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Résumé —

Cette thése vise & améliorer les systémes de synthése vocale a partir du texte en ciblant
deux axes, la réactivité et la qualité. En effet, les systémes actuels présentent un délai im-
portant car l'utilisateur doit entrer une phrase compléte avant que cette derniére ne puisse
étre synthétisée. Lorsque utilisé comme voix de substitution par une personne présentant
un trouble de la communication, ces systémes ne permettent donc pas une interaction fluide.
De plus, les systémes actuels exploitent exclusivement le texte de la phrase a synthétiser en
ignorant le contexte linguistique général associé (par exemple les phrases précédentes). Dans
cette thése, nous proposons d’utiliser les modéles de langage basés sur des architectures de
type Transformer pour (1) prédire le texte futur, a partir du texte déja saisi, et ainsi débuter
la synthése d’un mot juste aprés sa saisie - on parlera de synthése incrémentale, et (2) encoder
le contexte linguistique général associé & la phrase & synthétiser pour améliorer la qualité
prosodique de la synthése - on parlera de synthése adaptée au contexte.

Dans une premiére étude, nous étudions 1’évolution des représentations internes d’un sys-
téme TTS neuronal lorsque ce dernier synthétise un mot avec une connaissance seulement
partielle des k mots a venir (le lookahead). Une analyse statistique (de type foréts aléatoires)
est utilisée pour determiner quels sont les descripteurs linguistiques qui influent sur la sta-
bilité de ces représentations internes. Enfin, nous complétons ces mesures objectives par un
ensemble de tests perceptifs visant & quantifier la qualité prosodique en fonction du contexte
linguistique considéré. Ces évaluations montrent que les systémes TTS actuels exploitent un
horizon d’environ 2 mots et que la stabilité des représentations internes associé & un mot
dépend fortement de sa longueur.

Notre seconde contribution porte sur I'intégration, a un systéme TTS neuronal, d’'un mod-
¢le de langage autoregressif, basé sur une architecture de type Transformer (tel que GPT)
afin de prédire, au fur et & mesure de la saisie du texte, les mots suivants les plus probables.
Les évaluations objectives et perceptives menées montrent que cette approche permet un bon
compromis entre réactivité et naturel de la synthése, mais reste trés dépendante de la qualité
de la prédiction du texte.

Notre troisiéme contribution porte sur l'amélioration générale de la prosodie d’un sys-
téme TTS et plus spécifiquement sur la prédiction de la focalisation contrastive d’une part, et
d’autre part sur la segmentation d’un texte en cours de saisie en groupe de souflle. Il s’agit de
taches particuliérement difficiles car elles nécessitent 'extraction d’informations au niveau sé-
mantique. Nous proposons d’utiliser les modéle de language pour capturer ces informations en
exploitant un contexte linguistique plus large que la phrase & synthétiser. Plus spécifiquement,
nous adaptons un modéle de type BERT pour qu’il prédise directement des caractéristiques
acoustiques associées a la focalisation contrastive. Pour évaluer cette approche, nous avons
constitué un corpus spécifique présentant de nombreuses occurences de focus contrastifs sur
des pronoms personnels. Enfin, nous proposons d’utiliser les modéles autoregressifs (GPT)
pour décomposer de facon incrémental un texte en cours de saisie, ce qui permet de réaliser
un compromis entre le naturel et la réactivité de la synthése vocale.



Abstract — Text-to-speech (TTS) technology has the potential to enable real-time
communication for applications such as automatic interpreters or assistive technologies for
the speech impaired. However, current TTS models are not optimized for such use cases
because they require full-sentence inputs, leading to delays between conversation turns. Fur-
thermore, these models are unaware of the surrounding context and are thus unable to adapt
their prosody to suit the current situation. These limitations impede engagement and under-
standing. In this thesis, we aim to improve the suitability of TTS for interactive applications
by addressing two main challenges. Firstly, we focus on reducing the time required to initiate
speech synthesis while at the same time maintaining natural prosody. Secondly, we explore
the prediction of appropriate prosodic features for a given linguistic context. Language models
(LMs), known for their effectiveness in natural language processing tasks, are employed as a
primary tool for investigation for both of these challenges.

We begin by investigating the importance of degrees of lookahead (i.e., future words) for
a vanilla, full-sentence TTS model. We do this by measuring the distance between the final
internal representation of a word (i.e., when the full sentence is known) and the intermediate
representations at each degree of lookahead. We also compare the prosodic quality of the
outputs with a subjective test. Finally, we use random forest analysis to study which factors
contribute the most to the stability of the internal representations (i.e., to determine whether
the representation is likely to change or not). These tests show that word representations
are shaped mostly by the next two words of lookahead and that word length is the largest
predictor of stability.

We then investigate the use of pseudo-future text (generated by a language model) to
enhance incremental text-to-speech (iTTS) synthesis. By leveraging linguistic clues present
in the already provided text, language models anticipate the future context, filling in missing
information for prosody modelling purposes. The objective and perceptual evaluations carried
out show that this approach offers a good compromise between responsiveness and naturalness
of synthesis, but remains highly dependent on the quality of text prediction.

Finally, we address the challenge of producing contextually appropriate speech. We iden-
tify an aspect of prosody modelling, contrastive focus on personal pronouns, which can be
particularly challenging due to the high-level discursive knowledge which is often required
for correct prediction. We evaluate the contribution pretrained LMs can make to this task
compared to less linguistically sophisticated baselines. We also compare prediction accuracy
with different amounts of context and test the control of prominence in the speech output.
We go on to evaluate the use of LMs to guide speech segmentation for high input latency
applications. We compare LM-informed methods with simpler count-based methods using
subjective tests and a sentence verification test.
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Introduction

Text-to-speech for real-time communication Text-to-speech (TTS) is a technology that
can give voice to the voiceless, bridge language divides and allow humans to converse with
machines. However, current TTS models are not optimized for real-time communication:
synthesis is performed at the sentence level which can cause long delays between conversation
turns, stilting the interaction. Nor are they good at adapting their output to suit the needs of
an evolving linguistic context or the communicative intentions of the user. The incongruence
between the speech and the context causes the listener to expend extra mental energy to
understand the speaker, further degrading engagement.

In this thesis, our overarching goal is to make TT'S more suitable for interactive applica-
tions. This includes the sub-goals of (1) reducing the time it takes to start outputting speech
while maintaining natural prosody and (2) predicting appropriate prosodic features for a given
linguistic context. We investigate these issues primarily through the use of language models
(LMs). The recent progress in LM technology has substantially enhanced our capability to
model linguistic phenomena, and the application of these models has already proven useful for
a wide range of natural language processing (NLP) tasks. We test whether pseudo-future text
(generated by a language model) can improve incremental text-to-speech (iTTS) synthesis by
filling in missing contextual information that has not yet been provided by the user, and we
evaluate the ability of language model-encoded linguistic representations to improve prosody
modelling.

Incremental text-to-speech (iTTS) iTTS synthesis is the process of generating speech
from an incomplete/evolving text input. The current state-of-the-art paradigm for TTS train-
ing (full-sentence TTS) involves sequence-to-sequence (seq2seq) modelling of utterance-level
phoneme sequences to their corresponding Mel-spectrograms; inputting an incomplete se-
quence into a model trained in this fashion will result in a loss in quality due to missing
contextual information. Adapting TTS for online processing could take several forms: these
could include the use of lookahead (i.e., waiting for some additional words) or training the
model to ignore future context (by training on truncated inputs). Both these options re-
quire a trade-off with regards to the quality/latency of the system; lookahead reintroduces
latency (although perhaps not as extreme as waiting until the end of the sentence) and ignor-
ing right-context means optimizing for a generic future where all context-dependent prosodic
phenomena have to be neutralized to fit with any possible future. Another possibility, which
has the potential to both reduce latency and keep quality high, is to predict what is coming
next using the linguistic clues present in the already-provided text. Since language models
(specifically causal ones) are skilled at anticipating what comes next, using this tool could
prove useful for iTTS. We evaluate this method in the thesis.

iTTS applications can be divided into two categories: those where the input stream of
text content is roughly equivalent to the production rate of natural speech (e.g., simultaneous



2 Introduction

translation, dialogue systems) and those where the input stream is considerably slower than
natural speech (e.g., Augmentative and Alternative Communication (AAC) applications used
to assist the speech impaired). Both types could benefit from reduced latency with predicted
futures, in the former case to continuously try to replicate natural speech as closely as possible,
but for the latter type, we may want to alternate between speeding up synthesis with a
predicted future and tolerating some latency in order to output more natural chunks of speech
(as opposed to a one-word-at-a-time output). For this use case, we investigate using the
linguistic knowledge contained within language models to guide the segmentation of the speech
stream.

Contextually appropriate speech The quality of full-sentence TTS systems has increased
dramatically in recent years, and in small doses, their output is basically indistinguishable
from human speech. In longer form however (i.e., when synthesizing multiple sentences), the
weaknesses of T'T'S become more apparent: it may sound like a person speaking, but not like
a person thinking and embodied in the current context. Humans naturally emphasize the
parts of their message that are new or informative for the current discourse. They also add
nuances of meaning by shifting emphasis to different words in an utterance. Current TTS
systems are incapable of adapting their output to suit the current context because (1) they
are trained on single sentences, hence they have no awareness of the surrounding context (the
lack of contextual awareness is only exacerbated in iTTS) and (2) they are trained to output
the most likely prosodic pattern for a given input (for English, this usually means placing
emphasis on the last lexical word of an utterance); their training objective does not support
the learning of marked /non-canonical patterns. In order to produce speech that is appropriate
for a given context and for the speaker’s intentions, a T'T'S model must have access to higher-
level knowledge about meaning and discourse than that inferable from the phoneme sequence
of a single sentence alone.

A recent trend in TTS is to incorporate language model embeddings into the TTS model
as a way of exploiting additional contextual/linguistic information for prosody modelling.
These language models, which are trained on massive corpora containing significantly more
words than those typically used to train TTS models, are able to learn representations of
various linguistic phenomena. Previous TTS studies incorporating language models have
seen improvements in mean opinion scores of speech samples, however the exact contribution
of the additional input is not well understood. In this work, we probe whether pretrained
language models are able to provide high-level discourse knowledge to a prosody predictor or
if it simply adds lower-level information about syntax and distributional semantics. We also
examine whether extended contexts can help improve the prediction of prosodic prominence.

The contextual appropriateness of speech (or lack thereof) can have consequences on the
cognitive load imposed on the listener. Evidence suggests that listeners do not expend equal
amounts of energy on all aspects of the speech signal, but rather use prosodic and other lin-
guistic cues to focus their decoding efforts and structure the discourse. These cues include
the relative prominence of words in an utterance and the segmentation of speech into infor-
mation units. As we would like to synthesize speech that is easy to process, we experiment
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with a testing paradigm, sentence verification, that aims to assess the mental effort required
to understand an utterance; we attempt to move beyond the most common TTS evaluation
methodology which is to gather subjective ratings of single-sentence utterances.

Controlling TTS In previous TTS paradigms (e.g., HMM), prosody modelling was divided
into two phases: (1) a front-end NLP analysis which would predict discrete prosodic features
(e.g., the phoneme sequence, pitch accent placement and the position of phrase breaks) and (2)
an acoustic model that predicts continuous features (e.g., f0, duration). With the introduction
of seq2seq T'TS architectures, these two feature sets were inferred jointly. This eliminated some
error propagation issues and resulted in overall more natural speech, but came at the expense
of interpretability and feature control. In this work, we reintroduce a two-stage process in
order to regain the control that is necessary for making speech contextually appropriate. We
use LMs to predict prosodic feature tags (for prominence and boundaries) and then we use
these tags to control the output of a TTS model. This method of control has been shown to be
successful in previous works which have tested control of content words (which are frequently
prominent in training corpora). We test the limits of the control afforded by this technique
by testing more marked prominence structures: prominence on personal pronouns.

