of Exp. 2: Effect of the quantity of data.
Comparison of our base learner (trained without inductive
biases, in blue) and our speech-biased learner (trained with
inductive biases, in orange). Top panels (a) and (b) show the
native discrimination and the native advantage obtained by
learners trained on audiobooks. Bottom panels (c) and (d)
correspond to learners trained on long-forms. Each learner is
trained on either American English or Metropolitan French.
Error bars represent standard errors computed across mutually
exclusive training sets whose number depends on the quantity
of data.

The bottom panels (c) and (d) illustrate radically dif-
ferent trends when learners are exposed to ecological long-
forms. Starting with the base learner (blue dot-dot-dashed
lines), its native discrimination plateaus at 81.3% after 64
hours of data, with no benefit from additional exposure; and
its native advantage remains relatively flat and close to 0%
(panel (d)). In contrast, our speech-biased learner exhibits a
higher discrimination performance and develops a positive
native advantage with increasing exposure. The contrast
across learners is even more striking when we consider
quantity of speech, rather than quantity of audio. Indeed,
the base learner trained on 512 hours of long-forms will
receive approximately 100 hours of speech (Table 1). That
said, the base learner trained on 512 hours of long-forms
does not even reach performance comparable to that of the
speech-biased learner trained on 32 hours of long-forms.
Thus, quantity of speech alone is not sufficient to explain
the difference in behavior we observe between our learners
trained with or without inductive biases. Instead, it suggests
that the inductive biases themselves are responsible for the
radically different behavior we observe.

3.3. Discussion
This Experiment shows that it does not take a great deal

of highly curated audiobooks for our base learner to de-
velop a native advantage. However, on long-forms, our base
learner plateaus after 64 hours of audio and fails to develop a
language-specific perceptual space, unlike what we observe
with our speech-biased learner. Interestingly, a systematic
review suggests infants accumulate between 60 and 1,000h
of infant-directed speech in the first year of life (Cristia,
2019), and there is about 128h of speech in our 1,024h-long
long-form dataset. Although the present manipulation covers
only the low end of this range, the plateau observed by 64h
of audio (roughly 12h of speech) in the long-form condition
suggests that further increasing the training set size would
not result in the emergence of perceptual attunement. Thus,
from this work, it does appear to be the case that, when faced
with ecological long-forms, inductive biases are necessary
for our learner to develop a language-specific perceptual
space and to reproduce perceptual attunement.

One may wonder if a more powerful statistical learning
algorithm with no inductive biases would succeed in re-
producing perceptual attunement from child-centered long-
form recordings – perhaps with even more data. In our view,
a more powerful pure statistical learning algorithm may pick
up on more of the structure of noise and distortions, lead-
ing to a more general and non-language-specific perceptual
space. Nonetheless, we may be proven wrong by further
work.

4. Experiment 3: ablation study
Experiments 1 and 2 strongly suggest that our three

inductive biases are crucial for perceptual attunement to
emerge from long-form recordings. But what is their indi-
vidual contribution? One way to assess this is via an ablation
study, i.e., one in which each component is turned off. This
is what we do in the present Experiment.
4.1. Methods

In addition to using the same base and speech-biased
learner as in Experiment 1, we also create other learners in
which each of the inductive biases (Voice Activity Detec-
tion, Pseudo Speaker Separation, Data Augmentation) can
be turned on or off. Note that Pseudo Speaker Separation
cannot be activated without Voice Activity Detection also
being activated. This results in six learners. We do not
include a baseline since it is the same as in Experiment
1. The same ABX discrimination test is also used as in
Experiment 1.
4.2. Results and Discussion

Inspection of Table 2 suggests that for the audiobooks,
the Voice Activity Detection and the Pseudo Speaker Sep-
aration mechanisms have little effect on the performance
obtained by our base learner (lines 1, 2, and 5). This is
most certainly due to the high proportion of speech and
the long speaker turns found in audiobooks (see Table 1).
It appears that Data Augmentation mechanism is the most
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Native Native
Corpora # Inductive biases discrimination (%) advantage (%)

Audiobooks

1 none 87.37 11.01
2 VAD 87.73 12.95
3 DA 88.98 16.00
4 VAD + DA 89.37 14.87
5 VAD + PSS 87.37 10.70
6 VAD + PSS + DA 89.51 16.53

Long-forms

7 none 81.41 -0.15
8 VAD 84.64 1.32
9 DA 83.96 0.63
10 VAD + DA 84.64 1.50
11 VAD + PSS 84.53 1.32
12 VAD + PSS + DA 85.09 2.45

Table 2
Results of Exp. 3: Ablation study. All models are trained on 128 hours of audio taken from audiobooks (top panel) or long-forms
(bottom panel). VAD stands for Voice Activity Detection. PSS stands for Pseudo Speaker Separation. DA stands for Data
Augmentation. The PSS mechanism can not be activated without the VAD mechanism. Lines numbered 1 and 7, where none of
the inductive bias is activated, correspond to the base learner. Lines numbered 6 and 12, where all of the inductive biases are
activated, correspond to the speech-biased learner.

impactful mechanism, with a drop of up to 5% absolute
native advantage when it is not included (lines 1 and 3).
However, note that results of Fig. 5 suggest that the Data
Augmentation mechanism has a beneficial impact only for
low data quantities.

The results obtained by the learner trained on long-forms
suggest that, among all three inductive biases, Voice Activity
Detection plays the most crucial role, with a drop of up to
3.2% absolute native discrimination when it is not included
(lines 7 and 8). The learner trained with both the Voice Ac-
tivity Detection and the Pseudo Speaker Speaker Separation
mechanisms reaches a similar performance than the learner
trained with the Voice Activity Detection mechanism alone
(lines 8 and 11). However, the best native discrimination and
the best native advantage are obtained by our speech-biased
learner, i.e., trained with all three inductive biases, which
suggests that all three biases contribute to the emergence of
a native advantage (line 12).

5. Experiment 4: the effect of the
speech/non-speech ratio
In this Experiment, we focus on the largest difference be-

tween long-forms and audiobooks: the proportion of speech
as opposed to non-speech in the recordings (20%-80% ver-
sus 100%-0%, respectively; Table 1). This difference is the
primary reason why we introduced a filtering mechanism
(the voice activity detection, VAD, Fig. 3) to shield our
learner from the large quantity of non-speech present in
long-forms. In the current Experiment, we ask: What is the
real impact of this particular inductive bias? We study this
by providing our speech-biased learner with input containing
varying amounts of non-speech, as if their VAD mechanism
was dysfunctional.

5.1. Methods
To better control for audio quality and quantity, we em-

ploy the same 128h audiobooks training set as in Experiment
1. We simulate a dysfunctional VAD mechanism that allows
non-speech to leak in by adding to the training set vary-
ing amounts of non-speech sections extracted from long-
forms. Thus, the learner always receives 128h of speech,
but the total quantity of input audio data varies, so that the
proportion that is speech varies across 4 conditions, from
100% speech to an eighth of speech (i.e., 128h of speech in
1024h of audio). We employ the same speech-biased learner,
auditory baseline and machine ABX discrimination test as in
Experiment 1.
5.2. Results and discussion

Focusing first on panel (a) of Fig. 6, results indicate
that the lower the proportion of speech, the lower the native
discrimination. Regarding native discrimination, the speech-
biased learner trained exclusively on speech (128 hours)
scores 4.2% higher than the same learner trained on only
an eighth of speech, with the rest being non-speech (cor-
responding to 128 hours of speech and 896 hours of non-
speech).

Importantly, results show that our speech-biased learner
is robust to a certain amount of non-speech, as shown by
the native discrimination of 88.4% developed by learners
trained on half of speech, half of non-speech (128 hours of
each). More surprisingly, the learner trained on an eighth
of speech still exhibits a higher native discrimination than
the auditory baseline (dashed black line). This shows that
despite the important quantity of non-speech segments in the
training set, the learner still develops a perceptual space in
which sounds are accurately discriminated.

Turning to panel (b), the effect of the proportion of non-
speech segments over speech segments is even greater on
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Figure 6: Results of Exp. 4: Simulating a dysfunctional
voice activity detection mechanism. Native discrimination
(panel (a)) and native advantage (panel (b)) obtained by our
learner supplemented with inductive biases, depending on the
proportion of speech (in green) and non-speech (in pink) in
the training set. Learners are trained on 128 hours of English
and French audiobooks (first column) to which we added a
fixed quantity of non-speech segments drawn from long-forms:
128 hours (second column), 384 hours (third column), and 896
hours (fourth column). The dashed black line corresponds to
the score obtained by a spectral representation typically used
for speech recognition (39 mel-frequency cepstral coefficients).

the native advantage. Indeed, learners trained exclusively on
speech exhibit a native advantage of 16.5%, while this goes
down to 2.5% for learners trained on an eighth of speech.

Together, these results suggest that the proportion of
non-speech segments in the input harms both the native
discrimination and the native advantage. Although it is dif-
ficult to provide precise evidence on this, we hypothesize
that the perceptual space the learner develops during train-
ing becomes less relevant to discriminate between speech
sounds as the subspace allocated to discriminate between
non-speech sounds grows.

6. Experiment 5: sensitivity to noise and
reverberation
In this Experiment, we turn to another important dif-

ference between audiobooks and long-forms: the quality
of the speech signal itself. More specifically, how do the
different degradations that occur in ecological data affect
the perceptual space developed by our learner? To answer
this question, we trained our learner on audiobooks that
we corrupted by manipulating two major factors: additive
background noise and reverberation, which are prevalent in
long-forms. In this Experiment, we examine performance
obtained by our speech-biased learner because: 1) simulating
non-speech found in naturalistic data (required by the base
learner) from audiobooks is not trivial as audiobooks contain

almost exclusively speech; 2) if any detrimental effect is
observed on the performance obtained by our speech-biased
learner, then it is very likely that an even bigger effect
will be observed on our base learner, as the latter does not
include mechanisms aimed at overcoming difficulties found
in naturalistic data.
6.1. Methods

To study the effects of audio degradations, we created
a new dataset by contaminating the audiobook data used
in Experiment 2 with additive noise and reverberation. For
the additive noise, we extracted various domestic noises
from long-forms, as detailed in Appendix D. For the re-
verberation, we used two sets of impulse responses, the
MIT Acoustical Reverberation set (Traer and McDermott,
2016) and the EchoThief impulse response library (Warren,
2013), whose combination resulted in 385 impulse responses
acquired in a wide variety of places. We then applied these
two sources of contamination as follows.

We started with speech segments extracted from the
English and French audiobooks. For each speech segment,
we built a noise segment of the same duration by crossfading
successive noise sequences with a crossfade duration of 50
ms. To simulate a realistic acoustical scene, we randomly
chose two impulse responses: the first was convoluted with
the speech segment, and the second with the noise seg-
ment. It is only when the speech and the noise segments
have been convoluted that they are normalized and added
together. This effect makes the speech segment seem to exist
in one location and the noise segment in another. Using
this pipeline, we examine the audiobook corpora corrupted
with: 1) reverberation only; 2) additive noise only for a
signal-to-noise ratio uniformly sampled between 0 and 15
dB; and 3) both reverberation and additive noise (which
we called simulated long-forms condition, and for which
a comparative analysis in terms of SNR and 𝐶50 can be
found in Appendix E). We employ the same speech-biased
learner and the same machine ABX discrimination test as in
previous experiments.
6.2. Results

In general terms, Fig. 7 shows that challenging acoustic
conditions negatively impact the learning outcomes of our
speech-biased learner, yielding lower native discrimination
and lower native advantage for all conditions compared to
the clean one.

Applying additive noise to the training set causes only a
slight decrease in the performance obtained by our speech-
biased learner. The drop in performance is more important
when reverberation is applied. And the worst performance
is observed when both additive noise and reverberation are
applied to the training set.

May this negative effect be overcome by adding more
data? Inspection of the curves as a function of data quantity
suggests that our learner’s native discrimination and native
advantage both plateau after 128 hours of speech, regardless
of the acoustic condition, and thus more data is unlikely to
solve the problem. Therefore, it appears that additive noise
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Figure 7: Results of Exp. 5: Sensitivity to noise and rever-
beration. Panel (a) and (b) indicate the native discrimination
and the native advantage, respectively, obtained by our speech-
biased learner (trained with inductive biases) as a function of
both the quantity of speech, and varying acoustic conditions.
Learners are trained on clean read-speech segments extracted
from audioboks (solid line). These clean read-speech segments
are corrupted with 1) additive noise for a signal-to-noise
ratio (SNR) randomly chosen between 0 and 15 dB (dashed
line); 2) reverberation (dotted line); 3) both reverberation and
additive noise (dash-dotted line). The latter corresponds to the
simulated long-form condition. Error bars represent standard
errors computed across mutually exclusive training sets whose
number depends on the quantity of data.

and reverberation strongly degrade representations learned
during training, leading to a less language-specific percep-
tual space in situations where signal and noise compete with
each other than in cleaner conditions.
6.3. Discussion

Results in this Experiment replicate those in Experiment
2: An increase in the quantity of data yields a higher native
discrimination and a higher native advantage, regardless
of the acoustic condition, although performance eventually
plateaus. The present Experiment adds an important caveat:
the perceptual space developed by our learner becomes
less language-specific (i.e., lower native advantage) when
it is exposed to more challenging acoustic conditions, with
reverberation having a massive negative effect, and additive
noise a substantially smaller one. Thus, our speech-biased
learner is sensitive to the lower acoustic quality found in
ecological recordings, and the ensuing negative effect cannot
be solved by increasing the quantity of data.

7. Experiment 6: using audiobooks to
simulate long-form recordings
In Experiments 4-5, we covered the impact of some

of the most important differences between audiobooks and
long-forms, namely the proportion of speech, and their qual-
ity in terms of presence of additive noise and reverberation.
In this final Experiment 6, we ask a slightly different question
connected to the importance of understanding the differ-
ences between audiobooks and long-forms for the purposes
of modeling. Audiobooks are easier to collect and share than
long-forms, and simulated long-forms could be a useful tool

Figure 8: Results of Exp. 6: Comparing real against simu-
lated long-forms Comparison of native discrimination (panel
(a)) and native advantage (panel (b)) of learners trained
with inductive biases on long-forms (dot-dot-dashed line) or
simulated long-forms (dash-dotted line). Simulated long-forms
are generated using read-speech retrieved from audiobooks
whose speech segments are corrupted with additive noise and
reverberation. Error bars represent standard errors computed
across mutually exclusive training sets whose number depends
on the quantity of data.

to calibrate the amount of data collection needed to obtain
enough statistical power in a computational modeling study.
So, can we use simulated long-forms as a proxy for real long-
forms? To answer this, we carry out a direct comparison
between our learner trained with inductive biases on long-
forms, and the same learner trained on simulated long-forms.
7.1. Methods

We focus on the simulated long-forms that are most
challenging, those with reverberation and additive noise for
a random SNR between 0 and 15 dB (dash-dotted orange line
of Fig. 7). As in Experiments 2 and 5, we vary the quantity
of data. In this Experiment, we employ only the speech-
biased learner and the same ABX discrimination test as in
Experiment 1.
7.2. Results and discussion

Fig. 8 shows the native discrimination and native advan-
tage obtained by our speech-biased learners when trained
on varying quantity of speech extracted from long-forms,
or simulated long-forms. Learners have essentially identi-
cal native discrimination when trained on long-forms or
simulated long-forms (panel (a)). Overall, the close match
between learners trained on real and simulated data indicates
that noise and reverberation capture the essential compo-
nents of ecological recordings and can be used to simulate
the performance obtained by our learner.

One could expect a similar match in terms of native
advantage. Surprisingly, however, learners trained on long-
forms exhibit a substantially lower native advantage than
learners trained on simulated long-forms (panel (b)). This
mismatch in terms of native advantage must then be due
to other characteristics of ecological speech that are not
captured in our simulated long-forms. Beyond acoustic char-
acteristics, audiobooks likely have lower speech rate, greater
hyperarticulation, and are primarily composed of complex
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Experiment 1 Our base learner trained on audiobooks reproduces perceptual attunement in English and French
The same learner fails to do so when trained on long-forms
Inductive biases allow for full recovery of native discrimination, and partial recovery of native
advantage

Experiment 2 Our base learner never reproduces perceptual attunement on long-forms, even with more data as
performance plateaus

Experiment 3 Inductive biases work in concert to achieve perceptual attunement, showing a supra-additive
effect
The higher performance gain is brought by the voice activity detection mechanism

Experiment 4 When non-speech is added, native discrimination diminishes and native advantage vanishes
Experiment 5 When background noise and reverberation are applied, native discrimination diminishes and native

advantage vanishes, despite the data augmentation mechanism, and regardless of data quantity
Experiment 6 Long-forms and simulated long-forms yield similar native discrimination, but different native

advantage, i.e., there remain other differences between long-forms and simulated long-forms
(e.g., hyperarticulation found in read speech)

Table 3
Summary of key results

utterances with diverse lexical items, features that in the
language acquisition literature have been argued to be ben-
eficial for infant learning (Rowe, 2012; Weisleder and Fer-
nald, 2013; Anderson, Graham, Prime, Jenkins and Madi-
gan, 2021). In contrast, ecological data contains infant-
directed speech which has been claimed to facilitate learn-
ing (Eaves Jr, Feldman, Griffiths and Shafto (2016); Adri-
aans and Swingley (2017), but see McMurray, Kovack-Lesh,
Goodwin and McEchron (2013) for a different view). Further
investigation is needed to verify the contributions of these
additional characteristics on artificial learners.