Organization and contributions In this thesis, we approach the topics of iTTS and the
application of LMs to this paradigm from several angles: evolving neural representations,
future word prediction, and prosody modelling. The thesis is organized into five chapters.
The first two are dedicated to existing research on communication and linguistic context and
its effects on prosody. In the next three, we present our contributions to the field.

1) In the first chapter, we review the literature on characteristics of human communication
that should be considered when building a TTS system for interactive purposes. Specifically,
we look at (1) the way interaction and backchanneling shapes the quality of a conversation
and (2) the foregrounding and backgrounding of elements of the speech signal to facilitate
processing. We also present theoretical background on prosody and information structure
(i.e., the techniques used by speakers to relate their speech to the common ground shared
with their interlocutor(s)). We finish by examining the weaknesses of current TTS models
and the methods used to evaluate them.

2) In the second chapter, we look at the ways context affects prosody at the different levels
of the linguistic hierarchy. We then review the literature on LM probes which explore the
types of linguistic knowledge learnt by these models during training.

3) In the third chapter, we review previous and concurrent work in iTTS before presenting
our first contribution, which was one of the first works on neural iTTS. In this work, we study
the importance of different degrees of lookahead (i.e., future words) on speech synthesis. To
do this, we measure the distance between the final internal representation of a TTS model
(i.e., when the full sentence is known) and the intermediate representations at each degree
of lookahead. We also evaluate the audio outputs at each stage with a subjective test. We
use random forest analysis to study which factors contribute the most to the stability of the
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internal representations. The results of this analysis could be used to build an adaptable
latency mechanism which only tolerates additional latency when the current word is likely to
change significantly.

4) In the fourth chapter, we test the use of language models to predict future context.
The aim of this work is to reduce latency by replacing ground-truth lookahead with pseudo-
lookahead. We test whether this method is able to improve prosody prediction using both
objective and subjective measures. We compare several different synthesis conditions: (1) full-
sentence, (2) no lookahead, (3) language model generated lookahead, (4) randomly generated
lookahead (a control) and (5) ground-truth lookahead.

5) In the fifth chapter, we use LMs to predict and control prosody. We identify an aspect of
prosody modelling, contrastive focus on personal pronouns, which can be particularly challeng-
ing due to the high-level discursive knowledge which is often required for correct prediction.
We evaluate the contribution pretrained language models can make to this task compared to
less linguistically sophisticated baselines. We also compare prediction accuracy with different
amounts of context (incremental, full-sentence and extended context). Furthermore, we con-
duct a perceptive test to gauge the amount of control our controllable T'TS system has over
infrequently prominent words like personal pronouns. We go on to evaluate the use of lan-
guage models to guide speech segmentation for high input latency applications. We compare
language model informed methods with simpler count-based methods using subjective tests
and a sentence verification test.

Research context and publications This thesis was funded by the Multidisciplinary
Institute in Artificial Intelligence (MIAI) and began in January 2020. The work was conducted
within the CRISSP team at GIPSA-lab (Grenoble) and the GETALP team at LIG (Grenoble).
The following works were published as part of this thesis:

Brooke Stephenson, Laurent Besacier, Laurent Girin, and Thomas Hueber (2020). “What
the future brings: Investigating the impact of lookahead for incremental neural TTS.”
in: Proceedings of Interspeech. Shanghai, China, pp. 215-219

Brooke Stephenson, Thomas Hueber, Laurent Girin, and Laurent Besacier (2021). “Al-
ternate endings: Improving prosody for incremental neural TTS with predicted future
text input.” In: Proceedings of Interspeech. Brno, Czech Republic, pp. 3865-3869

Brooke Stephenson, Laurent Besacier, Laurent Girin, and Thomas Hueber (2022). “BERT,
can HE predict contrastive focus? Predicting and controlling prominence in neural
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CHAPTER 1

How humans communicate and the
limits of current TTS
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In this chapter, our goal is to review some of the characteristics of human speech which
facilitate communication, namely the cobuilding of message through incremental feedback and
the foregrounding of important information. We also present some theoretical background in
prosody and information structure in order to better understand our objectives in this thesis.
And finally, in light of these communication characteristics, we examine the ways in which
synthetic speech, despite its recent advancements, is not currently well suited to interactive
applications.

1.1 Speech is a duet, not a series of solos (Clark 1996)

Early psychological models of the production and comprehension of speech in conversation
(Miller 1951) influenced by information theory (Shannon and Weaver 1949) presented these
processes as a series of consecutive of actions: a speaker would first encode a message into its
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linguistic form and transmit it to the listener. The listener would then decode the linguistic
signal to understand the message and then take the turn of the speaker and formulate a new
message to continue the discussion. More recent developments in this field have come to see
the act of conversation as a more collaborative activity, as evidenced by phenomenon such
as split utterances where the listener is able to coherently complete the speaker’s sentence
(Purver et al. 2009). A listener is able to accomplish this because they are not a passive vessel
but rather an active agent who is incrementally predicting what the speaker is going to say
next (Pickering and Garrod 2007; Pickering and Garrod 2013). The listener is also active in
that they are continuously communicating their level of understanding of what the speaker
has already said.

The listener’s ability to backchannel (Yngve 1970) has a direct effect on their understand-
ing. Schober and Clark 1989 compared the speech understanding of addressees and overhear-
ers. In their experiment, a speaker and addressee were in direct communication while trying to
complete a card ordering game; an overhearer was given a recording of the exchange between
the speaker and addressee and they were asked to complete the same task. The overhearer had
access to the same linguistic input as the addressees, but their inability to provide feedback
to the speaker and to negotiate meaning resulted in worse performance on the task.

In addition to communicating their own understanding, the listener is able to help shape
the production of the speaker through backchanneling. Bavelas et al. 2000 studied productions
by speakers narrating a story under conditions where the listener was either attentive or dis-
tracted. In the attentive condition, speakers received normal backchanneling from the listener.
In the distracted condition, less feedback was provided and the quality of story suffered as a
result. The type of backchanneling also has an influence on the course the speaker will take.
Tolins and Tree 2014 compared generic (e.g., uh huh, oh) and specific (i.e., context sensitive
commentary, e.g., wow) listener responses and found that generic backchanneling encouraged
the speaker to provide discourse new information whereas context specific backchanneling
would cause the speaker to elaborate on given events. Furthermore, as mentioned above, lis-
teners are constantly making predictions about upcoming speech and they sometimes vocalize
these predictions as a form of backchannel to communicate they have been paying attention.
Even if an offered prediction was not precisely the word the speaker had in mind, the speaker
will often adopt the listener’s words. This has the effect of grounding conversation (Clark
and Marshall 1981), i.e., establishing a common ground between the speaker and listener’s
knowledge.

It is the speaker’s job to monitor the addressee’s understanding and to adapt their speech
if there has been a breakdown in communication. This alteration can take place part way
through an ongoing utterance if the speaker suspects the addressee has not identified one of
their referents (Clark and Krych 2004). Speakers can also elicit feedback from the listener
through the use of prosodic cues (Buschmeier and Kopp 2014).

Other studies have demonstrated that the quality of speech is altered if listener feedback
is delayed. Krauss et al. 1977 had participants communicate over an audio channel with
a one second delay. The communication becomes a lot less efficient/more redundant (i.e.,
speakers used considerably more words) when compared to communication without a delay.
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Similarly, Vartabedian 1966 found participants accomplished a shared task 28% slower while
teleconferencing with delay versus no delay.

Active communication is most effective when there is a timely back and forth between
participants. This allows a speaker to react to and a listener to express their comprehension
needs in real time. Going beyond comprehension, reactivity in conversation can help build
social connections as the participants work together to build meaning. Reactivity is therefore
an important element in a communicative TTS system.

1.2 Focus on what is important, minimize the rest

As noted by Winkler 2005, the auditory processing of speech has many parallels with the
visual processing of a visual scene: we cannot pay attention to everything at once, we focus on
some elements while relegating others to the background. If we cannot make a clear distinction
between what should be focused and what should be ignored, like in Figure 1.1, then we have
trouble deciphering the message. If we take the time to examine the picture, we can see a dog
in the woods, but the interpretation is not automatic the way it would be if the background
and focus were clearly distinguished. The same is true in audio processing, we have to work
overtime if what is uninformative is not reduced. This is something that humans do naturally,
but TTS systems struggle with.

Figure 1.1: Heterogeneous background. Auditory comprehension is similar to the visual system
in that we must make a distinction between the background and foreground. When this
distinction is not made, more mental effort must be exerted to comprehend. Image from
Winkler 2005, originally from Goldstein 1996.

1.2.1 Speech production: emphasize the unpredictable

Language is a complex and noisy system that humans use to communicate information. A key
strategy humans employ to optimize the transfer of their message is to take into account the
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predictability of the words they use. Lieberman 1963 studied the relationship between word
redundancy (i.e., how predictable a word is in its context) and its acoustic realization. Words
present in idiomatic or cliché expressions (“A stitch in time saves nine”) were compared with
matched words in less predictable sentences (“The number that you will hear is nine”). The
words were recorded in context, excised from the sentence and then study participants were
asked to identify the words presented in isolation. The words excised from the less predictable
sentences were more easily recognized.

Several subsequent works have found similar effects of predictability on acoustic reduction
(Jescheniak and Levelt 1994; Jurafsky et al. 2008; Arnon and Snider 2010). To explain this
phenomenon, Aylett and Turk 2004 propose the Smooth signal redundancy hypothesis
which stipulates an inverse relationship between language redundancy and acoustic redun-
dancy (duration). In other words, speakers make an effort to evenly distribute information
throughout the speech signal to maximize the chance their interlocutor will understand what
they are trying to say: frequent, predictable words are accorded less time than infrequent,
less predictable words. This allows for reduced articulation effort as well as robustness to
information loss over a potentially noisy channel of communication.

1.2.2 Speech perception: Good enough processing

Processing speech is a complicated task that requires the rapid decoding of sounds to interpret
meaning at several structural levels (phonological, syntactic, semantic and discursive). This
involves recognizing the individual sounds that make up the words, identifying the words
themselves, understanding the grammar and structure of the sentence, and interpreting the
meaning of the sentence in context. Unlike when reading, where it is possible to return to an
earlier section, speech/conversation keeps moving forward. In order to handle the stream of
information, humans have to be shown where to focus their processing efforts; for the rest,
shallow representations will usually suffice.

Ferreira and Lowder 2016 call this differentiated system of attention Good enough process-
ing. This theory is built on several experiments that show humans often use partial /underspecified
linguistic representations, which can sometimes lead to misunderstandings, but in most cir-
cumstances allow them to understand the gist of what their interlocutor is saying. For example,
when asked How many animals of each kind did Moses take on the Ark?, most people respond
“two” even though it was actually Noah who brought animals onto an ark (Erickson and Matt-
son 1981).! Another example (Ferreira et al. 2001) comes from a garden-path study looking
at sentences like While Anna bathed the baby played in the crib. When asked comprehension
questions, subjects scored poorly on questions that dealt with the initial misreading of the
sentence (e.g., Did Anna bathe the baby?), indicating they had not properly updated their
representation of the sentence when disambiguating syntactic cues became available.

A possible explanation for the shallow treatment in these experiments is the form in which

'For this illusion to work, the incorrect word must share semantic traits with the correct word (the effect
goes away if you substitute Moses with Nizon).
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the poorly processed sections appear. In the Moses illusion, Moses is not the focused element
of the question and bathe is part of an initial subordinate clause which is often used to present
given information (Ferreira and Lowder 2016). Support for this idea comes from an experiment
by Sanford et al. 2006 designed to test focus and depth of processing. In this experiment,
participants were played an audio recording twice; on the second listening, the audio was
either identical to the first, or one word was changed. The target word was either narrowly
focused (as in (1)a) or part of a broad focus (as in (1)b). Results showed participants were
more likely to notice the change in the narrow focus condition, where it was more important
to the discourse.

(1)  a. Narrow focus:
They wanted to know which money had been stolen.
The money from the WALLET /PURSE had gone missing.
Thefts in the area were becoming all too common.
b. Broad focus:
They wanted to find out what had happened.
The money from the wallet/purse had gone missing.
Thefts in the area were becoming all too common.

Other research shows a prioritized treatment of prosodically prominent words. Stressed
words are processed faster than unstressed words. This has been tested in phoneme monitoring
experiments where subjects must push a button when they detect a target phoneme: Shields
et al. 1974 found reaction times were faster for stressed words. There is also evidence that the
preceding context allows listeners to anticipate upcoming focus. Cutler and Foss 1977 spliced
the same recorded word into two intonational contexts; one leading to a stressed word and one
to an unstressed one. Despite the identical acoustic content at the target, reaction times were
faster for the stressed condition. Nooteboom 1987 posed the question why all words are not
accented if it aids processing. Their experiments revealed that there is an interaction between
the new/giveness status of a word and its accentuation. Subjects were faster to identify a
given referent when it was unaccented.

1.3 Prosody

Words in spoken language are made more or less prominent than others by manipulating
prosodic features. Prosody refers to the rhythmic, intonational and phrasing patterns used in
speech to convey both linguistic and paralinguistic meaning. These meanings are expressed
through pitch, energy, duration and voice quality variations. A widely adopted annotation
system to describe the features of prosody is ToBI (Tones and Break Indices) (Silverman et
al. 1992 based on the work of Pierrehumbert 1980). This is a symbolic system that envisions
the prosodic contour as a series of targets which include pitch accents, phrase accents and
boundary tones.
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Pitch accents are used to highlight important words and they are (usually) aligned with
stressed syllables which are lexically determined in English (although they can shift to focus
an informative morpheme, e.g., It is STRESSED, not UNstressed). ToBI defines pitch accents
by their targets in the pitch range: high (H") and low (L"). There are also more complex
pitch accents that combine multiple targets, e.g., L' +H, L4+H" ( * shows the target that
aligns with the stressed syllable). These accents have been associated with different discursive
functions, for example H" accents have been associated with discourse new words and L+H"
with contrastively focused words.

intonation phrase
intermediate phrase
prosodic word

syllable

Mary Whittaker  arrived late

Figure 1.2: The prosodic hierarchy (Image from Krivokapi¢ 2014). T represents tonal targets.
Ts followed by * designate pitch accents, the circled ones show nuclear accents. T- indicates
phrase accents and T% boundary tones.

Phrase accents and boundary tones are used to elucidate the hierarchical organization of
utterances. The domains in this hierarchy include the syllable, the prosodic word, the in-
termediate phrase and the intonational phrase (See Figure 1.2). Phrase accents are used to
segment intermediate phrases and boundary tones segment intonational phrases. These are
marked using pitch targets similar to pitch accents (H and L). However, rather than associ-
ating with stressed syllables, phrase accents define the tonal movement from the last stressed
syllable until the end of the phrase, and boundary tones are limited to the edge of intona-
tional phrases. Both these boundary markers are associated with domain-final lengthening
and they can signal the type of discourse unit being used (e.g., a declarative or interrogative
sentence). Furthermore, each intermediate phrase must contain at least one pitch accent, the
most prominent of which is referred to as the nuclear accent.

ToBI is a symbolic abstraction of a noisy acoustic signal that is subject to speaker and
dialect variations and that is simultaneously trying to represent several streams of meaning
(e.g., speaker intention and affect, information structure, etc.). As such, the clean categories
defined by the system are not always easy to identify. Furthermore, the assignment of pitch
accents to specific discourse functions has not always been supported by empirical evidence
(Katz and Selkirk 2011; Chodroff and Cole 2019). Chodroff and Cole 2019, for example,
found that the relationship between given, new and contrastive status and their associated
pitch accents is only probabilistic; a contrastive accent, for example, is more likely to be
marked with a L+H" accent, but other accents can do the same job.
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There is also evidence that speakers and listeners are very sensitive to longer-range context
in their judgements of prominence. So while the L+H" accent is typically associated with a
higher degree of prominence than the L accent, these roles can be reversed depending on
how frequently they are used. Kakouros et al. 2018 tested perceptions of prominence by
having subjects listen to five minutes of audio with a biased distribution of either rising or
falling intonation on the sentence final word: when asked to evaluate subsequent sentences,
the underrepresented /less likely prosodic trajectory was rated as more prominent.

Nonetheless, the underlying truth that speech highlights important words and organizes
itself hierarchically is general accepted and ToBI is commonly used by the research community
to discuss such phenomena.

1.4 Information structure

The themes of predictability, prominence and givenness seen in the previous sections are all
related to the subject of Information structure (Halliday 1967). Information structure
reflects the presumed common ground between speakers (Stalnaker 2002). A speaker will
make syntactic and prosodic choices to package information in such a way that it can be
easily understood by their interlocutor (Chafe 1976). This includes structuring sentences into
topic and comment to aid coherence, drawing attention to certain words to highlight their
informativeness in the discourse (focus or contrastive focus) and de-emphasizing elements
that are assumed to be understood (givenness).

Coherent discourse requires consideration be paid to how a sentence fits into the larger
context. For example, the two sentences in (2) contain the same information content /semantic
truth values, but the focus assignment in each only makes them appropriate in certain settings.
If the preceding question is Who did Mary give the letter to? then a would be felicitous but b
would not, and the opposite would be true if the questions were What did Mary give to Kim?.

(2) a. Mary gave KIM the letter.
b. Mary gave Kim the LETTER.

Sentences are organized into a topic and comment (or theme and rheme) structure. Topic
refers to what the sentence is about and comment updates knowledge about the topic. Topic
is strongly associated with the grammatical subject in English, but these two roles do not have
to be taken by the same entity, as demonstrated by sentences with topic marking phrases (e.g.,
As for the dog, Bill left it at home.).

There are different schools of thought on the notion of focus. Some define it in terms of
newness/informativeness (Halliday 1967) or what is asserted (Lambrecht 1994) and others
in terms of the evocation of alternatives (Rooth 1992; Krifka 2008). Halliday 1967 describes
the focus of the utterance as the part which is “not recoverable from the preceding discourse”.
Krifka 2008 defines it as that which “indicates the presence of alternatives that are relevant
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for the interpretation of linguistic expression.”

Newness accounts divide focus into presentational focus, which satisfies information
requirements and is less marked prosodically and contrastive focus, which makes salient
alternatives in the discourse (converging with the alternatives account). For the alternatives
account, these two types of focus are simply a difference in the saliency of pragmatically
appropriate alternatives; elements in presentational focus have many possible alternatives (an
open set) whereas the alternatives are more restricted in the contrastive case (a closed set)
(Kiss 1998).

Topics can also take on a contrastive meaning, in which case they are referred to as
contrastive topics. Elements that are neither focused or contrastively focused are marked as
given.

1.4.1 Common ground

The common ground refers to a shared space of knowledge where there is a set of propositions
and referents that are known by both conversation participants (Stalnaker 2002). Krifka 2008
also includes communicative interests and goals in this space. Elements in the common ground
can be built from a shared physical environment, mutual past experience, world knowledge
or from previous linguistic context. Previously unmentioned elements can enter the common
ground without explicitly being evoked if they are inferable from existing referents (e.g., we
can accommodate the word seat belt if we have been discussing a car).

The common ground is constantly being updated. When a speaker wants to add something
new to the discourse, they must be conscious of what is already in the common ground and
structure their expression so the new contribution can be connected to what is already there.
And referents already in the shared space, must be marked as such, so the listener knows
where to look for them. The status of referents are differentiated with different types of
referring expressions (e.g., nouns vs. pronouns, definite vs. indefinite articles, etc.) and also,
importantly for our purposes, prosodically.

1.4.2 Devices for information structure expression

Languages differ in the way they express information structure. English, French and Italian
are all Subject-Verb-Object (SVO) languages whose unmarked prosodic accent pattern is to
place the sentence accent at the end of the sentence. However, when the information structural
properties require a marked structure each of these languages uses a different strategy. To
illustrate these different strategies, we will take a look at an example from Lambrecht 1994
((3)). The imagined scenario is one in which a woman is struggling to get her many shopping
bags onto a crowded bus. She looks apologetically at the other passengers and says:

(3) a. My CAR broke down.
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b. Mi si é rotta la MACCHINA.
to-me itself is broken the car.

c. J’al ma VOITURE qui est en PANNE.
I have my car that is in breakdown

This is an example of what Lambrecht calls an “event-reporting” sentence which introduces
a new discourse referent and is distinguished from more common “topic-comment” sentences
with a marked focus structure. English, which has very strict word-order rules, uses prosodic
means to indicate the focus, moving it from the sentence final position. Italian, which has
looser word-order rules, inverts the subject (la macchina) and the verb phrase (¢é rotta in order
to the maintain the prosodic prominence/the indicator of focus in its natural position. French,
which has a strong aversion to placing focus on the subject of a sentence, will often resort
to syntactic devices to express information structure. In this case, the simple proposition
Ma voiture est en panne is broken into two J’ai ma voiture and qui est en panne. The first
proposition (I have my car does not add anything to the discourse; it serves merely to move
the subject to the proposition final position where it can be focused).

English also has syntactic means to mark information structure (e.g., cleft sentences -
It is my car that is broken.), however it is most commonly indicated prosodically. Because
information structure is not explicitly written in the text, learning context appropriateness is
particularly challenging for English TTS.

1.4.3 Interaction with prosody

According to Halliday 2015, there are three ways to manipulate the interpretation of an ut-
terance in terms of prosody and information structure. The first is tonality which concerns
prosodic phrasing (i.e. the hierarchical grouping of words, which are signaled by weak or strong
boundaries between words). Leonarduzzi and Herment 2013 contend that non-canonical phras-
ing (which typically involves breaking an intonational phrase into subphrases) is a strategy to
highlight the informativeness of elements in each of the subphrases. The second is tonicity
which describes the placement of the nuclear accent. The nuclear accent is usually placed on
the last lexical word in an intonational phrase. If it is placed elsewhere, this signals a marked
prosody that can point to a narrowly focused word. The third is tone which describes the
type of pitch accent.

1.4.3.1 Focus projection

The focus of a proposition and prosodic markings of focus are not the same thing. The
examples in (4) (simplified from Selkirk 1995) illustrate this fact: The word BATS receives
the nuclear accent (represented by capital letters) in all five utterances, but the focus in the
information structural sense is dependent on the discourse (i.e., the corresponding question
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below each sentence), ranging from narrow focus on a single constituent in (a) to the full
utterance in (e).

(4)  a. Mary bought a book about [BATS|roc.

(What did Mary buy a book about?)

b. Mary bought a book [about BATS|roc.
(What kind of book did Mary buy?)

c.  Mary bought [a book about BATS|roc.
(What did Mary buy?)

d. Mary |bought a book about BATS|roc.
(What did Mary do?)

e. [Mary bought a book about BATS|roc.
(What’s been happening?)