8. General discussion
We carried out six experiments investigating how the

design of the learner and the type of data it receives affect
perceptual attunement. These are summarized in 3. We
discuss below limitations of our study and ways in which
future modeling work can improve upon it. Before doing so,
we point out three predictions for human infant data drawn
from the present work.
Predictions for human infant studies and future experi-
mental work. The first prediction is that quantity of input is
beneficial to infants’ ability to discriminate native-language
phonetic contrasts (Fig. 5 and 7, and Li, Schatz, Matu-
sevych, Goldwater and Feldman (2020); Schatz et al. (2021)
for relevant previous results). Our results suggest that the
beneficial effect of input quantity still holds in challenging
acoustic environments, although with different slopes (Fig.
7), for both types of learners (Fig. 5). This prediction is
largely compatible with current views of language acquisi-
tion and empirical evidence correlating input quantity with
vocabulary and standardized language tests (Weisleder and
Fernald (2013); Gilkerson, Richards, Warren, Oller, Russo
and Vohr (2018), but see Sperry, Sperry and Miller (2019)
for a different view). The evidence for input quantity effects
on native advantage specifically is scarce and equivocal
(Cristia, 2020), but at least one study has found compatible
results (Marklund, Schwarz and Lacerda, 2019).

The second prediction is that both acoustic and speech
quality positively impact infants’ ability to discriminate
native-language phonetic contrasts. We have shown, in Fig.
7, that poor signal quality of speech segments yields lower
discrimination accuracy and poorer language attunement.
We found a similar result when speech-biased learners
were partially trained on non-speech segments (Fig. 6).
To the best of our knowledge, input quality thus defined
has not been linked to infants’ discrimination abilities of
phonetic contrasts yet. That said, it is possible that infants
also have access to additional input filters, leading them
to preferentially learn on clean and well-formed speech
sounds, rather than noisy segments (non-speech, far-field
speech, etc.). Indeed, a prior computational study found
that prosodic exaggeration (higher pitch, greater duration
of some sounds, etc.) found in infant-directed speech may
facilitate vowel learning by enhancing separability between
vowel categories (Adriaans and Swingley, 2017).

A third prediction is that inductive biases are necessary
to drive language attunement in the wild (panels (c) and
(d) of Fig. 5). We showed that experiencing clean read
speech was sufficient for either learner, trained with or
without inductive biases, to become attuned to its language
of exposure. However, the base learner fails to show any
perceptual attunement when exposed to child-centered long-
forms. It is only when supplemented with inductive biases
that the learner exhibits a significant level of attunement
(panel (d) of Fig. 5). We are not certain of how precisely this
prediction could be verified in human infants, but we hope
developmental scientists will reflect on this.

We also recommend additional studies to check whether
human infants have filters like the ones with which we
endow our biased learner. Concerning the voice activity de-
tection mechanism, there is evidence suggesting that humans
are born with a preference for listening to speech (Cooper
and Aslin, 1990; Vouloumanos and Werker, 2007), demon-
strating, therefore, an early ability to discriminate between
speech and non-speech segments. As for the pseudo speaker

M. Lavechin et al.: Preprint submitted to Elsevier Page 13 of 203.2 On the importance of inductive biases for early phonetic learning 117



Statistical learning models of early phonetic acquisition struggle with child-centered audio data

separation mechanism, evidence suggests that newborns can
discriminate their mother’s voice (Mehler et al., 1978; De-
casper and Fifer, 1980) but also voices of unfamiliar speakers
(Decasper and Prescott, 1984; Floccia et al., 2000). Infants
also progressively learn representations that are invariant
with respect to a change in speaker (Seidl et al., 2014;
Bergmann et al., 2016; Choi and Shukla, 2021). However, to
our knowledge, there is no experimental evidence document-
ing something similar to our data augmentation mechanism,
and in particular robustness to reverberation in infants (see
Beeston et al. (2014) for evidence in adults).

Further work is needed to shed light on how infants
may come to have such biases. We suspect to a certain
extent they are inherited from our evolutionary past, and to
another extent they are learned. This is similar to theoretical
proposals for face perception. Inspired by work on chicks
(and other social vertebrates), Morton and Johnson (1991)
proposed two mechanisms that work in concert to explain
human infants’ preference for faces from birth, together with
strong changes over the course of development, CONSPEC
and CONLERN. CONSPEC is an inductive bias that guides
human newborns’ preference for human face-like patterns,
and CONLERN allows them to learn facial features of
specific individuals. Extrapolating to speech, we suspect that
a better understanding of how these (or other) speech biases
come to be active in human infants will minimally require
a concerted theoretical and empirical effort by modelers,
developmental scientists, and ethologists.

Finally, we firmly believe that considering input data that
do not reflect characteristics of children language environ-
ments can lead us to underestimate the complexity of a given
learning problem – that is, we may believe a problem has
been solved when it has only been solved on unrealistic data
–, or overestimate the power of a proposed mechanism –
that is, we may believe a mechanism is sufficient to explain
the phenomenon that is being modeled when it is not –.
This is not to say that simplification of the input data in
computational modeling studies is an insightless enterprise.
In fact, checking computational models against data, which
may not necessarily reflect real-world properties can help us
gain a better understanding of the phenomena being mod-
eled. However, we argue here that a computational model of
language acquisition should not only be evaluated based on
its ability to reproduce infants’ developmental trajectories,
but also on its ability to learn from input that is as close as
possible to the sensory signals infants actually experience.
Limitations and further modeling work. Our study is,
to our knowledge, the first fully-implemented proof of a
statistical learning account additionally including inductive
biases for early phonetic learning. But we are certain it will
not be the last one. Despite the benefits of the proposed
inductive biases in improving native discrimination and en-
abling the emergence of perceptual attunement, our speech-
biased learner trained on long-forms still did not achieve the
same level of native advantage as the base learner trained
on audiobooks (as shown in Figures 4 and 5). If we want to
tackle the complexity inherent to long-forms, it is very likely

that we should aim at finding what other inductive biases
might guide phonetic learning in our algorithms.

Indeed, as shown in Experiment 5, our speech-biased
learner is still greatly sensitive to additive background noise
and reverberation that are ubiquitous in children learning en-
vironments. This background noise issue could be alleviated
with an additional mechanism filtering out segments with
a low speech-to-noise ratio. Such a filter remains plausible
as evidence shows that 4.5-month-olds prefer listening to
speech in a quiet than in a noisy environment, suggesting
that they are aware of the presence of noise (Newman
and Hussain, 2006). Similarly, overlapping speech, found in
long-forms but not in audiobooks, may necessitate an ad-
ditional separation mechanism. Indeed, overlapping speech
represents a challenging source of data for phonetic learning
as sounds produced by different speakers blend together.
Such a source separation mechanism may take place in
infants as evidence for the so-called ’cocktail party effect’
(our ability to focus our auditory attention on a particular
source while filtering out other competing sources) has been
found at 7.5 months (Newman, 2005). Finally, long-forms
contain both hyperarticulated infant-directed speech and
spontaneous speech that may sometimes be hypoarticulated.
It is possible that a mechanism forcing the algorithm to
learn preferentially on better articulated speech segments
may help improve both native discrimination and native
advantage. These three types of biases could meaningfully
adopt by and large the same approach we had here, including
minimally audiobooks and long-forms as input, and utilizing
an ablation approach to assess the contribution of individual
components.

In this study, we examined if our learners could repro-
duce perceptual attunement such as measured by the native
advantage. However, most research on perceptual attune-
ment in humans only covers a few contrasts and it is unclear
to which extent human infants or adults exhibit a native
advantage on other contrasts that remain to be studied. In the
absence of systematic data across contrasts and populations,
we do not know the size of infants’ native advantage and
are limited to a quantitative comparison between infants and
artificial language learners. However, further work could
aim at comparing the effect size of the native advantage
obtained by our learners with those of infants such as pro-
vided by meta-analytic studies (see methodology proposed
in Blandón, Cristia and Räsänen, 2021).

Other aspects not addressed here will require substan-
tially different modeling decisions. Beyond inductive biases
that apply to the auditory stream, infants may use more
than just audio to learn about the phonemes of their native
language. Visual cues, such as lip movements, may comple-
ment the audio channel and help infants achieve better and
possibly faster learning. Modeling research combining other
modalities typically uses even more manicured input than
speech-only work (with the exception of Alishahi, Chrupała,
Cristià, Dupoux, Higy, Lavechin, Räsänen and Yu, 2021).
Furthermore large scale naturalistic audio-visual long-form
data does not currently exist. It would be necessary for these
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data to be similarly ego-centered as our long-forms, since
modeling development from a third- versus a first-person
perspective implies distinct challenges. Recent discussions
also highlight the potential role of supervisory signals Mc-
Murray (2022a), considering the overwhelming evidence
that perception continues to develop beyond the first year.
While promising, incorporating supervisory feedback in our
learner would require substantially different modeling ap-
proaches than employed here, both in terms of input and of
mechanisms.

9. Conclusion
Recent advances in machine learning algorithms that

learn from raw speech, together with ongoing efforts to
acquire large-scale datasets of infants’ language environ-
ments, make building ecologically valid models of language
acquisition feasible. Through six experiments, we argued
that statistical learning leads to language-specific perception
provided it is focused on clean speech signal, either as input
or thanks to processing mechanisms; and that such biases
are required given the uniquely difficult input data afforded
to human infants. Evidently, our work does not constitute
a proof of infeasibility. Perceptual attunement to sounds
may be feasible with purely statistical algorithms that are
yet to be discovered. However, we strongly believe that
for researchers to discover such mechanisms, computational
models of early language learning must address the problem
in its full complexity, learning from the same data than that
available to infants. In that regard, we believe that our work
paves the way for a deeper understanding of mechanisms
involved in early language acquisition.

Data and code availability
We used audiobooks – publicly available from LibriVox

(Kearns, 2014) – and child-centered long-forms4 to train our
learners. Long-forms are available on HomeBank and via
ChildProject repositories (Bergelson, 2017; Canault et al.,
2016a; Cristia, 2021; Lavechin and Cristia, 2021). Access
to long-forms requires ethical training and full approval by
the principal investigator(s) in charge. Code to reproduce
the experiments will be made available in a public GitHub
repository upon publication.
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A. Training sets
In this section, we first describe our data sets, and the

differences between long-forms and audiobooks. Next, we
describe how the ABX evaluation set has been built to assess
phonetic discrimination of our models, and in particular,
which phonemes have been retained for each of the two
target languages.

For each language (English or French), and each au-
dio source (audiobooks or long-forms), we built separate
training sets by randomly splitting the whole set of audio
segments into mutually exclusive training sets of 8 hours.
8-hours training sets were then merged two by two to build
the 16-hours training sets. This procedure was repeated until
a single training set covering the entirety of the dataset is
obtained. Therefore, the number of subsets depends on the
total amount of data available.

On audiobooks, 128, 64, 32, 16, 8, 4, 2 and 1 training
sets were built whose duration was 8, 16, 32, 64, 128, 256,
512 and 1,024 hours respectively, which contain both speech
and non-speech segments in the case of our base learner; and
only speech as detected by the VAD pretrained model in the
case of our speech-biased learner.

For long-forms, the procedure resulted in 16, 8, 4, 2 and
1 training sets whose duration was 8, 16, 32, 64 and 128
hours respectively containing only speech as detected by the
pretrained VAD model. Similarly 32, 16, 8, 4, 2, 1 training
sets were built whose duration was 8, 16, 32, 64, 128, 256,
and 512 hours respectively (containing both speech and non-
speech). In Experiment 1, only the 128 h sets were used. The
other sets were created for use in Experiments 2 and 4.

B. Learners: implementation details
B.1. Contrastive predictive coding

As proposed in (Kharitonov et al., 2021), the encoder
𝑔𝑒𝑛𝑐 consists of a 5-layer convolutional neural network with
kernel sizes [10, 8, 4, 4, 4] and strides [5, 4, 2, 2, 2] that re-
turns a 256-dimensional vector every 10 milliseconds. The
auto-regressive model 𝑔𝑎𝑟 is a 2-layer long short-term mem-
ory network of dimension 256. The model is asked to predict
up to 𝐾 = 12 time steps in the future (which is equiva-
lent to 120 ms). The predictor 𝑔𝑝𝑟𝑒𝑑 is a single multi-head
transformer layer with 𝐾 = 12 heads, each predicting at
time step 𝑘 ∈ {1, ..., 12}. Negative samples are drawn from
sequences that are temporally close to the sequence the
positive sample are drawn from. More precisely, creating
a batch consists of selecting 64 successive sequences in
the case of the domain-general learner (or 64 successive
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sequences that have been pronounced by the same speaker
for the domain-specific learner). For a current sequence 𝑠𝑒𝑞𝑖,negative samples are taken from all other sequences 𝑠𝑒𝑞𝑗 ,with 𝑗 ≠ 𝑖. All models have been trained on 8 GPUs with
batches of 64 sequences, and each sequence has a duration
of 1.28 seconds. All models are trained until convergence,
and the best epoch is selected according to validation loss
(5% of the original training set).
B.2. Inductive biases
Voice Activity Detection. Speech segments were identified
using a voice type classification model (Lavechin et al.,
2020) that has been specifically trained on a multilingual
corpus of long-forms. This pretrained model partitions the
audio stream into segments belonging to one or more of
the following classes: 1) KCHI, for vocalizations produced
by the child wearing the recording device; 2) OCH, for
vocalizations produced by any other children; 3) FEM, for
female adult speech; 4) MAL, for male adult speech and
5) SPEECH, for when there is speech. When none of the
5 classes were activated, the segment was considered to be
non-speech. Only segments belonging to the adult (MAL or
FEM categories) were selected; thus, segments with speech
by children or containing only non-speech were filtered out.

For long-forms, a total of about 200 hours of speech
was extracted this way. Approximately 1000 hours of speech
were extracted from the audiobooks.
Pseudo Speaker Separation. For long-forms, the category
information (MAL, FEM) was combined with the long-
form unique identifier to approximate speaker identity. We
would have liked to use a speaker diarization system but
no such system performs reasonably well on long-forms
(García, Villalba, Bredin, Du, Castán, Cristia, Bullock, Guo,
Okabe, Nidadavolu, Kataria, Chen, Galmant, Lavechin, Sun,
Gill, Ben-Yair, Abdoli, Wang, Bouaziz, Titeux, Dupoux, Lee
and Dehak, 2020). During the CPC training procedure, this
results in positive and negative examples that have been
pronounced by: 1) the same category (MAL or FEM); and 2)
within the same long-form. Note that the second constraint
is further reinforced by the Temporal Proximity Sampling
mechanism which ensures positive and negative examples
are temporally close to one another. For audiobooks, and
contrary to long-forms, the speaker identity was retrieved
from the metadata, because it is constant throughout each
recording. We used this information as-is in the Pseudo
Speaker Separation mechanism. Consequently, positive and
negative examples during the CPC training procedure were
drawn exactly within speakers (and not within pseudo speak-
ers as in the case of long-forms).
Data Augmentation. A distinction needs to be made about
the way we 1) simulated long-forms by adding additive
noise and reverberation on clean-read speech taken from
audiobooks (section 6.1); and 2) apply data augmentation
methods during training. When simulating long-forms, the
training set is contaminated and then stored on disk. In other
words, a clean segment of speech will always be associated
to the same transformation (additive noise, and reverberation

using impulse responses), which has for effect to make the
learning process more challenging. In contrast, in the Data
Augmentation mechanism, the modifications applied to the
audio sequences are performed in an online fashion. This has
for effect that a given audio sequence can be associated to
multiple different transformations (chosen randomly), there-
fore forcing the model to extract features that are invariant
with respect to the applied transformations.

Furthermore, following (Kharitonov et al., 2021), only
past sequences were augmented with pitch modification and
artificial reverberation. Modifications applied to the past
sequences are: pitch shifting by a random integer between
300 and -300 (measured by 1/100 of a tone), and artificial
reverberation using a random room size.

C. The machine ABX discrimination test
The logic of the ABX is represented in Figure 9. To build

the ABX evaluation set, 10 hours of read-speech in Amer-
ican English and Metropolitan French were downloaded
from Common Voice (Ardila et al., 2020). Segments were
pronounced by 24 speakers whose gender was balanced in
both languages. The phone-level alignment was obtained
by aligning the audio stream with its transcript using Kaldi
recipes (Povey, Ghoshal, Boulianne, Burget, Glembek, Goel,
Hannemann, Motlicek, Qian, Schwarz et al., 2011). The en-
suing phonetic inventory in International Phonetic Alphabet
(IPA) standard for both languages is shown in Table 4.

D. A database of noises to use as additive noise
We extracted all non-speech segments from SEEDLingS’

long-forms. For each non-speech segment, the pretrained
voice type classification model (Lavechin et al., 2020)
returns a probability that can be interpreted as how confident
the model is that the segment is indeed non-speech (com-
puted as 1-𝑝𝑠 where 𝑝𝑠 is the probability of the segment being
speech). All non-speech segments whose probability of be-
ing non-speech was lower than the median non-speech prob-
ability were discarded. We did so to minimize the amount of
segments that have been wrongly identified as being non-
speech when in fact they do contain speech. Finally, 1,024
hours of non-speech segments were kept among those having
the highest energy to ensure that segments containing only
white noise (which are closer to silence) were discarded.
Based on manual inspection of a small subset, selected non-
speech segments contained various noises including running
water, animal sounds, vacuum cleaner, heartbeats of the key
child, etc.

E. Noise and reverberation in long-forms and
simulated long-forms
We used the same pretrained model Lavechin et al.

(2022) as in Fig. 1 to study the distributions of the SNR
and the 𝐶50 of utterances extracted from English long-forms
or simulated long-forms (i.e. audiobooks contaminated with
noise and reverberation). While Fig. 1 revealed an important
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mismatch in terms of SNR and 𝐶50 between long-forms and
audiobooks, we observe in Fig. 10 that this difference has
been reduced between long-forms and simulated long-forms.

On average, utterances extracted from long-forms have
an SNR of 10.4 dB while those from simulated long-forms
have an SNR of 10.6 dB. The mismatch in terms of 𝐶50 has
also been reduced with an average of 29.4 dB for long-form
utterances and 15 dB for simulated long-form utterances (as
opposed to 54 dB for audiobooks). The lower 𝐶50 obtained
on simulated long-forms indicate those contain more rever-
berant environments than real long-forms. Similar results
were found on French.
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Figure 9: (The machine ABX discrimination test) a) The machine is given 3 stimuli 𝐴, 𝐵 and 𝑋 whose representations 𝑅𝐴, 𝑅𝐵
and 𝑅𝑋 are extracted by the composition 𝑔𝑒𝑛𝑐◦𝑔𝑎𝑟 of the encoder and the autoregressive model of CPC; b) Distances between 𝑅𝐴
and 𝑅𝑋 and 𝑅𝐵 and 𝑅𝑋 is computed with dynamic time warping (DTW). In the example, DTW cost matrix and shortest path
(in white) is shown for A = [bup] and X = [bœp]; c) If A and X are different occurrences of the same triphone (e.g. [bup]), and
B an other triphone differing only in its center phone (e.g. [bœp]), the machine is right if 𝑅𝐴 is closer to 𝑅𝑋 than 𝑅𝐵, wrong
otherwise.

Manner of articulation Metropolitan French American English
Consonants

Stops: p,b,t,d,k,g p,b,t,d,k,g
Nasals: m,n,ñ m,n,N
Fricatives: f,v,s,z,S,Z,K f,v,T,D,s,z,S,Z,h
Approximants: j,w,l j,ô,w,l
Affricates: Ã Ã,Ù

Vowels
Orals: i,y,e,ø,œ,E,a,@,O,o,u i,I,E,æ,Ä,2,5,u,U,O,A
Nasals: Ã, Ẽ, œ̃,Õ
Diphtongs: aI,OI,aU,eI,oU

Table 4
Evaluated phonetic inventory in Metropolitan French and American English in International Phonetic Alphabet (IPA) standard.

Figure 10: (The quantity of noise and reverberation in long-forms and simulated long-forms) Speech-to-Noise Ratio (SNR) and
𝐶50 distributions on 16 hours of speech utterances extracted from long-forms (slanting hatches) or simulated long-forms (vertical
hatches). Both measures are automatically extracted using the pretrained model proposed in Lavechin et al. (2022)
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Lavechin, M., Sy, Y., Titeux, H., Cruz Blandón, M. A., Räsänen, O., Bredin,
H., Dupoux, E., Cristia, A. (2023) BabySLM: language-acquisition-friendly
benchmark of self-supervised spoken language models. Interspeech

Motivation

In section 3.1, we presented a position paper advocating the use of developmentally
plausible training sets in language learning simulations, a view shared by many in
the field (Dupoux, 2018; Warstadt & Bowman, 2022; Warstadt et al., 2023). We
presented one of our modeling investigations in Section 3.2 but limited ourselves to
evaluating the sound discrimination capabilities developed by our artificial learner.
Yet, self-supervised representation learning models trained on large quantity of
clean audio or audiovisual input have been shown to learn lexical and syntactic
aspects of their training language (T. A. Nguyen et al., 2020; Alishahi et al., 2021;
Lavechin, de Seyssel, Titeux, et al., 2022). The question that arises is whether the
same approach is applicable to our endeavor of modeling language acquisition from
ecological data?

Current benchmarks have been designed for models trained on curated training
sets, which most often consist of audiobooks in the case of spoken language models
(Kahn et al., 2020; T. A. Nguyen et al., 2020; Hsu et al., 2021). For instance, the
spot-the-word task proposed by T. A. Nguyen et al. (2020) covers a large vocabulary
specific to books, including words like ‘rhapsodize’, ‘zirconium’, or ‘tercentenary’,
which are vanishingly rare in children’s language environments. Similarly, grammat-
ical acceptability judgment tasks probe complex syntactic paradigms that are rare,
even in spontaneous adult-adult conversations. One example from BLIMP (Warstadt
et al., 2020) includes ‘Who is Bill’s nephew that won’t attack Janice listening to?’
(grammatical) versus ‘Who is Janice listening to Bill’s nephew that won’t attack?’ (un-
grammatical). Consequently, current benchmarks do not reflect the characteristics
of children’s language environment and cannot be used to evaluate models trained
on developmentally plausible training sets.
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Paper summary

In Lavechin, Sy, et al. (2023), we introduce a language-acquisition-friendly bench-
mark to evaluate written or spoken language models at the lexical and syntactic
levels. To ensure this benchmark is compatible with the vocabulary typical of
children’s language experiences, we used transcripts from various child-centered sce-
narios sourced from the CHILDES database (MacWhinney & Snow, 1985). Examples
of stimuli are available on this project page1 for the most curious of our readers.

To demonstrate the applicability of our benchmark, we use it to evaluate speech-
based and text-based models trained on developmentally plausible training sets. In
increasing order of data plausibility, we consider:

1. BabyBERTa (Huebner et al., 2021), a transformer-based language model
trained on a 5M word corpus of various child-centered situations built from
the CHILDES database (MacWhinney, 1996).

2. LSTM language models trained on the Providence corpus of spontaneous
infant-parent interactions in phonetic, orthographic, or audio form.

3. STELA models (CPC+K-means+LSTM) trained on child-centered long-forms
(the same model as used in Section 2.3 of this manuscript).

All models are trained on American English speech for a duration varying from 128
to 1,024 hours (equivalent to 1.2M and 9.6M words).

Our results indicate that speech-based language models trained directly on child-
centered long-forms perform at chance level. When abstracting away the high
variability of spontaneous speech and the difficult acoustic conditions of real-life
recordings by training on phonemes or words, the scores on the spot-the-word
and grammatical acceptability judgment tasks go up. Our LSTM model trained on
phonemes reaches 75.4% accuracy on the spot-the-word task. BabyBERTa obtains
the highest performance on the grammatical acceptability judgment task with an
accuracy of 70.4%.

In summary, our findings indicate that considering truly ecological data as input
remains beyond the capabilities of current models. To drive further advancements
in the field, we identify two outstanding challenges that must be addressed. First,
we show an important performance gap between models trained on speech and
those trained on phonetic or orthographic transcripts. This might indicate that
the acoustic units discovered by the speech-based language model lack the level

1https://marvinlvn.github.io/projects/3_project
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of abstraction found in phonemes, a lesson compatible with one of our previous
analyses (Lavechin, de Seyssel, Titeux, et al., 2022), included in Section 2.3 of this
thesis. Second, we show another important performance gap between models trained
on curated audiobooks and those trained on realistic long-forms. This suggests that
the high variability of spontaneous speech, in contrast with read speech, and the
challenging acoustic conditions found in ecological recordings severely impede the
model’s performance.
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Abstract
Self-supervised techniques for learning speech representations
have been shown to develop linguistic competence from expo-
sure to speech without the need for human labels. In order
to fully realize the potential of these approaches and further
our understanding of how infants learn language, simulations
must closely emulate real-life situations by training on devel-
opmentally plausible corpora and benchmarking against appro-
priate test sets. To this end, we propose a language-acquisition-
friendly benchmark to probe spoken language models at the lex-
ical and syntactic levels, both of which are compatible with the
vocabulary typical of children’s language experiences. This pa-
per introduces the benchmark and summarizes a range of exper-
iments showing its usefulness. In addition, we highlight two ex-
citing challenges that need to be addressed for further progress:
bridging the gap between text and speech and between clean
speech and in-the-wild speech.
Index Terms: spoken language modeling, language acquisi-
tion, self-supervised learning, child language

1. Introduction and related work
Machine learning for Natural Language Processing (NLP) has
led to models that develop linguistic competence from expo-
sure to written or spoken language. On text, Language Mod-
els (LMs) now achieve impressive performance on a wide vari-
ety of natural language understanding tasks [1]. More recently,
speech-based LMs have also shown impressive linguistic com-
petence on lexical or grammatical acceptability judgment tasks
[2, 3], or spoken language generation [4, 5]. Since these models
develop linguistic competence without the need for human la-
bels, they promise to advance our understanding of how infants
learn language[6, 7, 8]. However, if we want to maximize the
impact of the evidence obtained from LMs, it is essential to en-
sure that our simulations closely emulate real-life situations – as
advocated for syntactic acquisition in text-based LMs in [8, 9].

How can we do so? First, we should match the quantity of
data available to young infants. Although large differences exist
across cultures [10] and socioeconomic contexts [11], current
estimates of yearly speech input vary between 300 and 1, 000
hours for American English-learning children [6, 12]. This
means that by age 3, American English-learning children would
have been exposed to approximately 3,000 hours of speech – for
those who received the most speech input. Yet, by then, infants
know many words and already engage in simple conversations
[13]. Second, we should match the quality of data available to

We thank HPC resources of GENCI-IDRIS (2022-AD011012554);
ANR-19-P3IA-0001; J. S. McDonnell Foundation; ERC (ExELang,
101001095).

young infants. Contrary to LMs, infants do not learn language
by scraping the entire web or through exposure to a large quan-
tity of audiobooks. Instead, infants’ input is speech – not text
–, and it contains a relatively small vocabulary arranged in sim-
ple and short sentences, sometimes overlapping across speakers
and laced with various background noises [7, 14].

Evaluating LMs trained on quantitatively and qualitatively
plausible corpora requires the creation of adapted benchmarks,
but none exists for speech-based LMs – see [9] or the BabyLM
challenge [15] for text-based LMs. Current benchmarks us-
ing zero-shot probing tasks, although inspired by human psy-
cholinguistics (e.g., spot-the-word or grammatical acceptabil-
ity judgment tasks), have been designed for models trained on
audiobooks [2]. As a result, these benchmarks use a large vo-
cabulary specific to books (including words like ‘rhapsodize’,
‘zirconium’, or ‘tercentenary’) and probe syntactically complex
sentences that are vanishingly rare even in spontaneous adult-
adult conversation.

Here, we propose BabySLM, the first language-acquisition-
friendly benchmark to probe speech-based LMs at the lexical
and syntactic levels, both of which are compatible with the vo-
cabulary typical of children’s language experiences. Our bench-
mark relies on zero-shot behavioral probing of LMs [2] and
considers a spot-the-word task at the lexical level and a gram-
matical acceptability judgment task at the syntactic level. To
show the utility of our benchmark, we first use it to evaluate
text-based and speech-based LMs trained on developmentally
plausible training sets. The text-based LM is a long short-term
memory (LSTM) trained on phonemes or words. The speech-
based LM is the low-budget baseline used in the ZeroSpeech
2021 challenge on unsupervised representation learning of spo-
ken language [2]. Both systems are trained on Providence [16],
a dataset of spontaneous parent-child interactions. The compar-
ison between text-based and speech-based LMs shows an im-
portant gap that future work should address. Next, BabySLM
enables us to compare the performance of speech-based LMs
when trained on 1, 000 hours of speech extracted from 1) au-
diobooks, a source of training data commonly used [17, 18]; or
2) child-centered long-form recordings acquired via child-worn
microphones as people go about their everyday activities [19].
Our results reveal that speech-based LMs are overly sensitive to
the differences between clean speech and in-the-wild speech.

2. Methods
2.1. Metrics

2.1.1. Lexical evaluation: the spot-the-word task

General principle. In the lexical task, the system is presented
with minimal pairs of an existing word and a pseudo-word that
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Table 1: Lexical task. Minimal pairs of real and pseudo-words.
Phonetic (Phon.) transcriptions are given in International Pho-
netic Alphabet (IPA) standard. Orthographic (Orth.) transcrip-
tions of pseudo-words are proposed for ease of reading.

Pseudo-words Pseudo-words
Word Phon. Orth. Word Phon. Orth.

hello
h @ l oU

l @ l oU lello

thanks
T æ N k s

T E N k s thaynks
p @ l oU pello T O N k s thoanks
s @ ô oU sero T I s k s thisks
d @ l oU dello T æ m p s thamps
s @ l oU sello T æ n t s thants

cookie
k U k i:

k U t i: kootie

jump
dZ 2 m p

dZ æ m p jamp
k U n i koonie dZ 2 l k julk
ô U d i: roodie dZ 2 s k jusk
ô U t i: rootie dZ 2 f t juft
b U n i: boonie dZ 2 b s jubs

is phonologically plausible but does not actually exist [2, 20]
(examples in Table 1). The system gets a score of 1 if it returns
a higher probability for the former, and 0 otherwise. Contrary
to [2], we generate multiple pseudo-words per word. Scores are
first averaged across pseudo-words to yield per-word accuracy,
which are then averaged across all words to yield a measure of
lexical accuracy.
Task generation. We first listed all words in the American
English CHIld Language Data Exchange System (CHILDES)
database [21]. This database contains human-annotated tran-
scripts of various child-centered situations (play sessions, sto-
rytelling, etc.), making it a valuable source of vocabulary in real
children’s input. After excluding items not found in either the
Celex [22] or CMU dictionary [23] (e.g., mispronounced, incor-
rectly annotated or made-up words: ‘insectasaurus’, ‘hiphip-
popotamus’), we obtained 28, 000 word types. Pseudo-words
were produced using the Wuggy pipeline [24], which generates,
for a given word, a list of candidate pseudo-words matched for
syllabic and phonotactic structure. We applied the same post-
processing steps used in [2]. Contrary to [2], to ensure that there
is no bias from phone-based unigrams or bigrams, we balanced
the count of pseudo-words that had higher (or lower) phonemes
unigram and bigram probabilities compared to those computed
for the actual word. If a given word had only pseudo-words
with higher (or lower) unigram or bigram possibilities, it was
discarded from the evaluation set. The resulting > 90, 000
minimal pairs across 18, 000 words were each synthesized us-
ing Google Text-To-Speech (TTS) system using 10 voices (5
males, 5 females).

2.1.2. Syntactic evaluation: grammatical acceptability

General principle. In the syntactic task, the system is pre-
sented with minimal pairs of grammatical and ungrammatical
sentences across six syntactic phenomena [2, 9] (examples in
Table 2), giving the system a score of 1 when it assigns a higher
probability to the former, and 0 otherwise. We average scores
within each syntactic phenomenon, then across phenomena to
obtain our measure of syntactic accuracy.
Task generation. We generated templates for each of the six
syntactic phenomena explored. For instance, for the noun-
verb agreement phenomenon, we used templates such as “The
<noun1> <3rd person verb> <noun2>" versus “The <noun1>
<1st person verb> <noun2>". Contrary to [2], we restricted
this benchmark to simple syntactic phenomena and short sen-

Table 2: Syntactic task. Minimal pairs of grammatical (✓) and
ungrammatical (✗) sentences from each of the six syntactic phe-
nomena included in our benchmark. N is the number of 1, 000
minimal pairs within each category.

Phenomenon N Sentence example

Adjective-noun
order 1.6

✓ The good mom.
✗ The mom good.