While the distribution of prominent words in an utterance does not directly point to the
underlying focus structure, it does constrain the interpretation. Selkirk 1984 explains the
phenomenon of focus projection through interactions with syntax. A pitch accented word
can licence the spread of focus to its head or its internal arguments. On the contrary, an
accented word cannot licence focus onto an adjoining adjunct. For example, in the sentence
He only smoked in the tent., both smoked and tent must be accented if they are both in the
focus domain (Gussenhoven 1983, cited in Selkirk 1995). If only tent is accented, this does no
spread to the VP.

1.4.3.2 Degree of prominence

Focused words will be longer and louder than non-focused words, however the degree of promi-
nence will be influenced by the type of focus. In the course-grained focus/contrastive focus
distinction, contrastive focus is more prominent. More fine-grained focus categories have also
been proposed which differ in terms of the number and the saliency of the members in its al-
ternative set. The focus types listed below are ranked from least to most prominent (examples
from Féry 2013):

(5) a. Broad information focus What is happening? Tom is going to VIENNA.

b. Informational narrow focus Who is going to Vienna? TOM is going to Vienna.

c. Exhaustive/identificational interpretation of a narrow focus Which of your
sons is going to Vienna? It is TOM who is going to Vienna.

d. Association-with-focus (particles) Are both Alain and Tom going to Vienna?
Only TOM is going to Vienna.

e. Contrastive focus: parallelism, right-node-raising, selection Where are
your sons going to? TOM is going to VIENNA, and ALAIN to BERLIN.

f.  Contrastive focus: correction Is Alain going to Vienna? No, TOM is going to
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Vienna/No, it is TOM who is going to Vienna.

Zimmermann 2008 proposes an alternative explanation for relative prominence, not in terms
of focus type, but rather with respect to the speaker’s beliefs about the listener’s expectations.
If a speaker thinks their contribution will be unexpected by the listener (i.e., unlikely to enter
the common ground), they will add extra emphasis. And the more surprising a contribution,
the more emphasis it will receive.

Calhoun 2009 theorizes that the perceived level of prominence of a word is related to how
salient that word is relative to how salient it is expected to be. So words that fall naturally
in a prominent position (e.g., sentence final/default nuclear accent position, where we expect
sentence stress to be) will not necessarily be perceived as particularly prominent unless they
are overly exaggerated. Conversely, a function word, that is usually expected to be reduced,
only has to be somewhat more salient than expected (i.e., not excessively emphasized) to
attract a contrastive focus interpretation.

1.5 Where text-to-speech is lacking

In this section, we will look at some of the shortcomings of both current TTS and the meth-
ods used to evaluate it. Using traditional evaluation metrics, state-of-the-art TTS systems are
almost on par with human speech. However, these high scores are a reflection of the limited
evaluation techniques more than actual human communication parity. The standard practices
in TTS evaluation include measures of intelligibility (i.e., how well a listener can identify the
segments in the speech signal) and naturalness (i.e., how human-like is the speech). Natural-
ness is often evaluated using a Mean Opinion Score (MOS) test. Here, single isolated sentences
are evaluated on a five point scale. Many criticisms have been levied at this way of testing,
due to its failure to capture important elements of a system’s success. These elements include
contextual appropriateness and variability. When these elements are lacking, increased listen-
ing effort is imposed on the listener. Developing evaluations that measure this effort could
help move TTS forward.

1.5.1 Contextual appropriateness

Contextual appropriateness in TTS can refer both to how adapted the system is to its use
case (the contextual framework) and to how adapted the prosody is to the current linguistic
context. We will only briefly touch on these topics here, and develop them more fully in the
next two chapters.

Contextual framework. Evaluating speech in a vacuum does not necessarily reflect how
well the system will be perceived when put to use. Wagner et al. 2019 illustrate this point by
comparing potential style clashes, like a dramatic poetry recitation versus a telephone-based



16 Chapter 1. How humans communicate and the limits of current TTS

inquiry system; the speech can sound good but be completely inappropriate. The opposite is
also true: Baumann and Schlangen 2013 found users of an interactive application preferred
adaptable speech with lower acoustic quality to higher quality but more rigid speech.

Linguistic context T'TS models are typically trained using single, isolated sentences. With
such limited context, it is not possible for a model to adapt itself to the current discursive
or environmental context when it is applied to an interactive application. What’s more, the
single-sentence paradigm is not suited to incremental synthesis. If we simply adopt a full-
sentence model to produce speech one word at a time, there is serious degradation in the
prosodic quality. Furthermore, the contextual appropriateness difficulties observed in (single)
full sentence TTS is exacerbated in an incremental setting, where not only is the previous
context unknown, but so is the future context.

1.5.2 Variability

Monotony in speech, be it human or synthetic, can be painful to listen to. While a certain
amount of regularity helps make speech decipherable, a complete absence of variation reduces a
listener’s ability to prioritize what is important in the message. Monotony in TTS stems from
its training regime which is at odds the way humans employ expectation for communication.
Humans will often subvert expectation (i.e. use a less probable pattern to mark their intended
meaning (Calhoun 2007; Kakouros and Résénen 2016; Kakouros et al. 2018)) but neural
networks are only trained to replicate the most likely intonational pattern. Training with
limited context aggravates this problem because longer-range patterns in variation are not
accessible to the model.

In addition to repeated intonational patterns, synthetic speech often suffers from flattened
expression (average prosody). Again, due to the training objectives (to reduce the corpus-
wide mean squared error which encourages conservative/close-to-the-mean predictions), the
predicted intonational contours tend to be flatter than those found in natural speech. This
too can affect comprehension as fundamental frequency has been shown to aid understanding
in adverse conditions. Laures and Bunton 2003 compared the intelligibility of both natural
speech and speech with a flattened fO contour in noise and found the number of transcription
errors was significantly higher in the flattened fO condition.

Recent efforts to introduce more variability involve the use of auto-encoders to learn a
latent prosodic space and then the use of either random sampling or linguistic features to
condition speech generation (Kenter et al. 2019; Tyagi et al. 2020; Hodari et al. 2021)

1.5.3 Listening effort

There have been some experiments that go beyond the standard MOS and try to find evidence
of cognitive effects from TTS. These studies have looked for differences in comprehension,
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processing speed and memory when compared to natural speech.

Direct effects on comprehension have not been easy to find (Wester et al. 2016; Pisoni
and Hunnicutt 1980; Boogaart and Silverman 1992). While TTS is often lacking the prosodic
features that facilitate the processing of discourse and information structure, this information
can usually be recovered from the linguistic content alone (i.e., the sequence of words). It does
however place an additional burden on the listener who must actively work to reconstruct a
map of the structure of discourse and meaning, whereas in natural speech, the speaker provides
clear signposts, easing the cognitive effort.

More online measures have been used to try and quantify the increased listening effort.
These include physiological response tests (e.g., pupillometry (Simantiraki et al. 2018; Goven-
der and King 2018b)) and tasks that measure reaction times in decision tasks, such as phoneme
monitoring or sentence verification where subjects decide whether a sentence is true or false
(Nix et al. 1993, Pisoni et al. 1987). These tests demonstrate a cognitive penalty for synthetic
speech.

TTS can affect memory because it becomes more difficult to encode information when
more effort is being exerted to decipher it. Paris et al. 2000 found subjects recalled fewer
words when asked to reconstruct a sentence that had been presented with a synthetic voice
than a natural one. Wolters et al. 2014 studied the recall of medications after a message
from either a human or a synthetic voice. Recall was the same for items the subjects were
already familiar with, but when asked to recall new information, human-presented messages
were remembered better. Interestingly, the inclusion of some human like features (e.g., breath
sounds) can help improve recall for synthetic speech (Whalen et al. 1995; Elmers et al. 2021).

One investigation into the cognitive load imposed by TTS uncovered some surprising re-
sults. Govender and King 2018a conducted a dual task experiment where subjects had to
shadow (i.e., repeat the words) sentences read by either a human or a synthetic voice and
then answer other questions in parallel. Unexpectedly, subjects performed better on the high
quality synthetic speech than on the human speech. Most people would agree that human
speech is easier/more enjoyable to listen to, and so we suggest that this result perhaps reflects
the selected task more than the listening effort imposed. To repeat a sentence (in this case,
semantically nonesense sentences), you must correctly identify the phonemes being spoken.
This is likely easier when each word is clearly enunciated. Since TTS is not great at predict-
ing contextually appropriate prosody, it tends to hedge its bets and accent all content words,
which perhaps facilitated this task. To understand a discourse in real time though, you must
be able to ignore the parts of the message that are unimportant. As we have seen previously,
this is done by reducing articulation/duration on the redundant parts of the message.

There are of course application of TT'S where evenly articulated speech is appropriate, for
example the announcement of schedule changes in a noisy train station. However for longer-
form communication, emphasizing the important and de-emphasizing the unimportant should
help with processing. The difficulty for T'TS is deciphering between the two.
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1.6 Conclusion

In this section, we have seen two fundamental traits of interactive communication: (1) the
incremental negotiation of meaning and (2) the highlighting of important information on the
part of the speaker and the differential processing based on these cues by the listener. The use
of current TTS models in interactive applications fall short on these two fronts. T'TS models
trained in a single-sentence paradigm require full-sentence inputs and this will cause response
delays degrading the quality of the interaction. Moreover, they do not posses sufficient infor-
mation to properly predict the elements in the text input that should be foregrounded and
those that should be backgrounded. In this thesis, we try to improve these aspects by adapt-
ing TTS to an incremental setting and by predicting prominence features. We further try to
reduce listening effort by predicting appropriate prosodic boundaries.



CHAPTER 2

Why context matters

Contents
2.1 How context shapes the speech signal . ... ... ............ 19
2.1.1 Phonological effects . . . . . ... ... 20
2.1.2 Metrical effects . . . . . . . .. 21
2.1.3 Prosodic domain effects . . . . . .. ..o Lo 21
2.1.4 Lexical and frequency effects . . . . ... ... L oo 22
2.1.5 Syntactic effects . . . . ... L 23
2.1.6  Semantic effects . . . . .. ... 26
2.1.7 Discourse effects . . . . . ... 27
2.1.8 Information structure effects . . . . ... ... oo oL 28

2.2 What do Transformer language models know about linguistic context? 29

2.2.1 What are Transformer language models? . . . . . . . . ... .. ... ... 29
2.2.2  Techniques for exploring language models’ knowledge . . . ... ... .. 32
2.2.3 Transformer language model’s linguistic representations . . . . . .. . .. 32
2.3 Discussion and conclusion . . . . ... ... 0000 oo e 36

In this chapter, we will investigate the importance of context for prosodic expression and
processing. In the first section, we provide an overview of the ways context influences the
speech signal at all levels of the linguistic hierarchy. In the second section, we will look at a
potential tool for adding contextual knowledge to a TTS system, Transformer language models
(LMs).

2.1 How context shapes the speech signal

A single string of phonemes can be said in a number of different ways. Even controlling for
context, there is no such thing as a unique “correct” prosody. This one-to-many nature of
speech makes TTS a particularly challenging problem. That said, speech is not a completely
random process and there definitely is such a thing as wrong prosody that violates a native
speaker’s grammatical and pragmatic expectations and can contribute to misunderstanding.
Listener judgements of naturalness and appropriateness will be influenced by the level of
adherence to these expectations and TTS systems should strive to meet them.