Noun-verb
order 1

✓ The dragon says.
✗ The says dragon.

Anaphor-gender
agreement 2

✓ The dad cuts himself.
✗ The dad cuts herself.

Anaphor-number
agreement 1

✓ The boys told themselves.
✗ The boys told himself.

Determiner-noun
agreement 3.6

✓ Each good sister.
✗ Many good sister.

Noun-verb
agreement 1.6

✓ The prince needs the princess.
✗ The prince need the princess.

tences which better reflect the type of input children are ex-
posed to. We filled the templates using high-frequency words
from CHILDES [21]. For instance, selected animate nouns in-
clude words like ‘mom’, ‘girl’, or ‘cat’; selected adjectives in-
clude words like ‘good’, ‘little’, or ‘big’; and selected verbs in-
clude words like ‘see’, ‘know’, or ‘need’. The resulting 10, 800
minimal pairs were each synthesized using Google TTS system
using the same 10 voices (5 males, 5 females).

2.1.3. Development and test split

For both our lexical and syntactic evaluation sets, we randomly
selected one male and one female voice for the development set
and the 8 remaining ones for the test. We randomly selected
20% of the lexical and syntactic minimal pairs for the develop-
ment set and the remaining 80% for the test.

2.2. Training sets

We built a first training set by extracting human-annotated
speech utterances from Providence [16], a publicly available
corpus containing transcribed recordings of six American chil-
dren during spontaneous interactions with their parents. Avail-
able utterance-level timestamps were refined with a pretrained
voice activity detection (VAD) system [25]. We converted
human orthographic transcripts into phonetic transcripts us-
ing [26]. This procedure resulted in 128 hours of highly nat-
uralistic infant-parent interactions in audio, orthographic, and
phonetic form, allowing us to compare LMs trained on speech,
phonemes, or words.

We built a second training set by extracting 1, 024 hours of
adult speech utterances – using the same VAD system [25] –
from SEEDLingS [19], a corpus of child-centered long-form
recordings collected in 61 American English families. This
training set enables us to train speech-based LMs in maximally
plausible conditions, i.e., directly on what infants hear.

2.3. Models

STELA (speech-based). STELA is a speech-based LM orig-
inally proposed in [2, 27]. It comprises an acoustic model
that learns discrete representations of the audio and a language
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Table 3: The BabySLM benchmark. Lexical and syntactic accuracies obtained by different language models trained on developmen-
tally plausible corpora of speech, phonemes, or words. Numbers are computed on the test set, and performances on the development
set are reported using small font size. The starred cumulated duration and number of words are estimates based on the 1.2M of words
present in the 128 hours of speech from Providence. Data plausibility indicates the extent to which the training set is close to the real
sensory signal available to infants.

Cumulated Number of Data Lexical Syntactic
System Input Training set duration (h) words (M) plausibility acc. (%) acc. (%)

Random baseline — — 0 0 — 49.2 52.5 49.3 50.0

STELA [27] speech SEEDLingS 1024 9.6⋆ +++ 49.5 45.4 50.3 50.5

STELA [27] speech Providence 128 1.2 ++ 56.8 47.1 50.3 51.1

LSTM phonemes Providence 128 1.2 + 75.4 75.2 55.1 55.9

LSTM words (BPE) Providence 128 1.2 + — 65.1 65.3

BabyBERTa [9] words (BPE) AO-CHILDES 533⋆ 5 + — 70.4 70.4

model trained on top of the learned discrete representations.
The acoustic model is built from a Contrastive Predictive Cod-
ing (CPC) model followed by a K-means clustering algorithm.
The language model consists of LSTM layers. We used the
same architecture and hyper-parameters as the low-budget base-
line proposed in [2]. Contrary to [2] who trained CPC by sam-
pling the positive and negative examples from the same speaker,
we applied a second constraint: negative examples were drawn
from temporally close speech sequences to reduce mismatch be-
tween the positive and negative examples in terms of their local
environment as this was found to be helpful when training on
long-forms [14].
LSTM (text-based). We include LSTM LMs trained on words
– using byte-pair encoding – or on phonemes, using the same
architecture and hyper-parameters than [2].
BabyBERTa (text-based). BabyBERTa [9] is a transformer-
based LM trained on a 5M word corpus of American English
child-directed input built from the CHILDES database [21].

3. Results and discussion
3.1. The BabySLM benchmark

Results obtained on our BabySLM benchmark are reported
in Table 3. Rows are sorted according to the plausibil-
ity of the training data. Child-centered long-form record-
ings (SEEDLingS) have the highest plausibility score as these
recordings faithfully capture children’s everyday language ex-
periences. In particular, long-forms collect audio data over a
whole day – or several – and therefore sample the full range of
language experiences across all possible contexts: the child may
be in or out of the house, the speech may be directed to the child
or others, etc. The audio extracted from in-home recordings of
spontaneous infant-parent interactions (Providence) is slightly
less plausible as it fails to capture the full range of language ex-
periences: fewer speakers than in a real-life setting, most of the
speech is directed to the child, etc. Finally, words and phonemes
extracted from AO-CHILDES or Providence have the lowest
plausibility score since infants do not learn language from or-
thographic or phonetic transcriptions but from the continuous
signal that is speech.

Results indicate no evidence of lexical and syntactic knowl-
edge for STELA trained on 1, 024 hours of speech from
SEEDLingS. This contrasts, in appearance, with what has been
found in the ZeroSpeech challenge [2], but this is due to the
large variability of speech found in long-forms as we will see in
Section 3.3. Results are no different for STELA trained on 128

hours of speech extracted from Providence whose lexical and
syntactic accuracies remain close to chance level. However, we
hypothesize that the lexical accuracy obtained by STELA might
increase with more audio data from semi-controlled recordings
of infant-parent interactions as these contain cleaner speech
than what is typically found in long-forms. Contrary to speech-
based LMs, text-based LMs perform largely above chance level.
As expected, the LSTM model trained on words reaches higher
syntactic accuracy than the LSTM trained on phonemes. The
highest syntactic accuracy is obtained by BabyBERTa, which is
a transformer-based LM and has been trained on a larger quan-
tity of data than our LSTM LMs.

Performances on BabySLM show a clear gap between text-
based and speech-based LMs. Another important finding is
that, as of now, spoken language modeling from children’s
real language experiences seems out of reach, as evidenced by
the chance-level lexical and syntactic accuracies obtained by
STELA trained on SEEDLingS. We dedicate the remaining sec-
tions to illustrating these two challenges: bridging the gap be-
tween text and speech and between clean speech and in-the-wild
speech.

3.2. Language modeling: from text to speech

Figure 1 shows lexical and syntactic accuracies obtained by
text-based (words or phonemes) or speech-based LMs as a func-
tion of quantity of data. The LSTM trained on phones requires
at least 16 hours of speech, equivalent to 150, 000 words, to
start performing above chance level. Once lexical knowledge
has emerged, the model follows a logarithmic trend (note the
log-scale x-axis), initially improving rapidly and then slowing
down. In other words, we need to double the amount of data to
obtain the same gain in lexical accuracy. The same patterns hold
for the syntactic accuracy obtained by the LSTM model trained
on words1. For STELA, the lexical accuracy remains close to
chance level, although the curve seems to increase between 32
and 128 hours of speech, and there is no evidence for syntactic
knowledge.

All in all, the lexical and syntactic accuracy slopes show
very different patterns when training from raw speech or
phonemes or words. This is despite receiving the same data

1Note, however, that the syntactic accuracy obtained by the LSTM
model trained on words decreases to 45% (below chance level) between
0 and 8 hours (= 75, 000 words). This effect was found to be driven by
co-occurrence statistics in the noun-verb order task. The same pattern
was found with a 3-gram model, with a slight decrease between 0 and
8 hours and an increase between 8 and 128 hours.
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Figure 1: Language modeling from text to speech. Top
panel shows the lexical accuracy obtained by language models
trained on audio (STELA) or phonemes (LSTM). Bottom panel
shows the syntactic accuracy obtained by language models
trained on audio (STELA) or byte-pair-encoded (BPE) words
(LSTM). All models are trained on the Providence corpora in
audio, phonetic, or orthographic form. Numbers are computed
on the test set. Error bars represent standard errors computed
across mutually exclusive training sets.

in different forms. Admittedly, the speech-based LM faces a
more challenging task as it must learn its own discrete units,
while text-based LMs must not. Future work might investigate
how these slopes change with more data, particularly for the
speech-based LM for which 128 hours seems insufficient.

3.3. Language modeling: from clean to in-the-wild speech

So far in the paper, we have little evidence that lexical or syn-
tactic knowledge can emerge in speech-based LMs. To address
this concern, we ran one more experiment, this time training
STELA under more controlled recording conditions: on up to
1, 024 hours of speech extracted from audiobooks – commonly
used to train speech-based LMs [17]. Figure 2 compares this
experiment against the performance obtained by STELA when
trained on child-centered long-forms (SEEDLingS, Table 3).

Results are unequivocal: we observe a strong improvement
on the lexical task for the model trained on audiobooks, while
the same model trained on long-forms remains at chance level.
On the syntactic task (not shown above), STELA trained on
1, 024 hours of audiobooks obtains an accuracy of 52.8% com-
pared to 50.3% on long-forms. This is in line with the results
in [2] showing that more powerful architectures are necessary
to learn at the syntactic level.

Why do we observe chance-level performance when train-
ing on long-forms? First, the speech signal found in long-forms
is much more challenging than the one found in audiobooks:
the speech might be distorted as it is being spoken far from the
child; it might overlap with various background noises; and it is

Figure 2: Language modeling from clean to in-the-wild
speech. Lexical accuracy obtained by STELA trained on au-
diobooks (Libri-light, in blue) or child-centered long-forms
(SEEDLingS, in orange) as a function of speech quantity. Num-
bers are computed on the test set. Error bars represent standard
errors computed across mutually exclusive training sets.

often produced in short turns that might be under-articulated –
see [14] for a comparative analysis. Another essential factor to
consider is the domain mismatch between the training and test
sets. While the training set contains far-field under-articulated
speech as well as close-field storytelling, the test set consists of
well-articulated synthesized stimulus to which STELA fails to
generalize. However, infants show no difficulties generalizing
from uncontrolled real-life conditions to more controlled ones
(in-laboratory conditions). We advocate here that generalization
is part of the language acquisition problem, and LMs should be
evaluated accordingly.

We hypothesize that the discrete units learned by STELA
might be too dependent on the various non-linguistic factors
found in long-forms, as suggested in [14]. This dependency
could prevent the LSTM LM from learning long-term depen-
dencies necessary to solve the lexical or syntactic tasks.

4. Conclusion
Benchmarks are instrumental in allowing cumulative science
across research teams. In this paper, we have described how
BabySLM has been carefully designed to be adapted to the
kinds of words and sentences children hear. We have shown
how it can be used to evaluate LMs trained on developmentally
plausible text or speech corpus. By doing so, we revealed two
outstanding challenges that the community must solve to build
more plausible cognitive models of language acquisition. First,
we need to reduce the gap between text-based and speech-based
LMs, as the latter performed close to chance level on BabySLM.
Second, we need to reduce the gap between LMs trained on
clean and in-the-wild speech, as evidenced by the striking dif-
ference we obtained on the lexical task when training on clean
audiobooks versus ecological long-forms.

Future work might consist in evaluating speech-based LMs
grounded in the visual modality [28], or linking performances
obtained on BabySLM with behavioral measures in infants –
e.g., age of acquisition as in [29]. A crucial limitation of our
benchmark is that it focuses on English, which already accounts
for a whopping 54% of language acquisition studies [30]. We
hope that this paper, together with shared scripts2, will facilitate
the creation of similar benchmarks in other languages.

2https://github.com/MarvinLvn/BabySLM
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3.4 What is going on with child-centered long-form
recordings?

At this point of the document, it is useful to take a step back and summarize some
of the results encountered through Chapters 2 and 3. Section 2.3 demonstrated
that, when exposed to clean recordings of speech, the STELA algorithm (CPC+K-
means+LSTM) successfully learns phonetic and lexical aspects of its training lan-
guage. In Section 3.2, we found that the same algorithm exposed to ecological
long-forms needs inductive biases in the form of data augmentation or filtering
mechanisms to reproduce perceptual attunement – i.e., discriminate sounds in a
language-specific manner. Finally, Section 3.3 showed that, despite these inductive
biases, no evidence for learning at the lexical level is found when the language
exposure consists of child-centered long-forms.

Fig. 3.1.: Phonetic and lexical accuracies obtained by STELA (CPC+K-means+LSTM) mod-
els trained on American English audiobooks (in blue) or child-centered long-form
recordings (in orange) as a function of quantity of speech. The phonetic accuracy
is computed using the ABX sound discrimination task (from Hallap et al., 2022)
and the lexical accuracy is computed using the spot-the-word task (from BabySLM,
Lavechin, Sy, et al., 2023. Numbers are computed on the test set. Error bars
represent standard deviations computed across mutually exclusive training sets.
Standard deviations on the phonetic accuracy are are too small to be displayed
(e.g., µABX = 94.04% and σABX = 0.21% in the within-speaker/within-context
condition for models trained on 64 hours of audiobooks).

The observed failure observed when training on long-forms prompts us to undertake
a more thorough evaluation of the information learned by these models, which
we do in Figure 3.1. This Figure shows the phonetic accuracy on the ABX sound
discrimination task (left graph) and the lexical accuracy on the spot-the-word task
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(right graph) obtained by STELA models trained on curated audiobooks or ecological
long-forms.

Focusing on the invariance of the learned representations, we use the ABX sound dis-
crimination task proposed by Dunbar et al. (2021). It covers two speaker conditions:
the within-speaker condition in which A, B, and X are drawn from the same speaker;
and the across-speaker condition in which A and B are drawn from the same speaker
and X from a different speaker. The performance gap between these two conditions
enables us to assess the invariance of the learned representations with respect to the
speaker information. Similarly, it covers two context conditions: the within-context
condition in which A, B, and X are drawn within the same phonetic context (e.g.,
A=‘bip’, B=‘bop’, X=‘bip’); and the any-context condition in which A, B, and X are
drawn from any phonetic context (e.g., A=‘bip’, B=‘tol’, X=‘bil’). The comparison
between these two conditions enables us to assess the invariance of the learned
representations with respect to the phonetic context.

The left graph of Figure 3.1 indicates that, regardless of the speaker or context
condition, the phonetic accuracy of models trained on long-forms is lower than
those trained on audiobooks. The results show that the learned representations lack
invariance with respect to the speaker identity and the phonetic context. This is true
both for models trained on audiobooks and those trained on long-forms. However,
in the within-context condition, models trained on long-forms seem more sensitive
to the speaker information than models trained on audiobooks (solid versus dotted
lines). Compared to Dunbar et al. (2021), this graph adds important information,
indicating that the sensitivity to the speaker and context information is independent
of the quantity of data. In other words, adding more data to the training set does
not allow the model to learn representations that are more robust to the speaker
information and the phonetic context (with the exception, perhaps, of models trained
on audiobooks, which seem to become more robust to the speaker information as
the quantity of data increases, see the gap between the solid blue line and the dotted
blue line slightly reduces when adding more data).

The lexical task is the language-acquisition-friendly version presented in BabySLM
Lavechin, Sy, et al., 2023. By using the BabySLM version, designed with the
vocabulary typical of children’s language experiences, we advantage models trained
on long-forms over those trained on audiobooks. Despite this advantage, models
trained on long-forms exhibit a chance-level performance, whereas those trained
on audiobooks do not. In contrast with the performance obtained on the sound
discrimination task, here, we are faced with the stark lesson that models trained on
ecological long-forms utterly fail on the lexical task.

134 Chapter 3 Modeling language acquisition from child-centered long-form
recordings



As advocated multiple times in this manuscript, this is likely due to the challenging
acoustic conditions and the high variability of spontaneous speech found in children’s
language environments. But how do these characteristics affect the outcomes of our
artificial learner? How do infants succeed in acquiring their native language given
such a sparse and noisy input? How can we revise our theories to better account
for the complexity of children’s language experiences? There remain many open
questions that we have only just begun to explore in our submission to Cognition,
presented in Section 3.2.

3.5 Conclusion

In this chapter, we presented our approach to simulating language acquisition from
ecologically-valid data in the form of child-centered long-forms. We showed that
dedicated mechanisms, called inductive biases, were necessary to guide the learning
process in our algorithm and reflected on whether similar inductive biases could
shape language acquisition in infants. Although these inductive biases enable the
CPC algorithm to learn representations that better discriminate sounds, they do
not appear sufficient for STELA (CPC+K-means+LSTM) to learn at the lexical
and syntactic levels. Interestingly, when trained on curated audiobooks, the same
algorithm effectively learns at the lexical and syntactic levels, as demonstrated in
Section 3.3. More broadly, our results indicate that the learning outcomes developed
by computational models are exquisitely sensitive to the details of the input signal,
potentially casting doubts on modeling studies relying on manicured input data.