19
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The contextual factors reviewed in this section will not be exhaustive, there are of course
a large number of different ways context can impact speech. But we do hope to provide an
overview of the linguistic research into speech regularities, so that we can better understand
what exactly we are trying to predict when we enrich a TTS/iTTS system with additional
LM-produced information.

2.1.1 Phonological effects

The realization of phonemes is dependent on their context in a myriad of ways. Here we
will focus on co-articulation phenomena (i.e., modifications that are made to facilitate the
articulation of two or more speech sounds when they are produced sequentially). These changes
can occur within words and across word boundaries. They are a common occurrence in
connected speech and can become exaggerated as speech rate increases. The co-articulation
processes can be summarized into three main types: (1) sound changes (assimilation and
allophonic variation), (2) sound deletion (elision) and (3) sound addition (intrusion)
(descriptions below based on Setter 2015).

Assimilation is a process where one phoneme takes on the characteristics of its neigh-
bour(s). Both past and future phonemes can assert an influence on the current phoneme;
these are referred to as progressive and regressive assimilation respectively. The voicing, the
manner and/or the point of articulation of a segment can all be affected by assimilation; in the
regressive case, the speaker anticipates upcoming articulatory features and as they prepare to
say the next phoneme, the current phoneme adopts these features to smooth the transition.
The reverse is true in the progressive case.

A similar process to assimilation is allophonic variation, although here the phonemes do
not change into other phonemes, but rather into another version of the same phoneme (i.e.,
an allophone). For example, aspirated /p/ will become unaspirated and sound more like a
/b/ when preceded by an /s/ in English (speech — sbeech).!.

Elision is a process where phonemes are deleted from a word. Elision is particularly preva-
lent in sequences of words that are frequently said together (e.g. must be —mus be). It can
also occur within words, as in the reduction of the four syllable word interesting (in.te.res.ting)
to three syllables (int.res.ting).

Sometimes phonemes that do not exist in a word when it is pronounced in isolation appear
out of nowhere when the word is in specific contexts. In non-rhotic varieties of English, where
/r/ only exists in prevocalic positions, an /r/ will insert itself between two words if the second
word begins with a vowel (e.g., law[r| and order). This is known as intrusive R (or linking
R if the r exists in the spelling, but is usually not pronounced). It is used to avoid adjacent
vowels (Broadbent 1991).

!This is only true if the /s/ is in the same word as the unvoiced consonant (and not in an easily separable
morpheme, an /s/ in the preceding word (e.g., Miss [p"]iggy).



2.1. How context shapes the speech signal 21

2.1.2 Metrical effects

Language is characterized by rhythmic patterns; there is a natural tendency to see alternating
strong and weak syllables. This is known as the Principle of Rhythmic Alternation (Selkirk
1984). These beats are important for the parsing of the speech stream. In English, stress
is an encoded feature of lexical items, however, when two strong syllables are adjacent in a
prosodic phrase, speakers make adjustments to remove the stress clash. They do this by either
removing or shifting one of the stresses (Hayes 1984; Selkirk 1984). For example, the lexical
stress for the word fourteen, pronounced on the second syllable when spoken in isolation, is
moved to the first syllable when it is followed by a word that has stress on its first syllable (e.g.,
women). See more examples of stress shift adapted from Hayes 1984 in (1) (primary stress is
marked with capital letters and an acute accent; secondary stress with a grave accent):

(1)  a. fowrTEEN — fourteen WOmen
b. MissisSIPpi — Mississipi LEGislature
c. seventy-SEVen— séventy-seven SEALS

Quené and Port 2002 attribute the occurrence of stress shift to more global sentence
considerations with their Fqual spacing constraint which states: “Prominent vowel onsets are
attracted to periodically spaced temporal locations.” The implication of this being that both
the left and right context play a role in determining stress shift, as in (2) where the stress on
ideal moves from the first syllable in (a) to the second in (b) due to the contrastively focused
their that immediately precedes it.

(2) a. [John and Ben have been searching for an acceptable partner, but| they will NEVer
FIND their IDeal partners.
b. [Other people have found their perfect partners, but| John and Ben will NEVer
find THEIR idEAL partners.

2.1.3 Prosodic domain effects

Where a phoneme falls within the prosodic hierarchy will affect its expression. Domain-final
lengthening is one of the essential clues for decoding the prosodic structure of an utterance.
Wightman et al. 1992 measured normalized foot durations at pre-boundary positions and
observed a linear relationship with annotator perceived boundary strength. In other words, a
foot preceding an intonational phrase boundary is longer than one preceding an intermediate
phrase boundary, which is in turn longer than a prosodic word boundary.

Domain boundaries also have an effect on the articulatory strength of the phonemes that
border these divisions. Fougeron and Keating 1997 detected differences in linguopalatal con-
tact for consonants and vowels in domain initial, medial and final positions. Consonants
exhibit more linguopalatal contact in initial position and vowels exhibit less in domain-final
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position. This has the effect of making the phonemes in these positions more pronounced (i.e.,
distinguishable from other phonemes). The articulation of heads of prosodic domains (e.g.,
the nuclear accent in an intermediate phrase) are also differentiated from non-heads (Beckman
and Edwards 1994). The duration will be longer and it will have a larger and faster opening
movement.

Another durational effect has been observed for syllables and feet known as anticipatory
compensation or compensatory shortening (Klatt 1973; Fowler 1981; Munhall et al. 1992). The
more segmental content within these units, the more compressed they become. For example,
if a syllable consists of a single vowel, it will be longer than if the syllable contains a coda
with one consonant, and shorter still if the coda has two consonants. The same applies to feet,
where the stressed syllable will be shorter depending on the number of unstressed syllables
that follow it (e.g., stick > sticky > stickiness).

2.1.4 Lexical and frequency effects

Knowing the lexical identity of a word will influence its pronunciation. For example, ho-
mographs like bass will contain different phonological content depending on whether one is
discussing the fish or the musical instrument. Most homographs in English can be distin-
guished by their POS category (e.g., The bandage was wound around the wound (Noun vs.
Verb)) and thus can be easily distinguished by their syntactic environment. Generally speak-
ing, if the word in a homographic pair is a noun, the lexical stress will fall on the first syllable
and if it is a verb, it will fall on the second.

How frequently a word is used will have an impact on how expected it is and therefore on
how quickly it is pronounced. Baker and Bradlow 2009 studied the effects of both general word
frequency and contextual predictability (using second mentions) and found both factors led
to shorter durations even when controlling for speech style (clear/hyper-articulate vs. plain).

Whether or not a word belongs to a larger lexicalized expression will also impact its
pronunciation and stress patterns. When the elements of a compound structure are used
frequently enough, they start to fuse together. Morrill 2012 found intensity, duration and pitch
differences could differentiate between lexicalized compounds and equivalent phrases (e.g.,
greenhouse/ green house). The stress pattern a compound adopts (i.e., relative prominence on
the first or second word) is largely dependent on the identity of its constituents parts (Plag
2010). For example, compounds whose second word is street (Mdin Street, Oxford Street) will
have primary stress on the first word and compounds with avenue (Fifth Avenue, Madison
Avenue) will have it on the second. The same type of rigidity can be seen in larger idiomatic
expressions as well (Ashby 2006). See (3).

(3)  a. She has eyes in the back of her HEAD.
b. She has eyes in the BACK of her head.

The standard idiomatic reading of the sentence is (a). If someone says (b), it comes across as
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odd, even though non-idiomatic sentences with similar structures can readily shift the nuclear
accent to back (e.g., She has a shovel in the BACK of the house.) This gives a contrastive
reading (back vs. front), but the same should be true for (3), since the implicit contrast is
also with front. The lack of flexibility is evidence that we may encode prosodic features as
part of the mental lexicon.

2.1.5 Syntactic effects

Syntactic structure, while not the same as prosodic structure, has been shown to influence
the prosodic form and judgments of prosodic appropriateness (e.g., Pynte 1998). Syntactic
complexity also impacts prosody, specifically pause durations between constituents, due to the
difference in time it takes to plan the production of simple versus complex structures (Ferreira
1991).

We know that syntactic and prosodic structures are not the same, because multiple
prosodic phrasings are judged as acceptable for the same syntactic structure (See (6)). The
ends of large syntactic constituents (clauses) usually align with large prosodic boundaries, but
smaller constituents are less predictable.

There are some syntactic constructions that require separate phrasing (in written text
these are usually set off by commas). These include parentheticals, appositions, and non-
restrictive relative clauses. Price et al. 1991 found that parentheticals and appositions could
be reliably differentiated prosodically from non-parenthetical /non-appositions containing iden-
tical phoneme sequences (e.g., Mary knows many languages(,) you know) thanks to boundary
strength. Other potentially ambiguous constructions are not always made clear in a written
text. We will look at some of these in the following subsections.

2.1.5.1 Syntactic attachment

There are several types of syntactic attachment ambiguities whose underlying structure can
affect prosody. These include prepositional phrase ((4)), relative clause ((5)a), and coordinate
structure ambiguities ((5)b). These possible points of confusion arise because the grammar
allows for the legal attachment to two positions in the syntactic tree, like in (4) where the PP
with binoculars can modify either the verb saw or the noun cop (as can be seen in the two
alternative trees (4) a and b).

(4) The spy saw the cop with binoculars.
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a. S
NP VP
N
Det N
| \ VP PP
the  spy /\ /\
Vv NP P N
\ PN \ \
saw Det N  with binoculars
\ \
the cop
b. S
NP VP
N
Det N
\ \ A% NP
the spy \ /\
saw
NP PP
P /\
Det N P N

the cop with binoculars

(5) a. The propeller of the plane which the mechanic of the plane ...
b. The old men and women stayed at home.

Disambiguating these structures when processing speech will be guided by contextual, seman-
tic and lexical valence factors (e.g., Trueswell et al. 1993; Crain and Steedman 2010), but
prosody has also been shown to have an influence. The relative strength of prosodic bound-
aries impacts attachment preference (Carlson et al. 2001; Clifton et al. 2002): if the prosodic
boundary immediately preceding the ambiguous constituent is larger than the one separating
the candidate attachment sites (e.g., saw and the cop in (4)) then high attachment is preferred
and if it is not, then low attachment is. Equally sized boundaries can function as a neutral
prosody permitting both interpretations.

Schafer 1997 studied attachment preferences for multiple phrasing variations (e.g., (6)).
This research found support for the prosodic visibility hypothesis: words are more prominent
candidates for attachment if they are being processed within the same prosodic phrase as the
unresolved ambiguous node. So the preferred reading of (a) is attachment to the bus driver
and for (b), it is to the rider. (6)d is truly ambiguous with no preferred interpretation. (6)c
shows a bias towards the bus driver, stemming from non-prosodic factors, as both NPs are
made available within in the current prosodic phrase.
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The bus driver angered the rider / with a mean look.
The bus driver angered / the rider with a mean look.
The bus driver angered the rider with a mean look.

The bus driver / angered / the rider / with a mean look.

S

The preferred interpretation of attachment sites is also swayed by prominence features.
A pitch accent can act as an attractor when there are different candidate sites. Schafer
et al. 1996 tested sentences like those in (5)a, where propeller or plane are attachment site
candidates and found the more prosodically prominent noun was selected by listeners. Schafer
formulated the focus attraction hypothesis that states that listeners assume more information
(e.g., a relative clause) will be conveyed regarding important/focused elements than about
unimportant /unfocused elements.

Duration cues play a significant role in disambiguating the intended meaning of coordi-
nation ambiguities as in (5)b, where it is unclear if only the men are old or if both the men
and women are old. Lehiste et al. 1975 found that manipulating the duration of the conjuncts
could flip the interpretation.