Although some of the limitations discussed in Chapter 2 also apply to Chapter 3,
we will refrain from repeating them here. We first reflect on why we observe no
evidence of learning at the lexical level when training on long-forms and argue that
this shortcoming observed in STELA may extend to other statistical learning models.
Finally, we discuss an essential aspect of our approach: the ecological validity of
child-centered long-form recordings.

Statistical learning algorithms are universal pattern finders. One key guiding
principle in self-supervised learning algorithms trained on a large quantity of data
is "the more you put in, the more you get out". The task used during training, like
next word or next frame prediction, is optimized over the entire training set without
considering whether attempting the prediction is meaningful or allows the model to
learn anything useful. As a consequence of this, such models are capable of learning
various types of information.
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In particular, self-supervised learning models applied to speech have been shown to
encode phonetic, prosodic, lexical, and syntactic information (T. A. Nguyen et al.,
2020; Lavechin, de Seyssel, Titeux, et al., 2022; de Seyssel et al., 2023), but also
gender (de Seyssel, Lavechin, Adi, et al., 2022) and speaker identity (van Niekerk
et al., 2021). The astonishing ability of self-supervised models to learn everything
and anything of their input data may come at our disadvantage if our goal is to build
computational models of language acquisition.

In fact, a more desirable property for these models would be to acquire abstract
representations unaffected by the identity of the speaker producing the sound, word,
or sentence and by the acoustic conditions in which it is produced. To clarify, we
do not suggest that computational models should develop categorical perception
entirely independent of the speaker or acoustic information. In this regard, our views
align with the recent and expanding line of work questioning our interpretations
that infants acquire phonetic categories (Feldman et al., 2021; Schatz et al., 2021;
McMurray, 2022). Rather, we advocate that the speech perceptual capabilities
developed by the model (e.g., its sound discrimination capabilities) should be robust
to speaker variations and variations due to the acoustic environment.

The research community is actively working on finding ways to disentangle the
representational subspaces encoding the phonetic and speaker information, e.g., Liu
et al. (2023). However, much less attention has been dedicated to disentangling
the information pertaining to the acoustic conditions (e.g., background noise and
reverberation). I believe this presents a considerably more challenging problem
that greatly contributes to the observed failure of STELA when being trained on
long-forms. Indeed, additive noise and reverberation significantly impede the
performance of our artificial learner, with an absolute decrease of 4.4% in terms of
native discrimination and 13.5% in terms of native advantage (see Section 3.2).

Going back to the infant literature, behavioral evidence suggests that infants progres-
sively learn representations that are invariant with respect to a change in speaker
(Seidl et al., 2014; Bergmann et al., 2016; Choi & Shukla, 2021). However, there is
limited research examining the influence of background noise and reverberation. For
an exception rather than the rule, see Newman and Hussain (2006), who showed
that 5-month-olds fail to recognize their own name when the SNR is 10 dB. The find-
ings from our modeling investigation reveal an intriguing prediction: the presence
of background noise and reverberation should strongly impede infants’ perceptual
abilities, with a greater loss under reverberant conditions. There remains to know
if this prediction is accurate, and if so, to assess how robustness to these factors
changes as infants develop.
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That being said, Marianne Métais, an engineer on our team, and I are developing an
ABX sound discrimination task on noise sequences. Our objective is to understand
better the sensitivity of computational models to background noises. In this version
of the ABX task, the model is, for instance, asked to discriminate the sound emitted
by a vacuum cleaner from that emitted by an air-conditioning system. Initial findings
indicate that models trained on audiobooks exhibit lower performance than those
trained on long-forms, which aligns with the cleaner recording conditions found in
audiobooks. Interestingly, when the proportion of speech sounds in the training set is
varied relative to the proportion of non-speech sounds, there appears to be a trade-off
between performance on the triphone and the noise version of the task. It remains to
be checked if a similar trade-off exists when speech and background noises overlap. I
hypothesize that models trained predominantly on low-SNR utterances will perform
well on the noise version of the task and poorly on the triphone version of the task
(and vice-versa for high-SNR utterances). Once we have measures to assess the
model’s capability to discriminate between speech sounds and between noises, we
can begin designing strategies to make them more robust to the various acoustic
conditions found in real-life audio recordings.

Capturing the sensory signal available to infants. In this chapter, we advocate
that language learning simulations should be fueled with ecologically-valid input
data. But are child-centered long-form recordings truly ecological?

This question is akin to asking: To what extent can one capture the sensory signal avail-
able to infants? Throughout this manuscript, we employed the LENA® microphone
device, which the child wears. This approach offers the undeniable advantage of
directly collecting language environments from the perspective of the infant learner.
Nevertheless, there exist immediate ways to improve the hardware. For instance,
the LENA® microphone only collects single-channel recordings, making it hard to
apply any source separation algorithm without prior knowledge of the number of
sources and their characteristics. One way to reduce the gap between infants and our
artificial learners would be to equip the latter with ‘ears’ using binaural recordings.
Indeed, the remarkable ability of the human auditory system to separate mixtures of
signals likely plays a critical role during language acquisition (Bregman, 1994).

Beyond the auditory stream, one can attempt to collect other sources of information.
For instance, capturing the infant’s visual and social environment would necessitate
head-mounted cameras, as done by Long et al. (2022). However, this method
remains too invasive to be used over an entire day, but see Casillas et al. (2020),
who propose a more lightweight setup in which the infant wears a recording vest
including both a microphone and a miniature camera with a fish-eye lens. Certainly
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cheaper to implement, an accelerometer could provide critical information on the
child’s body movements.

While it is currently not possible to digitize touch, smell, and taste at the long-
form scale, the integration of sensors capable of capturing these sensory streams
could offer artificial learners valuable information – see Seidl et al. (2015) for
a study where human infants learn better from tactile-speech than visual-speech
co-occurrences.

Although largely unaddressed in the research community – see Cao et al. (2018)
for one of the few available alternatives to the LENA® recording device –, the
choices underlying the hardware design are critical for describing children’s language
environments. What is captured and what is not delineates the field of possibilities
in language learning simulations. So to the question: Are child-centered long-form
recordings truly ecological? The answer could be: Yes, but they are not perfect.
Nonetheless, alternatives in language acquisition modeling often involve running
algorithms on strings of words or highly manicured read speech. Without a doubt,
child-centered long-forms offer, by far, a more ecological way to capture children’s
language environment.
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General discussion 4
We carried out a body of work illustrating how artificial neural networks can be
used to analyze and simulate language acquisition in children. Regarding the
analysis, we presented a suite of automatic speech processing tools to extract some
of the interesting information bits contained in child-centered long-form recordings,
yielding a more accurate view of children’s language environment. Regarding the
simulation, we found that the learning outcomes developed by our model were
exquisitely sensitive to the details of the input signal, showing the importance of
considering ecologically-valid input data when modeling language acquisition. As
we observed that inductive biases were necessary for our learners to reproduce
perceptual attunement when exposed to ecological input data, we reflected on
whether similar inductive biases may play a role in infant language acquisition.

Rather than repeating the implications of our work, its limitations, and the potential
avenues for future research covered in their respective chapters, we discuss two
new matters here. First, highlighting the synergy between the different chapters
of this thesis, we explain how our work in building automatic speech processing
tools to analyze long-form recordings offered us new modeling opportunities. By
assessing the effect of built-in capabilities in artificial learners, we might find new
ways to explore the age-old nature versus nurture debate (Piaget, 1935; Chomsky,
1957). Second, we reflect on the core question explored in this thesis: What can
artificial neural networks tell us about infant language acquisition? Through a thought
experiment, we outline what we think is the necessary trajectory for the field to
make substantial advancements.

4.1 Summary of our main contributions

Before delving deeper into the discussion, we present a summary of our main
contributions in Table 4.1. Since these contributions have already been outlined in
the preceding chapters, we will refrain from repeating them here.
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Chapter Contributions Conclusions

Artificial neural networks as a tool

1

• Short study assessing the perfor-
mance of a state-of-the-art auto-
matic speech recognition system on
long-forms collected in American
English families

• Development of a suite of speech
processing tools to detect voice ac-
tivity, identify voice signal sources,
count the number of linguistic
units, and estimate the quantity of
background noise and reverbera-
tion

• Off-the-shelf tools do not currently
work on long-forms, so we must
develop our own through stronger
collaborations between language
and speech processing communi-
ties

• Our speech processing suite pro-
vides a free, open-source, and
better-performing alternative to
the LENA® proprietary software to
obtain automatic analyses of long-
forms

Artificial neural networks as a model

2

• Design of a developmental cross-
linguistic and psycholinguistic
framework to assess artificial
learners’ learning trajectories

• Application of our framework
to study the phonetic and lex-
ical learning trajectories of a
self-supervised learning algorithm
trained from clean recordings of
read speech

• Statistical learning theories are a
priori sufficient to instantiate a
gradual and parallel phonetic and
lexical learning (from clean record-
ings of read speech)

• It is possible that linguistic cat-
egories are not necessary during
language acquisition and instead
emerge as a result of the learning
process

3

• Advocacy for modeling language
acquisition from ecological data:
training, evaluation, and new re-
search directions

• Assessment of some of the effects
of learning from curated record-
ings compared to ecological long-
form recordings

• Modeling investigation of early
phonetic acquisition from ecolog-
ical long-form recordings

• Creation of zero-shot lexical and
syntactic probing tasks compatible
with the vocabulary typical of chil-
dren’s language experiences

• Learning outcomes are exquisitely
sensitive to the details of the input
signal, and our theories and mod-
els inadequately account for what
children truly hear

• Inductive biases might be neces-
sary to reproduce perceptual at-
tunement, potentially offering new
ways to explore the nativist versus
constructivist debate

• No evidence of lexical learning is
found suggesting that more work is
needed in engineering the right in-
ductive biases and/or more robust
learning mechanisms

Tab. 4.1.: Summary of the main contributions presented in this thesis.
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4.2 New ways for exploring the nativist versus
constructivist debate?

Chapter 1 was dedicated to using artificial neural networks as a tool to automatically
analyze children’s language environments. Chapters 2 and 3 were dedicated to
using artificial neural networks as a model of the infant learner. Although these two
research areas may appear largely independent, they are far from being so.

Throughout this thesis, developing new tools that extract interesting information
bits from child-centered long-form recordings always opened up new modeling
opportunities. By equipping our artificial learner with new built-in capabilities,
the voice type classifier (Lavechin et al., 2020) enabled us to filter out non-speech
segments and children’s vocalizations from the training set. While non-speech
segments strongly degrade the model’s performance on the ABX sound discrimination
task, as seen in Section 2.1.1, this is not the case for children’s vocalizations which
have no effect. Driven by the idea that the quality of the input speech signal may
have an effect, we tried to remove utterances whose speech probability – such
as estimated by the voice type classifier – was the lowest, assuming that these
utterances were of lower acoustic quality. This had no effect either.

Two years later, when we built Brouhaha (Lavechin, Métais, et al., 2022), we could
investigate the issue of signal acoustic quality on the performance of our artificial
learner in a more thorough way, studying the impact of the speech-to-noise ratio and
the C50 reverberation measure. Although we observed only a slight performance
improvement, we found that it was possible to filter out 70% of the utterances
in the training set without impeding the ABX sound discrimination performance
(keeping only the 30% of utterances whose C50 was the highest, i.e., very little
reverberation). We did not observe any performance improvement on the spot-the-
word task, which remained at the chance level, suggesting that data augmentation
and filtering mechanisms may not be enough to learn at the lexical level from
ecological long-forms.

Among other investigations, one that seemed particularly promising consisted in
using a speech enhancement model to help our model learn better on ecological
long-forms. We tried the model proposed by Défossez et al. (2020). After all, if some
speech segments found in long-form recordings are noisy and the acoustic quality
of the input speech signal affects the performance, removing the background noise
should help our artificial learner to learn better. It did not help either, regardless

4.2 New ways for exploring the nativist versus constructivist debate? 141



of whether the speech enhancement model was applied to the training set, the
evaluation set, or both.

Undeniably, the results might have been different with better-performing algorithms
or algorithms specifically designed for long-form recordings (which is not the case for
the speech enhancement model we used or for Brouhaha). However, no automatic
speech processing algorithm is error-free. The same applies to human speech
perception, especially while it is still developing, and finding strategies to deal with
difficult acoustic conditions is part of the learning problem.

In Chomsky’s words (1957), our approach to exposing artificial learners to children’s
real language environment involved engineering the right ‘Language Acquisition
Device’ (LAD). One thing for sure is that there remains much work to be done to
engineer better and more performant LADs that are both compatible with the actual
input received by children and allow artificial learners to discover the rules and
structure of their native language.

One of the only approaches I can think of to investigate whether some hypothesized
built-in capabilities may contribute to infant language acquisition is by equipping
artificial language learners with these same capabilities. In that sense, our modeling
approach represents a promising opportunity to shed new light on the nativist
versus constructivist debate in language acquisition (Piaget, 1935; Chomsky, 1957;
Tomasello, 2005) – see Ambridge and Lieven (2011) for an overview.

4.3 What can artificial neural networks tell us about
infant language acquisition?

Modeling studies provide precious learnability proofs. For instance, using a statistical
learning algorithm applied to clean recordings of speech, Schatz et al. (2021) showed
that it was possible to reproduce some developmental results in speech perceptual
learning. In this thesis, we showed that our own statistical learning algorithm
applied to clean recordings of speech was capable of learning phonetic and lexical
aspects of its training language in a gradual and parallel fashion, which is also
how infants do as argued with the developmental timeline presented in Figure 2.1.
The same algorithm applied to children’s real language environments collected via
child-worn microphones requires extra built-in capabilities to learn at the phonetic
level, and we found no evidence for learning at the lexical level.
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Under the simplifying assumptions made in these studies, these proofs are indis-
putable1, akin to theorems in mathematics. However, these proofs are all about the
input signal, not the infant. So one may rightfully wonder: What can artificial neural
networks tell us about infant language acquisition?

At the risk of disappointing my supervisors, I have yet to find a precise answer to
this question, even after dedicating an entire thesis to the subject – which represents
too little time to learn about a new field. Proofs about the input signal constitute
essential cues that can help us validate or reject our theories of infant language
acquisition, but can we do better and go beyond proofs about the input signal?
To this question, I would answer a definite yes. However, this will likely require
datasets with increased:

1. density – we need the full input received by children to reproduce language
acquisition

2. size – we need a high enough number of children for our conclusions to be
statistically robust

3. diversity – participating children should be drawn from diverse linguistic,
cultural, and socioeconomic contexts as we do not want our conclusions to
depend on these factors

To illustrate the envisioned strategy, we can use a thought experiment to describe an
ideal dataset. Let us imagine that we can collect the whole language experience of
many children, let us say 200 children, from birth until age 3. Although collecting
only audio would likely yield significant advances in the field, one might imagine
collecting videos too. This is our input Ik for k ∈ J1, 200K.

In parallel, the language capabilities developed by these 200 children should regu-
larly be measured through a battery of psycholinguistic and standardized language
tests, let us say the full battery every month. This is our output Ok for k ∈ J1, 200K.

Then, it becomes possible to feed 200 artificial language learners with the individual
experience of the 200 participating children Ik and correlate the predicted learning
outcomes developed by the machine Ôk with those of the participating children
Ok. We can study how these correlation coefficients change as a function of the
child’s age, the presence – or absence thereof – of some built-in capacities in the
machine, the access to visual or social cues, the learning mechanism, and many
other variables.

1Of course, for this to be true, the study must first be shown reproducible.

4.3 What can artificial neural networks tell us about infant language
acquisition?

143



For instance, an interesting modeling experiment could vary the proportion of the
child’s individual language experience to which the artificial learner has access. We
would expect the predicted learning outcomes Ôk to better fit Ok when our artificial
learner is exposed to the entirety of the child’s individual language experience than
when exposed to only half of it.

If statistical learning algorithms capture a significant proportion of the observed
learning outcomes variability Ok, this will constitute strong evidence that these
algorithms do indeed capture something essential about language acquisition. More
importantly, this would inform us of the extent to which infant language acquisition
relies on learned (the proportion of captured variability) or innate behaviors (the
uncaptured proportion).

While it is true that our hypothetical experiment does not provide causal evidence
that infants learn via mechanism M , an approach based on modeling developmental
trajectories from the child’s individual language environment – in opposition to
modeling an abstract average infant – would take us one step closer to our goal.
Instead of providing proofs about the input signal contained in the training set, we
would provide proofs about the child’s unique language environment.

This hypothetical research program may appear ambitious, but collecting such a
dense, large-scale, longitudinal dataset seems within reach, given enough time,
money, and sweat. As a matter of fact, a few large-scale longitudinal datasets
have already been collected or are in the process of being collected (see Table 4.2).
While most initiatives have been concentrated to American English speakers, see the
Casillas HomeBank corpus (Casillas et al., 2017) for a large-scale study of Tseltal
Mayan children and the Warlaumont HomeBank corpus (Warlaumont et al., 2016)
for a longitudinal study of English- and/or Spanish-learning children.
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Corpus
Number of
children

Age (mo)
Recording
frequency

Language Audio? Video?
Child

centered?

Human
Speechome

1 0 − 36 daily Am. E. ✓ ✓ ✗

SEEDLingS 44 6 − 18 monthly
primarily
Am. E.

✓ ✓ ✓

SAYCam 3 6 − 32 weekly
Am. E.
Au. E.

✓ ✓ ✓

First 1,000
Days

∼ 20 0 − 36 daily Am E. ✓ ✓ ✗

Tab. 4.2.: A sample of large-scale longitudinal datasets collected to study language develop-
ment in infants. The Human Speechome project (Roy et al., 2006) is one of the
earliest initiatives in this direction, using a dozen cameras and microphones to
record 10h of audio and video on a daily basis. SEEDLingS (Bergelson, Amatuni,
et al., 2019; Bergelson, Casillas, et al., 2019), without which this thesis would
not have been possible, used LENA® microphones to collect up to 14h of audio
on a monthly basis. Besides long-form recordings, each participating child was
recorded at home for 1h at a time every month using head-mounted cameras.
SAYCam (Sullivan et al., 2021) consists of audio and video recordings collected
via head-mounted cameras for approximately 2h per week. The ongoing First
1,000 Days project (“The First 1000 Days”, 2023) strives to collect children’s
language experiences during their first three years of life using a similar setup to
that used in the Human Speechome project. Am. E. stands for American English,
Au. E. stands for Australian English.

4.3 What can artificial neural networks tell us about infant language
acquisition?
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4.4 Conclusion

Driven by recent advances in artificial neural networks that learn from raw speech
on the one side and in lightweight wearable recording devices on the other, our
work sought to advance our understanding of how infants acquire language.

We used child-centered long-form recordings, not only to build a suite of automatic
speech processing tools allowing us to analyze children’s language environment, but
also for simulating infant language acquisition. Contrary to previous modeling stud-
ies relying on critical simplifying assumptions regarding the learning material, we
set ourselves the objective of fueling computational models of language acquisition
with what young children truly hear. In doing so, we explored certain mechanisms
infants may need to bring in to acquire their native language and showed how the
ecological validity of the learning material could profoundly transform the learning
outcomes developed by artificial language learners.

In questioning the generalizability of our measures, models, and theories to the real
world, our work invites us to attribute greater importance to ecological validity and
opens new opportunities to progress on some of the longstanding controversies in
language acquisition.
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Abstract
There is a current ‘theory crisis’ in language acquisition research, resulting from fragmen-
tation both at the level of the approaches and the linguistic level studied. We identify a need
for integrative approaches that go beyond these limitations, and propose to analyse the
strengths and weaknesses of current theoretical approaches of language acquisition. In
particular, we advocate that language learning simulations, if they integrate realistic input
and multiple levels of language, have the potential to contribute significantly to our
understanding of language acquisition. We then review recent results obtained through
such language learning simulations. Finally, we propose some guidelines for the community
to build better simulations.

Keywords: Language acquisition; computational modelling; phonetic learning; word learning; phonetic
categories

What is needed and why?

Theory in crisis

The field of language acquisition is prolific, with an extensive range of high-quality
research published every year. However, there has been surprisingly slow progress in
solving some long-standing controversies regarding the basic mechanisms that underlie
language acquisition. For instance, do infants learn language primarily from extracting
statistics over speech inputs (Romberg & Saffran, 2010; Saffran & Kirkham, 2018), from
examining cross-situational correlations over multisensory inputs (Smith & Yu, 2008;
Suanda, Mugwanya & Namy, 2014; Yu & Smith, 2017; Zhang, Chen & Yu, 2019), or by
relying on social interactions and feedback (Tomasello, 2003; Tsuji, Cristia & Dupoux,
2021; Yu & Ballard, 2007)? Do they learn by leveraging discrete linguistic categories or
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continuous sensory representations (Kuhl et al., 2008; McMurray, 2021)? Do they rely on
language-specific or domain-general learning mechanisms (Elman, Bates & Johnson,
1996; Karmiloff-Smith, 1994; Pinker, 1994)? Such a lack of headwaymay be due in part to
the ‘replication crisis’: the experimental study of human cognition in general and infant
cognition, in particular, is inherently noisy and difficult (Frank, Bergelson, Bergmann,
Cristia, Floccia, Gervain, Hamlin, Hannon, Kline & Levelt, 2017), slowing down cumu-
lative progress. Here, we explore the possibility that there is, in addition, a ‘theory crisis’.
To say it bluntly, perhaps, current theories have shortcomings that prevent us from even
finding the right experimental setup to make progress on basic questions about learning
mechanisms.

Several papers have already been devoted to the theory crisis in psychology in general;
psychological theories have been claimed to bemere statistical model fitting (Fried, 2020),
too descriptive or fragmented (Muthukrishna & Henrich, 2019), or to not contribute in
cumulative theory building (McPhetres et al., 2021). In developmental psychology,
Kachergis, Marchman, and Frank (2021) called for a ‘standard model’ that would allow
integration of results in a cumulative fashion. In this paper, we explore the possibility
proposed in Dupoux (2018) that recent advances in machine learning could help address
the theory crisis through systems that realistically simulate how infants learn language in
their natural environment. Such learning simulations are computer models that would
ideally learn from similar inputs as the ones available to infants (raw sensory data), and
reproduce the broad spectrum of outcome measures as obtained in laboratory experi-
ments or corpus studies. To the extent that these new computer models are powerful
enough to address the complexity and variability of data available to infants during
language development, they could help us make progress in some of the aforementioned
controversies. At best, such learning simulations can provide proof of principle that a
given hypothesis (e.g., the statistical learning hypothesis) can account for learning
outcomes as observed in infants. In addition, they can help us go beyond said long-
standing controversies by providing new insights into the learning process and awealth of
associated quantitative predictions.

In this paper, we first discuss how these new types of learning simulations are
complementary to more familiar theoretical approaches in cognitive development and
argue that they provide one step towards the needed cumulative integrative theories or
standardmodels.We then present STELA, a recent learning simulation implementing the
hypothesis that infants are statistical learners, and show how it provides insights into
some long-standing controversies.

Varieties of theories in language acquisition

The theoretical landscape of language development is vast and complex. Even if one
focuses on early language development, there are wild varieties of theoretical approaches
that differ not only in scope (the range of phenomena they cover) but also in style (verbal,
statistical, formal, computational). Here, far from making a comprehensive survey of
these approaches, we attempt to classify them into types and sort them along dimensions
that outline their respective strengths and weaknesses with regard to addressing basic
questions/controversies about learning mechanisms. Familiar types are verbal frame-
works (among others: The competition model: MacWhinney & MacWhinney, 1987;
WRAPSA: Jusczyk, 1993; Usage-based theory: Tomasello, 2005; NML-e: Kuhl et al., 2008;
PRIMIR: Werker & Curtin, 2005), which weave a narrative around a large body of
experimental research using verbally defined concepts, sometimes complemented by
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box-and-arrow schemas (e.g., the ScALA framework from Tsuji et al., 2021). Correl-
ational approaches (e.g., Fernald, Marchman & Weisleder, 2013; Hart & Risley, 1995;
Swingley & Humphrey, 2018) aim to identify the main variables that predict language
development outcomes through statistical models. Formal models (e.g., Jain, Osherson,
Royer & Sharma, 1999; Tesar & Smolensky, 2000) and computational models (e.g., Brent,
1997) aim to study how algorithms can learn language through mathematical proofs or
empirical study of the learning outcomes. All theoretical approaches of early language
development recognise that infants receive inputs from their environment, and have a
learning mechanism, which produces a linguistic competence that can be accessed
through outcome measures. The differences between these theoretical approaches lie in
the simplifying assumptions and degree of specifications theymake about inputs, learning
mechanisms and outcomemeasures.We distinguish four dimensions or axes to sort these
theoretical approaches: Causal versus Correlational, Quantitative versus Qualitative,
Realistic versus Abstract, and Broad Scope versus Narrow Scope.

Causal/Correlational
A theory is causal when it provides a specification/implementation of the learning
mechanism underlying language acquisition; it is correlational when it focuses on the
input/outcome relationship without specifying a learning mechanism. A correlational
model can outline the important factors that drive learning and therefore provide insights
into the development of learning mechanisms. However, only a causal model can provide
proof of principle that a postulated learning mechanism is sufficient to reproduce a
developmental outcome given an input. As a result, to the extent that they can be
effectively implemented, causal models are better positioned to resolve disagreements
about learning mechanisms than correlational models.

Quantitative/Qualitative
A theory is quantitative if it can produce numerical outcomes that can be compared to
human performance. It is qualitative when it produces predictions about the possible
presence of a significant effect without a numerical prediction about its strength.
Qualitative models are useful to inspire novel experimental paradigms, and provide
insights about learning mechanisms, but are hard to refute and difficult to compare to
one another. Quantitative theories make very precise predictions and can be compared to
one another by computing the degree of fit of their predictions against some observed
outcome. As a result, they are better positioned to solve disagreements about learning
mechanisms than qualitative theories.

Realistic/Abstract
A theory is realistic when its model of the environment is as close as possible to the
actual sensory/motor environment of the child. It is abstract when the environment is
specified through synthetic data, or human/categorical annotations of observed envir-
onments (e.g., textual transcriptions). Abstract theories are useful because they enable a
high degree of control and interpretability and provide insights into what type of input
information can yield particular outcomes. However, they cannot prove that their
conclusions apply to real-world data as perceived by infants and are therefore not very
informative when it comes to solving long-standing controversies. Realistic theories, in
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contrast, to the extent that they can be effectively implemented, are better positioned:
because they directly reproduce the learning outcomes associated with a given input and
learning mechanism.

Broad/Narrow Scope
A theory has a broad scope if it encompasses not one single linguistic level (phonetic,
morphological, syntactic, semantic, etc.) or phenomenon but several at once. Narrow
Scope theories are useful in focusing on learning specific representations, assuming all
other representations are fixed. However, many controversies about learning mechan-
isms arise because of co-dependencies between linguistic levels, making it problematic to
assume all levels are fixed except one. Being able to account for how infants can learn
jointly all of these levels is at the heart of solving so-called ‘bootstrapping’ problems that
are integral to language learning.

In Table 1, we position some familiar theoretical approaches in terms of these four
axes. This characterisation may seem overly simplistic or reductionist, but we hope it will
help outline the specific contribution of learning simulations. Verbal frameworks typic-
ally have a broad scope and embrace the complexities of the child’s real environment.
They are causal to the extent that they mention specific learning principles but are not on
the quantitative side. They are still the single most influential theoretical approach for
infant language learning, providing insight into large quantities of experimental results.
However, they resist empirical refutations or amendments because of their qualitative
nature. Correlational models are on the quantitative side and integrate many variables
and levels. When informed by a corpus of infant/caretaker interactions, they can reveal
the relationships between input quality, quantity, and language outcome (Fernald et al.,
2013; Hart & Risley, 1995). However, because they are not causal and rely on abstract
variables derived from the input, they cannot directly speak to learning mechanisms.
Computational/formal models (henceforth called learning simulations) are both causal
and quantitative, but their ability to significantly impact controversies about learning
mechanisms depends on the breadth of their scope and their degree of realism or
abstraction. We discuss such models in more detail in the next section.

A brief history of learning simulations

For a long time, scientists with various backgrounds, from formal linguistics to develop-
mental psychology and artificial intelligence, have contemplated the possibility of build-
ing mathematical models or computer simulations of language learning in infants. The
hope was that building a simulated ersatz of the infant would reveal the formal conditions

Table 1. Four dimensions along which theoretical approaches of language acquisition can be sorted

Properties Verbal Framework Correlation Model Learning Simulation

Causal ✗ / ✔ ✗ ✔

Quantitative ✗ ✔ ✔

Realistic ✗ ✗ ✗ $ ✔

Broad Scope ✗ ✔ ✗ $ ✔
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for learning (Pinker, 1979), would allow us to better formulate hypotheses about how
infants actually learn (Frank, 2011;Meltzoff, Kuhl,Movellan& Sejnowski, 2009) or would
yield machines that learn in a graceful and robust fashion (Turing, 1950). Here again, the
diversity of the proposed models is too large to be reviewed (see Dupoux, 2018, for an
attempt). Instead, we classify the approaches based on the dimensions which we claim are
central to answering key questions about learning mechanism: realism and scope.

As illustrated in Figure 1, all learning simulations consist of three components: a
model of the environment, a model of the learner, and a model of the outcome measure.
The model of the environment specifies the type of inputs/interactions available to the
learner. The learner updates itself using a learning algorithm based on its interaction
with the environment. The outcome measures of the learner are measured after
exposure to speech. Where learning simulations differ is how they implement these three
components.

Focusing onAI-inspiredmodels, themost visible trend historically has been on how to
implement the learner. Early models (e.g., Anderson, 1975; Kelley, 1967) were rule-based.
The second phase was probabilisticmodels (e.g., Brent, 1996; deMarcken, 1996), followed
by connectionist and deep learning models (Brown et al., 2020; Elman, 1990), each phase
replacing hand-wired components withmore andmore powerful learning systems. As far
as we are concerned, the way in which the learner is implemented is irrelevant. What
counts is whether the learning mechanism actually reproduces the learning outcome or

Figure 1. General outline of a realistic learning simulation (centre) in relation to real infants (left) and traditional
theoretical approaches (right). 1. Verbal frameworks inspire and help set up the entire language learning
simulation by describing the environment, learner, and outcome models; 2. Corpus studies of children’s input
help us build realistic models of the environment. In the best case, the model of the environment is a subset of a
real environment, obtained through child-centred long-form recordings, for instance; 3. Machine learning provides
effective artificial language learners. The learner model is relatively unconstrained as learning mechanisms used
by the real learner (i.e., infants) remain largely unobservable; 4. Correlational models describe how the input
should relate to the outcome measures; 5. Experimental and corpus studies of children’s outcomes show how we
can evaluate learning outcomes of the artificial learner. The real versus predicted outcome measures allow us to
compare humans tomachines and provide new predictions for correlational models that relate input to outcomes
in infants.
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not, given infants’ input1. More relevant to our argument, another trend can be seen
regarding the model of the environment, moving from synthetic data (e.g., Elman, 1990;
Vallabha, McClelland, Pons, Werker & Amano, 2007) to transcribed corpora (e.g.,
Bernard et al., 2020) and, more recently, to raw audio and images or video recordings
(Räsänen & Khorrami, 2019; Schatz, Feldman, Goldwater, Cao &Dupoux, 2021). Finally,
the first models were focused on learning a single linguistic level (e.g., phonetic categories:
Vallabha et al., 2007; word forms: Brent, 1999; word meanings: Roy & Pentland, 2002;
syntax: Pearl & Sprouse, 2013), and more recent approaches would learn several levels
jointly (phonemes and words: Elsner, Goldwater & Eisenstein, 2012; syntax and seman-
tics: Abend, Kwiatkowski, Smith, Goldwater, Steedman, 2017; phonetics, words and
syntax: Nguyen et al., 2020).

In other words, thanks to recent progress in machine learning and AI (Bommasani
et al., 2021), learning models that are simultaneously of broad scope and able to ingest
realistic data are around the corner. Obviously, a complete model that would feature
maximal scope (integrating all relevant input and output modalities for language and
communication) and maximal realism (using sensory data indistinguishable from what
infants experience) is still out of reach. In the next section, we examine STELA, a recently
proposed model (Lavechin, de Seyssel et al., 2022c) and argue that even though it is
limited both on scope and realism, this work can help us make nontrivial progress on
some of the long-standing controversies regarding language learning mechanisms.

Before moving on, let us clarify that we are not claiming that broad-scope realistic
simulations are the only valuable approach. Narrow-scope abstract models still have
valuable contributions to make (e.g., Frank, Goodman & Tenenbaum, 2009; Kachergis
et al., 2021). First, contrary to many realistic and broad-scope models, abstract and
narrow models are interpretable and therefore allow building bridges with verbal frame-
works. They are also more tractable and can be easily modified and experimented on in a
way which is more difficult with larger models. Finally, one can view abstract learning
simulations as “control” experiments: by comparing an abstract and a realistic learning
simulation implementing a similar learning mechanism, we can gain knowledge on the
role of specific abstractions made by the learner.

What has been achieved so far?