2.1.5.2 Garden-path sentences

Syntactic ambiguities can exist within the global structure of a sentence (as we have just seen),
but they can also exist at specific local positions; while processing a sentence linearly, we are
led to one interpretation, but when we reach a syntactic cue that does not conform with this
initial reading, we must reanalyze the sentence to obtain an acceptable structure. These are
know as garden-path sentences.

Grillo et al. 2018 conducted a production study to assess the prosody of garden-path
sentences and found that ambiguities that arise while reading are differentiated in spoken
language. Speakers read two versions of sentences that contained identical sequences of words
except for the presence/absence of a coordinating conjunction which alters the syntactic struc-
ture (e.g., The radio reported that the owners offered tempting food (and) gulped it down.). The
sentences with relative clause structure were read faster from the noun head (owners) until
the point of the critical disambiguating word.

As well as timing differences, garden-path sentences are likely to be differentiated by
prosodic phrasing (Kjelgaard and Speer 1999; Nagel et al. 1996), like in phrasal verb/non-
phrasal (e.g., (7) a and b), NP /reduced complement clauses (e.g., (7) ¢ and d) and early/late
subordinate clause closures (e.g., (7) e and f) ambiguities.

(7) He checked the guests in / at the hotel.

He checked the guests / in the morning. (e.g., for their vaccination passes)
The company owner promised the wage increase to the workers.

The company owner promised / the wage increase would be substantial.

When Roger leaves / the house is dark.

© o op
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f. When Roger leaves the house / it’s dark.

2.1.6 Semantic effects

Speakers use prosodic cues to distinguish between different semantic interpretations. These
cues can have an effect on the processing of semantic roles and the scope of negation and even
the truth conditional status of an utterance.

2.1.6.1 Semantic roles

Different types of intransitive verbs have been associated with different nuclear stress patterns.
Whether or not the subject boy in (8) a and b (Irwin 2011) will have nuclear stress, will depend
on the type of verb that follows and the type of argument it takes. In a broad focus condition,
unergative verbs (i.e., verbs that have an agent as subject) present with a verb-accent pattern
(as in (8)a). Unaccusative verbs (i.e., verbs whose subject is not an agent but a theme?)
present with a noun-accent pattern (as in (8)b).

(8) A boy JUMPED. (Verb-accent pattern)
A BOY fell. (Noun-accent pattern)
Allison ate the cake / with a large fork. (Instrument)

Allison ate / the cake with the chocolate ganache. (Modifier)

/e oo

The semantic role of a constituent will also provide clues to the constituency structure of an
utterance, which we have seen can influence prosodic phrasing. For example, the PPs in (8) ¢
and d, which are both introduced by the preposition with have different semantic roles: with
a large fork is an instrument attached to the verb, whereas with the chocolate ganache is a
modifier attached to the noun cake.

2.1.6.2 Truth-conditional effects

The focus sensitive particle only is known to interact with truth-conditional value of a propo-
sition. Take for example the sentences in (9) (Rooth 1992). If the situation is such that Mary
introduced Bill and Tom to Sue and made no other introductions, then the truth-value of (9)a
is false and that of (9)b is true. The placement of pitch accents in these types of constructions
can therefore have a drastic effect on the interpretation of the meaning.

(9)  a. Mary only introduced |Bill|r to Sue.
b. Mary only introduced Bill to [Suelp.

2A theme is a participant that undergoes a change or experiences an action, as opposed to an agent who
causes an action.
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2.1.6.3 Negation scope ambiguities

In potentially ambiguous sentences involving the scope of negation (i.e., the amount of the
sentence that is being negated), prosody is a critical for differentiation. The two possible
readings of (10), the narrow reading (a) where William does not drink can be contrasted with
the broad reading (b) where William does in fact drink. These two renditions are distinguished
by the number of prosodic phrases and boundary tone contours (Hirschberg and Avesani 1997);
the narrow reading is split into two phrases and ends in a low tone; the broad reading is a
single intonational phrase ending with high tone.

(10) William doesn’t drink because he’s unhappy.

a. Narrow scope: William does not drink and the reason for him not drinking is his
unhappiness.
b. Broad scope: William does drink, but the reason is not his unhappiness.

2.1.6.4 Reference resolution

Coreference resolution is the task of linking entities in the discourse to other mentions of the
same entity or a derived version (e.g. the house -> the roof (of the house)) also present in
the text. Prosody has been shown to influence the interpretation of pronouns in ambiguous
cases. For example, in (11)a, the expected referent of he is John. However, if the referent
is in fact Dawvid, then the speaker will signal this prosodically by making the pronoun more
prominent ((11)b). Different explanations have been proposed for this change in interpretation.
Explanations based on Centering theory (Grosz et al. 1995), which posits that pronouns usually
refer to the most prominent entity in the discourse® and that subjects are more prominent
than objects, explain pronoun accenting as a method of overriding the default assumption and
signalling a shift in topic (Kameyama 1999). Venditti et al. 2002 explain shifts in reference
as a side effect of the interpretation of the discourse relation between segments (Occasion vs.
Resemblance). Jasinskaja et al. 2007 point to the need for a contrasting alternative in the
discourse to licence pronoun focus.

(11)  a. John hit David and then he hit George. (he = John)
b. John hit David and then HE hit George. (HE = David)

2.1.7 Discourse effects

Prosody provides important clues that allow listeners to interpret how the elements of the
speaker’s discourse fit together. This happens at both the global and local levels. At the
global level, speakers signal changes in topic (shifts between major branches in the discourse

3Less prominent entities can also be presented as pronouns, but only if the current center is also a pronoun.
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tree) and at the local level, they indicate the type of discourse relations between adjacent
units as well as the hierarchical structure between these smaller units.

Topic change is marked by high pitch onsets and low pitch closes (Yule 1980; Grosz and
Hirschberg 1992; Smith 2004). Utterances between the opening and closing of topic units
gradually decline. In addition to changes in pitch, other acoustic correlates of discourse
structure have been observed. The pauses between discourse segments increase with their
distance on a discourse tree, as well as increased energy in the elements following a move
to the next tree branch (Tyler 2013). The structure traced by prosody can also influence
coreference resolution, as it can override recency bias and encourage the listener to look for
referents in a larger linear span, in a segment that dominates the current one (Grosz and
Sidner 1986; Khosla et al. 2021).

Phrase accents and boundary tones play an important role in communicating how an
utterance should be interpreted with respect to the surrounding utterances (Pierrehumbert
and Hirschberg 1990). A high boundary tone signals that the current utterance should be
understood with respect to the future utterances. This is typical of question intonation. A
falling tone signals the unit is complete, as in typical declarative intonation.

Efforts to classify discourse relations based on prosodic features with machine learning
have had mixed results (Kleinhans et al. 2017; Murray et al. 2006), with some relations being
easier to identify than others. Tyler 2014 studied human differentiation of ambiguous discourse
relations, like the example in (12), where the second and third sentences could either be in
a coordinate or a subordinate structure with the first sentence. In the coordinate case, three
separate events are described. In the subordinate case, the history class is the main event and
the next two sentences elaborate on that event. The results showed that rising or falling pitch
at the end of the first sentence could bias the interpretation.

(12) I sat in on a history class. I read about housing prices. And I watched a cool
documentary.

To discourse effects, we can also include the influence of the discourse mode and the rela-
tionship between discourse participants. Formal and informal speaking styles differ (Sityaev
et al. 2007), as do read speech and spontaneous speech (Howell and Kadi-Hanifi 1991). Partic-
ipants in a conversation also adapt to the style of their conversation partner in a phenomenon
known as entrainment (Edlund et al. 2009; Michalsky et al. 2018). Furthermore, speakers
use prosody to convey their propositional attitudes. This includes sentiments such as uncer-
tainty, incredulity and surprise (Bolinger 1982). They are expressed using different tunes (i.e.,
combinations of pitch accents, phrase accent and boundary tones).

2.1.8 Information structure effects

When interlocutors participate in a conversation, they must keep track of what knowledge is
present in the common ground. And every new contribution or modification to that common
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ground must be packaged in such a way that the conversational partner can easily interpret
how the new information fits into the shared representation. This can be accomplished through
prosodic, syntactic or lexical means; here we focus on prosody.

Dahan et al. 2002 studied the online processing of pitch accents as a marker of new/given
status. They displayed items on a computer screen which shared primary syllables (e.g.,
candle / candy along with other distractor objects, and they gave subjects instructions to move
objects around. In situations where one of the target items had previously been mentioned,
the use of a pitch accent on the initial syllable caused participants to focus their gaze on
the theretofore unmentioned object and an unaccented version of the initial syllable had the
opposite effect, functioning as an anaphoric marker. In a second experiment, they controlled
the semantic role (theme or goal) of a target item in the first instruction (e.g., Put the candle
below the triangle or Put the necklace below the candle) and then prosodically focused the target
word in the second instruction. In the goal condition, the accented word was interpreted as
referring to the previously mentioned word, as opposed to a new item that had not been part
of the discussion up to that point. This demonstrates that the new/given distinction is not
so clear cut; a previously known entity can be highlighted when it is entering into attentional
focus. See Watson et al. 2008 for similar work on established contrastive sets.

An entity that has previously been part of attentional focus can also lose its saliency if it
has not been part of the discussion for awhile. If this entity is to return to focus, it will likely
be pitch accented.

Other factors such as the scope of focus (as we saw in the previous chapter) and contrastive
focus will influence prosody. We will treat the latter topic in Chapter 5.

2.2 What do Transformer language models know about linguis-
tic context?

In this section, we explore a tool that could be used to anticipate future context and to enhance
the contextual understanding of known text: the Transformer language model.

2.2.1 What are Transformer language models?

Transformer LMs (e.g., Devlin et al. 2019) are the current state of the art in language mod-
elling. These models offer considerable improvements over earlier language modelling tech-
niques such as n-grams (Shannon and Weaver 1949; Jelinek 1976), or even earlier neural
network architectures (Bengio et al. 2000; Mikolov et al. 2013) because they can successfully
adapt their representations to fit the sentential context. So for example, when you have a
polysemous word (e.g., bank, which can either refer to a financial institution or the side of a
river), the model is able to differentiate between the different meanings by attending to the
other words in the sentence. This is done through the use of a self-attention mechanism; this
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allows a model to learn the relevant relationships between the input tokens and to weigh the
influence of all tokens in the shaping of an individual token’s representation.

A further innovation of Transformers is the use of multiple self-attention heads. By du-
plicating self-attention units on the same data, each head can develop a specialization in a
specific linguistic task. For example, one head can learn the relationship between a direct
object and its verb, while another focuses on the relationship between a determiner and its
head noun (Clark et al. 2019).

2.2.1.1 Training and architecture

These models are trained in a self-supervised manner. Using a large corpus of text as input
data, the models are trained to recreate the sequences in the original texts. In so doing, they
are able to learn linguistic features without any specialized teaching. Transformer LMs come
in a variety of designs. These can be classified into three types: (1) Encoders (e.g., BERT
(Devlin et al. 2019), Electra (Clark et al. 2020)) (2) Decoders (e.g., GPT-2 (Radford et al.
2019), Transformer-XL (Dai et al. 2019)) and (3) Encoder-Decoder (e.g., Bart (Lewis et al.
2020), T5 (Raffel et al. 2020)) (See Figure 2.1).

Encoder Decoder Encoder-decoder
model model model

X, Xz X, Xg

DECODER

ENCODER

Figure 2.1: Types of Transformer language models.

These models differ in their architecture and their training regime. Many variations on
training LMs have been proposed in the literature. Here we will look at three illustrative
examples: GPT-2, BERT and BART. GPT-2, a decoder model, is a traditional LM in that it
is trained to predict the next word when given a sequence of past words. Decoder models mask
out all future tokens in their input when training. BERT is an encoder model that is trained
using masked language modelling (MLM): random tokens in the input sequence are masked
out and they must be reconstructed using the unmasked words as context clues. BERT is
further trained with a next sequence prediction task (i.e., it must decide if a given sentence is
the true next sequence or a random one). BERT is bidirectional and so it has the advantage of
being able to see all the (unmasked) tokens in the sequence. While GPT-2 has a more limited
context, its left to right processing makes it more conducive to text generation. BART is
an encoder-decoder that combines the attributes of BERT (bidirectionality) and GPT-2 (text
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generation abilities). It is trained with MLM, with both individual words and spans of words
masked out. Furthermore, BART’s training includes the random shuffling of input tokens.
The decoder must reproduce the original sequence in the correct order.

To deal with potential out-of-vocabulary words, the common practice of using subword
tokens has been adopted in NLP. Various techniques, such as WordPiece (Kudo and Richardson
2018), Byte-pair encoding (BPE) (Sennrich et al. 2016) and Unigram (Kudo 2018) have been
proposed. These methods either break apart or build up words from n-gram units until
a desired vocabulary size can be achieved, with special considerations for keeping common
words as single tokens. Subword tokenization is not quite the same as decomposing words
based on morphology; the subwords are derived from frequency features in the training corpus
as opposed to semantically relevant morphemes. It is however easy to implement, it reduces
the number of computations that must be performed with character based models and its use
has resulted in impressive results.

All Transformer LMs take word embeddings as input. These are dense vector represen-
tations that are learnt when training the models. The embeddings learn the features of
distributional semantics (Harris 1954); that is, they learn that words used in similar contexts
have similar meanings. The words/embeddings position themselves within the vector space
to reflect similarities and differences in meaning. The specific dimensions of meaning that
are taken into consideration will depend on the model’s training objective and training data
(Vuli¢ et al. 2020; Wei et al. 2021).

The self-attention layers use a query (Q), key (K), value (V) system (represented math-
ematically in Equation 2.1). The name originates from a filing system metaphor where the
keys represent the file labels and the values represent the contents of the files. Each token in
the input acts as a query that is compared to the keys of all tokens in the sentence. This can
be seen as the model searching the file labels for relevant information. When there is a high
similarity between the query and the key, greater attention is paid to the corresponding value
from that file. In practice, the query-key similarities are used to build a similarity matrix
(Wast) for the input sentence, and then, the output vectors of the self-attention layer are given
by the weighted sum (derived from the similarity matrix) of the values. A common pattern
seen in attention weights is all attention focused on punctuation or separator tokens. This is
interpreted as the model returning a null search result for a given linguistic function (Clark
et al. 2019).

QK"
Vi

Attention(Q, K, V') = softmaz( W =WuuV (2.1)

Transformers do not naturally encode the linear order of text since they are permutation
invariant. To allow the models to learn important linguistic features such as word order (Dog
bites man vs. Man bites dog) and subordination, Transformer LMs usually employ positional
embeddings. These embeddings encode distance measures so the model can see which words
are close together (and hence are more likely to impact each other’s representations).
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2.2.2 Techniques for exploring language models’ knowledge

Transformer LMs have contributed to improved performance on a number of NLP tasks.
However, what exactly their contribution is is not always clear due to the black box nature
of neural networks. To help explore the kind of knowledge these models encode, several
techniques have been developed. These include probing, perturbed masking, curated test
samples and studying continuations.

Probing (e.g., Jawahar et al. 2019; Klafka and Ettinger 2020) is typically done by ex-
tracting the hidden representations from the primary model and using those representations
to train a simpler secondary model on a task that requires specific linguistic knowledge such
as syntactic or semantic structure. If the simpler model is able to perform well on the task,
this is a good indication that the primary model has successfully encoded the information of
interest.

One common approach to probing is to extract the hidden representations from the primary
model at different layers and evaluate the performance of the secondary model on the task
using each layer’s representations separately. This can reveal whether certain layers of the
primary model are more specialized for encoding particular linguistic properties.

An alternative exploration technique called perturbed masking was proposed by Wu
et al. 2020. This method does not involve a secondary model, eliminating the possibility
that the additional parameters introduced by the secondary model are responsible for some
of the prediction accuracy. Instead, perturbed masking measures inter-word correlations by
measuring the distance between the hidden representation of a single masked word and the
representation of that same word when a second word has also been masked. The resulting
impact matrices can be used to induce the dependency and constituency trees implicit in the
Transformer.

Curated test samples (e.g., Ettinger 2020) can be used to evaluate performance on spe-
cific linguistic task. These studies usually employ surprisal (i.e., the negative log probability)
as a measure of the model’s representation (i.e., the model should not be surprised to see hu-
man expected words in a given slot and should be surprised to see the unexpected). Studying
continuations made by the models is another possibility (e.g., Aina and Linzen 2021). By
generating future text from a prompt, this provides clues as to how the model interprets the
prompt.

2.2.3 Transformer language model’s linguistic representations

In this subsection, we will look at what Transformer LMs know and don’t know about lin-
guistic context. We caution that the studies reviewed here apply to BERT and similar sized
Transformer models. The rapid revolution that is currently taking place in language modeling,
with larger and larger models overcoming the limitations of smaller models, is very promising
for future applications. However, for the moment, the integration of GPT-3/4-like models
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(Brown et al. 2020), with billions of parameters, is impractical for a portable iTTS system.

2.2.3.1 Representations at different layers

Probes into Transformer LMs show that they build different linguistic representations at suc-
cessive layers in their architecture and the representations at these layers will depend on the
training objectives of the model. Voita et al. 2019 studied the evolution of embeddings from
MLMs and causal LMs using mutual information; embeddings in causal models start out
building a representation of the past and then gradually forget that information to focus on
projecting into the future. MLM embeddings also develop a contextual understanding at early
layers and then forget their own identity in middle layers before rebuilding it at the last layers.

Probes conducted by Jawahar et al. 2019 show that BERT learns phrasal information at
the lower layers, it learns syntactic information in the middle layers and it learns semantic
information at the higher levels. This was tested using the BERT CLS tag (a special token
that is used to learn sentence representations) at each layer and a suite of sentence probes
developed by Conneau et al. 2018. These tests evaluate both simple surface traits (number
of words in the sentence and presence of a specific word) and more complex syntactic and
semantic features: sensitivity to word order, knowledge of tree depth, the sequence of high
level constituents (e.g., NP VP), tense of the main clause, the subject and object number,
sensitivity to random substitutions (e.g., ...J wanted to know if it was real or a spoonful (orig:
ploy) and to coordinate clause inversions (e.g., They might be only memories, but I can still
feel each one. —1 can still feel each one, but they might be only memories).

Klafka and Ettinger 2020 found that BERT more evenly distributed information about
semantic and syntactic traits of the sentence tokens than GPT. For example, the animacy of
the direct object can be predicted from all individual word embeddings in BERT, but only
from the direct object embedding itself in GPT.4

2.2.3.2 Word sense disambiguation

As previously mentioned, Transformer LMs are quite good at learning distributional semantics
and word sense disambiguation. This has been tested using k-means clustering of word senses
(Wiedemann et al. 2020, Chawla et al. 2021). Models (of roughly equivalent size) trained
with MLM outperform causal models on this task. All LMs do however show some limitations
when it comes to subtleties of word composition; they lean heavily on sentence word content
for predictions and do not necessarily pay attention to some word order distinctions.

Shwartz and Dagan 2019 looked at meaning shift and implicit meaning in Transformer
representations. Meaning shift refers to changes in meaning that result from lexical compo-

4This study only looked at the final layer in each of the models; the results may be different at other layers
since to successfully predict the next word/direct object, GPT would have to learn the types of arguments
typically associated with the verb.
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sition, like in multiword expressions (e.g., carry —carry on). Implicit meaning refers to the
implied relationships that result from compounding (e.g., olive 0il —made of olives; baby oil
—made for babies). Transformer models were able to successfully distinguish differences from
the first category, but struggled with the second. In similar work, Yu and Ettinger 2020 com-
pared LM phrase representations to human paraphrase similarity scores. On global datasets,
the models correlated well with human judgments but when controlling for word overlap (e.g.,
adult female = female adult; law school # school law), performance dropped significantly.

2.2.3.3 Syntax

Syntactic probes show that LMs have a fairly solid grasp on the grammatical structure of
language. Clark et al. 2019 found certain attention heads were specialized in attending to
syntactic relationships (e.g., focusing on the direct objects of verbs or the noun head of deter-
miners). Furthermore, POS and constituent tagging probes achieve high scores (Tenney et al.
2019; Hewitt and Manning 2019).

While Transformer LMs often perform well on syntactic tests, that is not to say that
they process language in the same way as humans. For example, their ability to develop
symbolic rules that can be applied to unseen word combinations is not as robust as in humans.
Goldberg 2019 studied BERT’s subject-verb agreement preferences on syntactically correct but
semantically nonsense sentences (e.g., colorless green ideas sleep/sleeps furiously). BERT
preferred the correct verb form for approximate 85% of the tested sentences. This is impressive,
but not on par with humans. Wei et al. 2021 found that BERT could generalize subject-verb
agreement to lexical items that had not been paired in the training set, but the application
of this rule was dependent on both the relative frequency of the competing verb forms in the
corpus and the absolute frequency of the verb (i.e., a minimum number of samples must be
seen before verb rules can be mapped to a lexical item).

Aina and Linzen 2021 looked at the syntactic representations held by causal LMs (GPT-2
and an LSTM model) when they encounter ambiguous syntactic junctures in a sentence (e.g.,
NP /S ambiguities— The scientist proved the theory ...a) through two experiments (NP) b)
was correct (S); NP /Zero-complement ambiguities— Even though the band left the party . ..a)
I stayed (NP) b) went on for another hour (Zero-complement). They generated multiple
continuations from the locus of ambiguity and measured the portion of responses that con-
formed with one or the other syntactic reading. These tests showed that GPT-2 is able to
hold multiple structural representations at once for NP /S ambiguities, generating both types
of continuations. For NP /Zero-complement, GPT-2 had a strong preference for NP interpre-
tation, but was (usually) able to adjust its representation when disambiguating clues became

available after the locus.?

SWhile not something we tested in this current work, LM’s ability to maintain representations of alternative
syntactic representations at locally ambiguous junctures could be exploited for iTTS.
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2.2.3.4 Common sense and pragmatics

An area where BERT and its ilk are far from human capacity is in pragmatics and common
sense knowledge. Ettinger 2020 analyzed BERT using a number of psycholinguistic tests
originally designed to study linguistic processing in humans. These evaluations probe BERT’s
“reasoning” skills by looking at probabilities of pragmatically likely /unlikely cloze completions
when given a specific context or when a predicate has been negated. The first type of test
requires inferences to be made regarding the context and the pragmatic relationship between
sequential sentences (e.g., He complained that after she kissed him, he couldn’t get the red color
off his face. He finally just asked her to stop wearing that ... —lipstick/mascara/bracelet).
BERT did assign high probability to the correct completions at least half of the time, but
inappropriate completions were also assigned a high probability. As for negation, BERT
showed clear weaknesses, failing to modify its predictions to reflect the change in polarity. So
likely continuations of A robin is a and A robin is not a were essentially the same (e.g., bird,
robin).