Among the competing hypotheses regarding the learning mechanisms that underlie early
language learning, the one that seems the most natural to approach with learning
simulations is the statistical learning hypothesis (Pelucchi, Hay & Saffran, 2009; Saffran,
Aslin & Newport, 1996). It posits that infants learn at least some linguistic levels
(phonetic, lexical and morphosyntactic) through a statistical or distributional analysis
of their language inputs. The idea has a long history (Rumelhart, McClelland & Mac-
Whinney, 1987; Skinner, 1957) and has generated many controversies (Chomsky, 2013;
Fodor & Pylyshyn, 1988) and mathematical investigation (Gold, 1967; Jain et al., 1999).
But it is also the simplest hypothesis to implement in a learning simulation. If one equates
language input to the auditory modality, the corresponding learning simulation would
simplify the environment to audio recordings, and the learner to a probabilistic model

1Many developmental scientists worry about the so-called ‘psychological plausibility’ of these various
kinds of models. Following Frank (2014), we believe that issues of plausibility have either to be formulated as
outcome measures that the model should reproduce, or should be disregarded.
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that accumulates statistics paying no attention to other modalities or context, nor
interacting with its environment.

Here, we present recent work on simulating a statistical learner for language acqui-
sition (Lavechin et al., 2022b; Lavechin, de Seyssel et al., 2022c). We present the
simplifying assumptions made in these simulations and reflect on how simulated learners
compare to infants. Then, we go over different use cases of such a simulation by showing
how some of the skills the simulated learner has acquired through exposure can help shed
light on some long-standing controversies in our understanding of language acquisition
in infants.

We focus on a high-level description of this simulation as we believe it makes it easier
to appreciate its lessons. However, readers interested in the technical details can refer to
the original paper (Lavechin, de Seyssel et al., 2022c).Wewill also list specific research use
cases that the framework helped deepen. By doing so, we illustrate concretely how such
realistic learning simulations can help future research, both in terms of proof of feasibility
and inspiration for research.

Introducing STELA

Lavechin, de Seyssel et al. (2022c) introduced STELA (STatistical learning of Early
Language Acquisition), a language learning simulation that tackles the problem of
discovering structure in the continuous, untranscribed, and unsegmented raw audio
signal. As said above, the scope of this simulation is restricted to the statistical learning
hypothesis, where infants learn passively and uniquely by extracting statistical cues from
what they hear (see Table 2). In this section, we present themodel of the environment, the
model of the learner, and the model of the outcome measures used in STELA.

The environment
STELA specifies the environment as raw audio speech recordings. For this to remain
relevant, we need to restrict the quantity of speech within a plausible range of data.
Current estimates of cumulative speech experiences by one year of age vary from around
60 hours (Cristia, Dupoux, Gurven & Stieglitz, 2019) to approximately 1,000 hours
(Cristia, 2022). In STELA, the data comes either from open-source audiobooks with
quantities varying from 50 to 3,200 hours covering the observed range. Admittedly, the
infant’s language environment is different from audiobooks. On the one hand,

Table 2. Non-exhaustive list of language learning assumptions for infants and whether they are included
within the STELA simulation

Assumption STELA

Infants are statistical learners (Bulf, Johnson & Valenza, 2011; Romberg & Saffran, 2010;
Saffran et al., 1996)

✔

Quantity of speech input predicts language outcome (Newman, Rowe & Ratner, 2016) ✔

Modalities other than speech can be useful in language learning (Abu-Zhaya, Seidl,
Tincoff & Cristia, 2017; Seidl, Tincoff, Baker & Cristia, 2015).

❌

Infants learn by interacting with peers – reinforcement learning (Kuhl, Tsao & Liu, 2003;
Nelson, 2007; Snow, 1989; Yu, Ballard & Aslin, 2005)

❌
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audiobooks contain clearly articulated speech (read speech) and relatively good audio
conditions, potentially facilitating learning for the model compared to the spontaneous
and noisy speech available to infants (see Lavechin et al., 2022b). On the other hand,
audiobooks may use larger vocabularies and more complex sentences than infants’
input, potentially putting the model in a more challenging situation than infants
(Gleitman, Newport & Gleitman, 1984). Nevertheless, this type of input is in the range
of what infants could plausibly hear or overhear and is relatively easier to access in
large quantities across languages than long-form recordings. Therefore, they are a
good starting point, offering controlled conditions and replicability for the deployment
and analysis of such simulations. Long-form recordings represent the extreme in
realism that can be achieved in such simulations, but they are less accessible than
audiobooks due to privacy concerns (Lavechin, de Seyssel, Gautheron, Dupoux &
Cristia, 2022a).

The learner
Elman (1990) was perhaps the first to introduce a practical implementation of a system
that learns non-trivial linguistic representations by extracting regularities from language
inputs: a simple recurrent neural network trained to predict future words or characters
based on past ones. Since then, this idea has been expanded withmore complex and larger
neural networks trained on increasingly larger datasets. The resulting so-called “language
models” can be viewed as models of the probability distribution of sentences and have
been shown to generalise beyond the sentences in the training set (Baroni, 2020), reaching
near human performances on many language tasks (Liu, He, Chen & Gao, 2019). One
major limitation of thesemodels – asmodels of the infant learner – is that they only take as
input words or characters, which are not entities accessible to a learning infant. However,
recent breakthroughs in representation learning have made it possible to expand these
models to work with raw audio inputs (Borsos et al., 2022; Dunbar et al., 2021; Lakhotia
et al., 2021). In a nutshell, these so-called ‘Generative Spoken Language Models’ replace
text with their own discrete representations learnt from the audio and learn a probabilistic
model of speech directly from raw inputs.

In Figure 2a, we present the model used in STELA, which has been selected from the
class of Generative Spoken LanguageModels (Dunbar et al., 2021) for its simplicity. From
a high-level perspective, the learner can be described as the combination of two compo-
nents, which are named according to the current practices in machine learning 1) an
‘acoustic model’ and 2) a ‘language model’2. The acoustic model is fed with raw, continu-
ous waveforms and trained using a form of predictive coding. It learns a vector repre-
sentation for each slice of 10ms of signal by attempting to predict each of the twelve
upcoming slices based on past ones, yielding a prediction over a 120ms time window. An
exciting outcome of such a learning procedure is that the model learns representations
that successfully abstract away from acoustic details and encode phonetic information. In
STELA, we discretise these representations using clustering, yielding a discrete code each
10ms, which is passed onto the language model. This model is similar to Elman’s

2Although the term ‘languagemodel’ can sound counterintuitive in the context of phonological and lexical
acquisition, as no language-related or language-specific heuristics are integrated into the model, which learns
on its own to discover structures in the speech input, we view it from the machine learning point of view,
where a language model is simply an algorithm which learns to predict, from a sequential input, the next
representation (let it be text, speech or other) based on the previous representations.
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recurrent language model, only using an improved architecture (LSTMs) and more
parameters. This model is trained to predict the next code based on past ones. Because
the model’s output is not a single code, but a probability distribution over all the discrete
codes, one can compute the probability of an utterance as the product of the conditional
probabilities of each successive code (see Appendix A).

The outcome measures
Several types of outcomemeasures are used in infant development. Some are provided by
caregivers (like the Child Development Inventory, or CDI: Fenson, 2007), who assess
whether a word is known or produced by the child, some are linked to the production of
the child as attested through transcription of naturalistic corpora (mean length of
utterance such as used in Miller & Chapman, 1981 for instance), and some are obtained
via in-lab experiments. Here we concentrate on the last type of measure. In principle, a
maximally broad language learning simulation would include all linguistic and non-
linguistic components (attention, memory, eye movement, etc.) and the artificial learner
could just be virtually seated in a virtual lab and be subjected to the same experiments as
real babies (Leibo et al., 2018). Here, STELA only simulates a subpart of infants’ linguistic
competence and therefore has to specify a special add-on module to generate the
equivalent of experimental outcome measures. Fortunately, experimental paradigms in
infants are relatively simple and can be sorted into two main types: discrimination
experiments and preference experiments3, yielding two types of add-on modules.

Discrimination experiments can vary in how they are conducted in the lab (ABX, AXB,
AX, etc.). Still, they all rely on the ability of the learner to compute a perceptual distance
between two stimuli (such as ‘bit’ versus ‘bet’). An add-on for ABXdiscriminationwill just
need to (a) extract a representation of a stimulus from the learner (typically the activation
pattern of some layer) and (b) compute a distance over two representations (typically, the
normalised dot product, or the angle between the vectors). In STELA (Lavechin, de

Figure 2. Overview of the STELA learner and outcome measures. a. (left): model of the learner; b. (right): add-on
models for two types of outcome measures.

3This is a non-exhaustive list. Some experiments use amore complex design where infants are familiarised
to some materials (for instance, an artificial language) and then tested using preference or discrimination
metrics. This would require the learner to memorise or learn from the familiarisation phase, which has not
been implemented in STELA so far.
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Seyssel et al., 2022c), this is used tomeasure phonetic knowledge through amachine ABX
sound discrimination task (Schatz et al., 2013) in which the learner has to choose two
occurrences of, e.g., ‘bop’ as being closer than one occurrence of ‘bop’ and one occurrence
of ‘bip’. The test is done over thousands of trials and over all possible contrasts of
phonemes4.

Preference experiments rely on the ability to compute a ‘preference’ or ‘probability’
associated with an input stimulus. Most learning algorithms learn by minimising an
objective function, such as the error made in predicting the future based on the past. We
can use the same objective function and apply it to test stimuli: if the stimulus is well
represented or considered probable by the model, then the error should be low. Totally
novel or unexpected stimuli should give a high error.

In STELA, this is used through the spot-the-word task developed in Nguyen et al.
(2020). Here, themodel receives a spokenword (e.g., ‘apple’) and a spoken non-word (e.g.,
‘attle’) matched for syllabic and phonotactic structure. We then look at the model’s
probability of generating both words. The model is considered correct for the trial if the
probability of generating the correct word is higher than the non-word. The same logic
can be applied at the syntactic level using pairs of grammatical and ungrammatical
sentences (i.e., ‘the brother learns’ versus ‘the brothers learns’), in which the model has
to assign a higher probability to the grammatical sentence.

In the next section, we present case studies illustrating how meeting the four above-
mentioned properties in a single simulation can help us make theoretical advances.

Results

Learning simulations can either be used as “proof of concept” for particular hypotheses
about learningmechanisms or to offer novel predictions, never tested experimentally. Here,
we focus on the first use case by addressing three long-standing controversies on language
learningmechanisms as applied to the phonetic and lexical levels. In each instance, we use a
design which enables us to conduct experiments that are both developmental (obtained by
training the same learner on increasing quantity of speech, from50 hours up to 3200 hours)
and cross-linguistic (obtained by training and testing the models on two languages, French
and English, deriving scores for the native and non-native language).

Could infants rely exclusively on statistical learning over speech inputs to bootstrap into
language?
One of the major conceptual difficulties in accounting for early language acquisition is
understanding how the young learner can learn several interdependent linguistic levels
simultaneously and gradually. Statistical learning (Saffran et al., 1996) seems a good
hypothesis to address this, since it posits that infants gather information about the
distribution of sounds. This would naturally yield gradual learning. As for simultaneous
learning across levels, it could rest on the idea that probabilities can be gathered at several
levels of descriptions simultaneously. Now, the evidence in favour of statistical learning is

4It is worth pointing out at this point that the sound contrasts presented in this task are extracted from read
speech across many different contexts, while stimuli used in laboratory experiments are more controlled.
Potential coarticulation effects make themachine sound discrimination task harder than typical in-lab phone
discrimination tasks.
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itself debated. Experimental evidence in infants only rests on simplified artificial languages
(synthetic stimuli, small number of sounds), and it is not clear that this would translate to
audio data in which speech sounds are highly variable according to phonetic context,
speaker, speaking style and rate, in addition to being potentially contaminated by non-
speech background sounds.

In Figure 3, we highlight a few key results obtained by STELA when presented with raw
audio from audiobooks (Lavechin, de Seyssel et al., 2022c) and tested at the phonetic level
(ABX discrimination) and lexical level (spot-the-word) using the tasks presented in a
previous section. The results clearly show above-chance performance on native test stimuli
and gradual and parallel learning at both phonetic and lexical levels, with the system being
able to discriminate sounds better, and prefer words over nonwords more, as more data is
presented to themodel. This improvement is weaker when tested on a non-native language
(actually, not present at all for the lexical task). Further tests (not shown in Figure 3) using a
syntactic task (which is also carried out on the language model component presented in
Figure 2) in which the system has to show a preference for legal versus illegal sentences
revealed much weaker learning. Only the model trained on the largest quantity of speech
available (that is, 3200 hours) was able to show preference on an adjective-noun order task
(‘the nice rabbit’ versus ‘the rabbit nice’), with a slightly-above-chance 55% accuracy.

In brief, the STELA simulation suggests that raw speech input only, combined with
statistical learning, and more precisely predictive learning, is: 1) sufficient to bootstrap the
phonetic, the lexical and only very weakly the syntactic levels; 2) sufficient to reproduce the
gradual and overlapping developmental trajectory observed in infants at the phonetic and
lexical levels5. It is the first time a simulation reproduces the gradual andmultilevel learning
observed in infants from audio signals, at least when audiobooks are used as input.

Figure 3. Phonetic (left) and Lexical (right) scores for native and non-native input at different quantities of training
data. Phonetic score is expressed in terms of ABX accuracy, obtained by the discrete representations for native and
non-native inputs. Lexical score is expressed in terms of accuracy on the spot-the-word task, on the high frequency
words for native and non-native inputs. Error bars represent standard errors computed across mutually exclusive
training sets. Two-way ANOVAs with factors of nativeness and training language were carried out for each quantity
of speech. Significance scores indicatewhether the nativemodels are better than the non-native ones. Significance
was only computed when enough data points were available to run sensical comparisons. Significance levels: na:
not applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001. Figure taken from Lavechin, de Seyssel et al.
(2022c).

5Larger models, trained with more audio data are able to pass more complex syntactic tests, and show the
beginning of semantic abilities as well (Dunbar et al., 2021), suggesting that the structure of the model can
itself learn at several levels beyond phonetic and lexical levels.
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Do infants learn and perceive language in terms of linguistic categories?
A second debate concerns whether linguistic categories (phones, words) are necessary
building blocks in early language acquisition. On the one hand, linguistic theories
describe adult competence in terms of such categories. On the other hand, these categories
are language-dependent and therefore need to be learned by infants, who have only access
to continuous sensory information at the beginning. Schatz et al. (2021) recently pro-
posed a learning simulation of phonetic learning from raw audio signals based on a
probabilistic model using Mixtures of Gaussians. While reproducing observed native
advantage effects in phonetic discrimination between Japanese and English phonemes,
the learner used in this simulation did not learn phonemes or units that could be described
linguistically. These results suggest that phonetic learning can occur without the existence
of phonetic categories.

The STELA simulation reproduces this conclusion using a totally different learning
algorithm, supporting once again the idea that phonetic categories are not necessary for
phonetic learning (see also Feldman, Goldwater, Dupoux & Schatz, 2022). To dive further
into this, it is interesting to reflect on how the acoustic model behaves during training
concerning the duration of the learnt representations. Pre-exposure (i.e., before themodel
has received any input) speech is represented within the model as a string of random
units. As the model receives speech, it learns to structure this discrete representation:
discrete units start repeating themselves, and the sound discrimination accuracy
increases. An analysis of the duration of the discrete learnt units revealed that the latter
are too short to correspond to phones (43ms for the learnt units, versus 90ms for a typical
English phone), similarly to what has been found in Schatz et al. (2021). An example of
how the discovered units compare to the original phones is presented in Figure 4, where
units are clearly shorter than the phones. More surprisingly, the more speech the model
receives, the lower the duration of the discrete units. It is essential to note that no
constraint is applied to the duration of these units. The model could, in principle,
converge to phone-length discrete units, but does no such thing. In other words, the
model does not converge to phone-like representations, yet it can still pass phonetic,
lexical and, to a certain extent, syntactic tests for which phoneme representations are still
often considered a prerequisite6.

Figure 4. An example spectrogram of an English utterance, along with the corresponding phonemes (top tier) and
the units discovered by a STELA model trained on 3200 hours of English. Transcription: “The valley was filled”

6Probing experiments using linear separation revealed however that the representations learned by the
acoustic model become more and more structured according to phonetic dimensions like phonetic category
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In STELA, it is also possible to ask the question of linguistic categories at higher
linguistic levels. Surprisingly, even though the model can distinguish words from non-
words, we could not find an indication that the model represents words as such, or would
represent the boundaries between words. Yet, the continuous activations found in the
hidden layers of the recurrent model contained some approximate linguistic information,
as a trained linear classifier was able to classify test words into function versus content
words or verb versus adjective/adverb versus noun better than chance, and the separation
increased with more input data. These results show that, although the model does not
learn discrete and interpretable linguistic categories internally, linguistic information
increasingly structures the learnt representations (for more in-depth analyses of the types
of units yielded by such models, see de Seyssel, Lavechin, Adi, Dupoux & Wisniewski,
2022; Nguyen, Sagot & Dupoux, 2022; Sicherman & Adi, 2023). Thus, our simulation
promotes the view that linguistic categories could be the end product of learning, not their
prerequisite.

Can statistical learning alone account for early phonetic acquisition from ecological
audio?
One of the largest controversies in language learning orbits around the poverty of the
stimulus argument (Chomsky, 1980). This argument states that the input available to
infants is too scarce and too noisy to warrant language learning through a general-
purpose learning algorithm. Therefore, only a learning algorithm with strong inductive
biases would be able to reproduce human language learning. For a long time, this
controversy has remained unsolved for lack of learning algorithms that can work even
on rather simple inputs. With STELA, at last, we are able to address this controversy, at
the level of phonetic and lexical learning. The preceding sections show that a relatively
general-purpose system based on predictive coding is able to learn at both levels when fed
with audiobooks, but this kind of input may not be realistic enough to correspond to the
learning problem faced by infants. Indeed, the audio environment of infants, first of all,
contains a majority of non-speech noises, and the little amount of speech that is heard
may be under-articulated, reverberated and absorbed by the surrounding obstacles in the
environment, and overlaid with various background noises. Could the relatively generic
learner of STELA handle such noisy inputs?

One way in which one can revisit this simplifying assumption is by using child-centred
long-form recordings, i.e., daylong recordings collected via child-worn microphones as
people go about their everyday activities. Lavechin et al. (2022b) exposed the STELA
contrastive predictive coding algorithm to such ecological recordings of children’s
language experiences and found that the discrimination gap between the native and
the non-nativemodels vanishes. It is only when supplemented with inductive biases in the
form of filtering and augmentation mechanisms (restricting learning to speech parts,
taking into account speaker invariance, and making the system resistant to reverberant
noise) that the model could exhibit some form of perceptual attunement again (see
Figure 5). In addition to this result, Lavechin et al. (2022b) showed that, even in the

(vowels, fricatives, approximants, plosives, etc.), place of articulation for consonants (bilabial, labiodental,
dental, etc.), and voicing (voiced or voiceless) as a function of amount of input data. This suggests that the
model is learning some phonetic structure from the data even though it is not learning interpretable
categories like phonemes.
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presence of inductive biases, the learning speed of the learner was still negatively impacted
by the presence of additive noise and reverberation in the training set and that this loss
could not be recovered by adding more data.

Given the sparse, variable and noisy nature of the speech overheard by children, this
simulation suggests that a statistical learning algorithm alone might not be sufficient to
account for early phonetic acquisition. Given that linguistic input represents a small
fraction of the audio environment of the child, and that even speech is itself overlapped
with non-speech signals, any statistical learning algorithm will devote its resources to
discovering the structure of the entire audio, thereby failing to capture the structure of
speech sounds.

The three types of inductive biases that were introduced in this study are plausible and
independently motivated by experimental evidence in infants: infants show an early
preference for attending to speech versus non-speech sounds, and it is plausible that they
would learn preferentially on such sounds. In addition, there is evidence that infants
distinguish speakers and associate speakers to their voices at an early age; it is therefore
plausible that their learning algorithm would be speaker-specific. Finally, the human
learner has the benefit of an auditory system that has been fine-tuned bymillions of years
of evolution to accurately perceive sound sources in complex auditory scenes, and it is
plausible that learning operates not on raw sensory data, but rather on sensory streams
organised according to source and therefore resist additive noise and reverberation. It is
important to note, however, that the inductive biases we implemented are not sufficient;

Figure 5. Panel (a) shows native discrimination accuracy, as measured in an ABX discrimination task, obtained by
American English and Metropolitan French CPC models (both models are evaluated on phonemes of their native
languages). Panel (b) shows native advantage, computed as the average relative difference of the native model
and the non-native model, obtained by the same pairs of models (a positive native advantage indicates that the
native model is better at discriminating native sounds than the non-native model). Figure adapted from Lavechin
et al. (2022b).
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as subsequent testing at the lexical level showed that, evenwith them, no lexical learning is
evidenced in STELA when fed with long-form recordings. This indicates that, as far as
phonetic and lexical learning is concerned, some form of poverty of the stimulus
argument is valid, and that generic learning algorithms (at least the ones we tested) need
to be supplemented with strong inductive biases.

In brief

We showed that realistic learning simulations could help address some of the key
controversies within language acquisition. For instance, STELA shows that statistical
learning can be sufficient to reproduce some key findings in infants (phonetic attune-
ment, preference for words over nonwords) from raw audio inputs in the total absence of
multimodal grounding or social feedback. It also shows that such learning patterns can
arise in the total absence of interpretable linguistic categories. However, it also shows that
it has to be supplemented with inductive biases in order to deal with the noise present in
naturalistic recordings that are representative of what infants really hear. Of course, these
findings are only theoretical results: and, as such, can demonstrate that mechanism A is
sufficient (or not needed) to observe outcome B. Whether infants really use similar
mechanisms remains to be further established.

What lies ahead?

So far, we have presented evidence that learning simulations, when scaled to incorporate
realistic inputs and to model more than one linguistic level, can address some long-
standing controversies regarding learning mechanisms in infants. However, our demon-
stration was limited to testing one hypothetical learning mechanism: statistical learning,
and a particularly narrow version of it that is restricted to audio inputs. While STELA
could perhaps be counted as the first successful learning simulation of early language
acquisition in infants when trained on audiobook data, it struggles to learnwith ecological
data, even with inductive biases. This suggests two directions of future work: (1) improv-
ing STELA with more inductive biases; (2) build a model that incorporates other learning
mechanisms (e.g., cross-situational learning, social feedback, etc.). Either way, there is
work to be done for both the psycholinguistic and AI communities, which we review
below.

Guidelines for psycholinguistics and AI communities

Modelling the environment
Concerning the learning environment, we believe that one challenge that lies ahead
consists of collecting and characterising more ecological data. As demonstrated above,
results are quite different when models are presented with audiobooks or long-form
recordings. We foresee that moving towards more naturalistic training sets will increase
the impact and relevance of language learning models.

As data is the crux of any language learning simulation, we believe constant efforts
must be put in place to collect and share ecological learning environments. On this front,
we would like to highlight important initiatives such as the privacy-preserving sharing
platforms for long-form audio recordings (VanDam et al., 2016) or video data (Simon,
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Gordon, Steiger & Gilmore, 2015), and the DARCLE (DAylong Recordings of Children’s
Language Environments, DARCLE.org, n.d.) community. We believe these initiatives
must become standard practices as they can transform our understanding of language
development by enabling incremental and reproducible science and fueling language
learning simulations with realistic data.

In addition, most of what we know concerning language development comes from
Western, Educated, Industrialised, Rich, and Democratic (WEIRD) populations
(Henrich, Heine & Norenzayan, 2010; Scaff, 2019), and this bias toward WEIRD
populations reflects in the type of data computational modellers have access
to. Current large-scale audio datasets – whether they contain child-centred recordings
or audiobooks – are primarily collected in American English (Kearns, 2014; VanDam
et al., 2016). We believe this represents a significant limitation for language realistic
learning simulations that can – and should – be run considering diverse socioeconomic
and cultural backgrounds. Doing so would help us extract and understand universal
constants taking place in the course of language development.

Finally, another challenge is to enrich the nature of the data provided to the learner by
incorporating ecologically collected multimodal data, in order to address the importance
of cross-situational learning in real life. Also, quantifying the nature and prevalence of
social feedback (some of which is nonverbal) is very important as a first step towards
building interactive models of the learning environment (Tsuji et al., 2021)

Modelling the learner
One key challenge on the learner side relates to the quantity of data needed to reach a
certain level of linguistic performance. Today’s most performant text-based language
models are trained on roughly one thousand times the amount of linguistic input afforded
to a typical child (Warstadt & Bowman, 2022). Therefore, current language models are
confronted with a data efficiency problem that is doomed to be even more critical when
learning from the raw audio, where other sources of variations have to be considered
(speaker’s identity, speech rate, acoustic conditions, etc.). Future research should focus on
implementing algorithms that can reach human-like performances with the same input
data available to an infant – that is, that can map the input and the output measures to
those of the modelled human.

Related to this question is the challenge of improving perceptual constancy (on the
difficulty of obtaining speaker-invariant representations, see van Niekerk, Nortje, Baas &
Kamper, 2021) for state-of-the-art learners of audio representations. As stated above,
speech sounds, words and sentences can be realised in numerous ways depending on the
speaker’s identity, the speech rate, or the acoustic environment. This problem is bypassed
when considering the text as input, although text brings other simplifying assumptions
irrelevant in the context of language acquisition. We believe normalising audio repre-
sentations along all dimensions irrelevant to language represents one crucial step to
bridging the performance gap between audio-based and text-based language models.

Finally, it is important to develop learners that go beyond the statistical learning
hypothesis (Erickson & Thiessen, 2015; Romberg & Saffran, 2010; Saffran et al., 1996).
Comparing this hypothesis with alternative ones (cross-modal grounding, social con-
structivism, etc.) will require developing learners with other learning mechanisms to play
a more critical role. Reinforcement learning may, for instance, integrate social and
interactive rewards, whereas supervised learning may integrate corrective feedback from
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caregivers. Admittedly, integrating multiple learning mechanisms and modalities in a
single learning simulation requires collaborative work across fields, as has been analysed
in Tsuji et al., 2021.

Modelling the outcome measures
The ultimate test of any language learning simulation is the comparison to humans.
Dupoux (2018) proposed to aim at cognitive indistinguishability in that setup: “a human
andmachine are cognitively indistinguishable with respect to a given set of cognitive tests
when they yield numerically overlapping results when run on these tests”. This critically
assumes that cognitive tests that can be applied to the infant and the learner alike are
available.

This is not an easy task, andmuchmore can be done in this regard. As discussed above,
outcome measures come in several flavours. Laboratory experiments require infants to
cooperate with the setting, which is not a given. As a result, the outcome measures are
loaded with non-linguistic factors. Infants’ performance depends on various factors that
most simulations do not currently consider (e.g., memory or fatigue). This problem is
even worse when considering babies for which measures are noisier (but see Blandón,
Cristia & Räsänen, 2021, who propose evaluations against meta-analyses). This meas-
urement noise needs to be integrated into the outcome model before direct comparisons
between infants and simulations can be done. We refer to this problem as the calibration
problem. Some outcome measures are more ecological, and extracted directly from the
speech of infants. This requires a learner that can also speak, which has not yet been
developed. Other measures, like the CDI, depend on the judgement of a caretaker, which
here again needs to be modelled specifically. Ultimately, the calibration of measures
extracted from themachine to those extracted from the human (or vice versa) will have to
be dealt with one measure at a time.

Similarly to HomeBank (VanDam et al., 2016) or Databrary (Simon et al., 2015), we
believe both the AI and the psycholinguistics communities would greatly benefit from a
privacy-preserving platform to share stimuli – as well as responses – used in psychology
experiments. Such a platform would allow researchers to 1) re-use stimuli as new
hypotheses arise; 2) revisit stimuli – or responses – to control for confounding factors,
or in the context of meta-analytic studies; and 3) create benchmarks that aim at
comparing humans and machines. Concerning the last point, we believe there are still
too few works that directly compare human and machine performance on a common
benchmark (but see Millet & Dunbar, 2020 for a sound discrimination capability study).
A stimuli-sharing platform would accelerate collaborative works across the AI and the
psycholinguistics community and could also extend to other domains of psychology
(including decision-making or social experiments, for instance).

Conclusion

The article’s main aim was to provide an extensive description of an emerging theoretical
approach in the field of language acquisition: learning simulations, and especially realistic
and broad-scope learning simulations. We proposed four criteria we believe are essential
for such a simulation to address the current theory crisis and act as a cumulative and
unifying theory of language acquisition. We then presented STELA, one such simulation,
and showed how it could help shed light on long-standing controversies. Realistic
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learning simulations can – and should – integrate the large body of knowledge acquired by
the different approaches that comprise the field of language acquisition. Such realistic
learning simulations are by nomeans replacements for other approaches, as all are needed
to reach a unified theoretical landscape. Indeed, verbal frameworks can inspire the design
of artificial learners, computational models can provide hands-on algorithms, statistical
models can exhibit relationships between input and learning outcomes, and corpus
studies help describe the characteristics of language environments. Of course, there
remain challenges ahead of us to build more complete realistic learning simulations,
and we dedicated the last section to address some of them.
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Appendix A: How to derive a probability from a Language Model?

Head-turn preference experiments (Nelson et al., 1995) provide a wealth of results
regarding the type of stimuli infants prefer to listen to. However, mechanisms underlying
this preference remain unobservable. Computational modelling provides complementary
information by assessing hypotheses about  statistical information might be used to
exhibit similar preference patterns as those exhibited by infants, or what underlying
information processing problem is being solved. Language models, and probabilistic
models in general, offer a natural way to extract a preference measure from an artificial
learner: a stimulus A is preferred to a stimulus B if A is more probable than B.

But howdoes one compute the probability of a stimulus from a LanguageModel? First,
the waveform goes through the AcousticModel which returns a discrete representation of
the audio: q1,q2…,qT . Then, the Language Model, which has been trained to predict the
next discrete unit of a sequence given its past context, assigns a probability to the discrete
sequence using the following chain-rule:

P q1,…,qT
� �

= Π
T

t = 1
P qtjq1,…,qt�1

� �

We compute the logarithm of the resulting probability which has the effect of
increasing the difference between probabilities assigned to a minimal pair of stimuli (e.
g., a word and a non-word that differ in a single phoneme). The logarithm is then
normalised by the length of the input stimuli to enforce the model to not show a constant
preference for the longest stimuli.
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Appendix B: Overview of the learner used in STELA

Figure A1. Model of the learner used in STELA. The Acoustic model is composed of a convolutional encoder which
delivers a vector of continuous values zt every 10ms. This is sent to a recurrent network aggregator that integrates
context and delivers vectors with the same time step. Contrastive Predictive Coding is trained to predict the
outputs of the encoder in the near-future (up to 120 ms). The output of the aggregator is sent to a K-means
algorithm that discretise the continuous representations ct into qt. Then, a language model (long-short term
memory (LSTM) network) is trained to predict the next qt unit based on past ones.

Cite this article: de Seyssel M., Lavechin M., & Dupoux E. (2023). Realistic and broad-scope learning
simulations: first results and challenges. Journal of Child Language 1–24, https://doi.org/10.1017/
S0305000923000272
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MOTS CLÉS

développement du langage, psycholinguistique, traitement de la parole, apprentissage profond, apprentissage
supervisé, apprentissage auto-supervisé, sciences cognitives

RÉSUMÉ

L’utilisation d’enregistreurs légers portés par les enfants et collectant du son tout au long de la journée ouvre
la voie à une approche de ‘données massives’ pour étudier le développement du langage chez l’enfant. En
recueillant la production langagière de l’enfant ainsi que son environnement linguistique, ces enregistrements
nous offrent une vision réaliste des usages quotidiens du langage. Cependant, de tels enregistrements
constituent rapidement des milliers d’heures d’audio et nécessitent l’utilisation d’outils de traitement
automatique de la parole. En plus de fournir des mesures réalistes de ce que les enfants entendent et disent,
ces enregistrements peuvent alimenter les modèles computationnels d’acquisition du langage avec une entrée
comparable à ce que les enfants entendent réellement, ouvrant ainsi de nouvelles perspectives pour simuler
l’apprentissage du langage. Nous présentons d’abord nos contributions au développement d’algorithmes de
traitement automatique de la parole pour les enregistrements longs centrés sur l’enfant. À travers une série
d’études, nous montrons ensuite comment le caractère réaliste des données d’entrée affecte les résultats
d’apprentissage des modèles computationnels d’acquisition précoce du langage, démontrant ainsi l’importance
d’exécuter des simulations d’apprentissage du langage qui reflètent étroitement les caractéristiques de la vie
réelle.

ABSTRACT

Lightweight child-worn recorders that collect audio across an entire day allow for a big-data approach to
the study of language development. By collecting the child’s production and linguistic environment, these
recordings offer us a uniquely naturalistic view of everyday language uses. However, such recordings quickly
accumulate thousands of hours of audio and require the use of automatic speech processing algorithms.
Besides providing ecologically-valid measures of what children hear and say, these recordings can fuel
computational models of early language acquisition with what infants truly hear. This opens up new
opportunities for running realistic language learning simulations. We first present our contributions to
developing automatic speech processing algorithms for child-centered long-form recordings. Through a series
of studies, we then show how the ecological validity of the input data affects the learning outcomes of
computational models of early language acquisition, demonstrating the importance of running language
learning simulations that closely emulate real-life situations.

KEYWORDS

language development, psycholinguistics, speech processing, deep learning, supervised learning, self-supervised
learning, cognitive sciences
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