More evidence that BERT relies on heuristics for its decision making come from McCoy
et al. 2019. They tested BERT on a natural language inference task, where machine models
have to decide whether one sentence entails another (e.g., The banker near the judge saw the
actor entails The banker saw the actor, but does not entail The judge saw the actor). BERT
performed very poorly on a dataset that excluded examples that could be predicted based on
shallow features such as lexical, subsequence or constituent overlap.

2.2.3.5 Coreference and information structure

The same pattern seen for syntax and semantic probes also applies to coreference and informa-
tion status: Transformer LMs have globally good results, but falter on difficult cases. Sorodoc
et al. 2020 looked at referential representations in Transformer-XL (Dai et al. 2019). They
probed the model to see if it could identify previous mentions of pronominal anaphora. The
probe yielded very high results. The model learnt that nouns and other pronouns are likely
antecedent and that the pronouns should agree in gender and number. The model performed
less well on challenging examples where there was a mismatch in number features (e.g., the
audience —they) or when there were distractors (i.e., intervening nouns/pronouns that share
features of the target pronoun). Loaiciga et al. 2022 extended this work to look at new/given
status in entity representations in general. This probe also resulted in high accuracy.

Apart from information status, information structure representations (topic and focus) in
LMs has received very little attention, with the exception of Fujihara et al. 2022. Fujihara et
al. looked at topicalization decisions in Japanese LMs; Japanese is a topic-prominent language
where the topic is marked with the particle (wa).® The authors prepared a dataset of sentences
where the initial NP could be a topic (marked with wa) or a subject (marked with the subject
particle ga). On a subset of samples, human preferences for topic or subject changed when

5This type of discourse element should be more apparent for a Japanese mono-modal LM than it would be
for one trained on English where topicalization is usually marked prosodically.
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broader context was made available; the LM preferences on the other hand stayed the same
with both limited and extended context.

2.2.3.6 Discourse relations

Shi and Demberg 2019 applied BERT to the task of implicit discourse relation classification.
This task cannot use explicit discourse markers (e.g., therefore) to intuit the relationship
between sentences; it must rely on the semantic content of the two propositions and learn the
typical reasons and consequences for different types of events. A fine-tuned BERT improved
results by a wide-margin over previous techniques, a success that the authors attribute to
BERT’s next sentence training objective. Even so, accuracy scores were only slightly over 50
percent for the 11-way classification task.

2.3 Discussion and conclusion

In this chapter, we have seen that context can affect speech and speech perception in a variety
of ways. If we look at these factors from a TTS/iTTS perspective, we can see that some of
these contextual constraints can be inferred from text alone with a fairly local context. Others
will require at least a full phrase or sentence and possibly knowledge of the semantic content
of the message. Others still will require knowledge of the broader discursive context (beyond
the sentence).

Phonological environments can be accounted for with only a few phonemes lookahead.
Rhythmic clashes could possibly be avoided by looking at the next (couple of) word(s).
Garden-path sentences can be differentiated at some point in the current sentence, and usu-
ally quickly after the point of ambiguity. Incrementally derived knowledge of the semantic
characteristics of words could help in predicting their syntactic attachment and their relative
prominence.

Other factors like global attachment ambiguity or discursive context can only be con-
fidently inferred (statistical biases notwithstanding) if a larger context is made available.
Prosodic boundary prediction is complicated in the incremental setting, both due to struc-
tural ambiguities which may have not yet been resolved and because global phrase length
considerations is a factor in determining breaking points.

To what extent LMs can help resolve ambiguities, provide plausible future context and aid
prosody predictions is the major theme of this thesis. Research probing LMs shows that the
amount of information gleaned from text alone is very impressive. But given the fact they
lack embodied world experience, there are limitations to how much they can know about the
intricacies of human experience and pragmatic reasoning. Nonetheless, LMs do have a large
potential to improve TTS compared to the simple mapping of unenhanced phoneme sequences
to speech.
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In the next chapter, we put LMs aside and investigate how vanilla T'TS models make use
of pure (not LM-enriched) textual context. In Chapter 4, we return to LMs and use them to
predict future context for iTTS. In Chapter 5, we investigate the use of LM-enriched text as
well as additional previous context for prominence and boundary prediction.
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In this chapter, we will discuss incremental text-to-speech (iT'TS). We will begin by present-
ing the standard (non-incremental) text-to-speech pipeline. We will then survey the relevant

issues that arise when building an iTTS model and review the research that has been carried
out on these topics. And finally, we will present our first contribution to the field of iTTS,
the work presented at Interspeech 2020 What the future brings: Investigating the impact of

lookahead for incremental neural TTS. When we started this work, neural iTTS had received

almost no attention from the research community (with the exception of Yanagita et al. 2019)

and so we posed the question: how much future context is necessary in a seq2seq paradigm?

3.1 Text-to-speech synthesis

Text-to-speech, be it incremental or not, is a process that is divided into three steps (See

Figure 3.1)

39
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Figure 3.1: Neural text-to-speech pipeline. Grapheme or phoneme sequences are converted
into Mel-spectrograms with an acoustic model. The Mel-spectrograms are then converted into
waveforms with a vocoder.

1. The front-end which consists in text normalization (i.e., transforming ambiguous forms
such as numbers and abbreviations into an orthographic representation) and grapheme-
to-phoneme (G2P) conversion.

2. The acoustic model that converts the phoneme sequence into a compact representation
of the speech signal (usually a Mel-spectrogram).

3. A vocoder that converts the compact representation into a waveform.

These steps are not fixed: G2P is not obligatory, as T'T'S models are capable of learning
mappings directly from grapheme representations, however the use of a phonemic represen-
tation usually results in fewer pronunciation errors.! Some newer models bypass the second
step and predict a waveform directly from the phoneme input sequence (e.g., Weiss et al.
2021; Donahue et al. 2021; Kim et al. 2021), however these models are difficult to train and
most do not quite reach the quality of cascaded systems. In what follows, we will provide an
overview of the techniques used for the three stages in modern T'T'S, with an emphasis on the
models used in this thesis. For a more thorough summary of the current state-of-the-art, we
recommend Tan et al. 2021.

3.1.1 Front-end

In previous TTS frameworks (HMM-based (Tokuda et al. 2000) and concatenative (Hunt and
Black 1996)), the front-end consisted of in-depth textual analysis to predict linguistic features
relevant for acoustic feature prediction. These linguistic features included attributes such
as quin-phone (the identity of the current phone as well as that of the two preceding and
two following ones), part of speech (POS) tags, lexical stress, ToBI features (pitch accents
and boundary tones) and positional features (e.g., the position of the current phrase in the
utterance). Neural network-based models typically use a much reduced text analysis unit that
serves to normalize and disambiguate non-standard text, like abbreviations (e.g., Dr.— Doctor

1Jia et al. 2021 and Kastner et al. 2019 found that training with both graphemes and phonemes could offer
more flexibility and reduce pronunciation errors.
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or Drive), and convert graphemes to phonemes. These tasks are often treated as seq2seq
conversions (e.g., Zhang et al. 2019; Yao and Zweig 2015) in contemporary models.

Neural systems let the acoustic model learn which other features from the text are most
pertinent directly from the input sequence. This method has resulted in more natural speech,
in part because the tools used for linguistic analysis were sometimes inaccurate and this caused
a mismatch between the extracted features and the ground-truth audio used for training. The
improvements resulting from end-to-end acoustic training (using only text/phoneme inputs)
did however decrease the level of control of the system: a given sequence of phonemes will
always be pronounced the same way, irrespective of the contextual factors that should influence
its expression (See Chapter 2). Recent work (e.g., Kenter et al. 2020; Zou et al. 2021; Talman
et al. 2019; Xiao et al. 2020; Hodari et al. 2021), including our own (Chapter 5), attempt
to reintroduce linguistic analysis by leveraging language models. The accuracy improvements
in language modelling/NLP technology in just the last five years has been seismic and so
reintroducing a linguistic analysis stage could help improve contextual appropriateness.

3.1.2 Acoustic models

Speech synthesis is a seq2seq task where the length of the input sequence is not equal to
the length of the output sequence. Target waveforms are usually sampled at 22050 samples
per second; in normal speech, 10 to 15 phonemes are spoken per second (Levelt 1993); an
approximately 1:2205/1:1470 ratio between input (phonemes) and output (speech samples).
Using an intermediate feature has been shown to be an effective way to bridge the gap between
these two disparate representations and the most commonly used one in neural T'TS is the Mel-
spectrogram. This is a representation of the frequency content of a signal and its evolution over
time. The Mel-scale takes into consideration the way humans perceive differences in sounds,
which is not linear: differences between pitches at the lower range are not perceived in the
same way as those in the higher range. While Mel-spectrograms are still the standard, some
recent research (Lim et al. 2021; Siuzdak et al. 2022) has tried incorporating representations
from self-supervised audio models such as Wav2Vec 2.0 (Baevski et al. 2020) and these tests
show promising results.

Just like Transformer LMs (Section 2.2.1), TTS acoustic models come in autoregressive
(Tacotron (Wang et al. 2017), Tacotron2 (Shen et al. 2018), Deep Voice 3 (Ping et al. 2018),
Transformer TTS (Li et al. 2019)) and non-autoregressive varieties (Fastspeech (Ren et al.
2019), Fastspeech 2 (Ren et al. 2021), Glow-TTS (Kim et al. 2020), BVAE-TTS (Lee et
al. 2021). We will take a closer look at two of these models, Tacotron 2 (Figure 3.2) and
Fastspeech 2 (Figure 3.3), which are illustrative of their respective categories (and the models
used for the research in this thesis).

Both Tacotron 2 and Fastspeech 2 are encoder-decoder models that predict Mel-spectrogram
frames. Tacotron 2’s encoder consists of a series of convolutional layers and a bi-directional
LSTM and Fastspeech 2’s encoder uses a series of Transformer layers. Despite the difference
in architecture, these encoders perform the same task: they build a global representation of
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the input sequence. However they do this in slightly different ways: Tacotron 2’s convolu-
tional layers extract local features and these are then consolidated by processing the data
sequentially (both in the forwards and backwards directions) with an LSTM (Long short-term
memory) layer; FastSpeech 2’s transformer layers have access to the complete phoneme se-
quence when building its representation. The self-attention modules capture relevant features
from the entire sequence in parallel, without the need for sequential processing, which speeds
up inference.
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Figure 3.3: Fastspeech 2 pipeline. Image from Ren et al. 2021.

The two models also differ in how they learn alignments between the input and output
sequences. To account for the size difference between these two forms, the models need to
learn alignments between the phonemes and their corresponding representations within the
mel-spectrogram frames. Tacotron 2 uses an attention mechanism that learns transition prob-
abilities based on a context vector (i.e., a representation of the input tailored to the current
decoding step), the previously predicted frames and previous context alignment vectors. Fast-
speech 2, on the other hand, incorporates an explicit phoneme duration model and then
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upsamples the phone embeddings to match the target spectrogram. Alignments for training
Fastspeech 2 are either obtained from the attention weights of a teacher model (e.g., Tacotron
2) or through forced-alignment.

Tacotron 2 is trained using teacher forcing; i.e., when predicting the next spectrogram
frame in the sequence, the model has access to the ground truth previous frame. This helps
the model learn coherent sequences of speech, but it can lead to issues at inference time when
successive predictions can drift away from the distribution of natural speech and confuse
the attention mechanism. This can result in slurred speech or skipped or repeated sounds.
Some methods have been proposed to mitigate this issue including double feed training
(Shechtman and Sorin 2019) where both the predicted and the ground truth previous frames
are passed to the decoder at training time (the two are concatenated together) and scheduled
sampling (Bengio et al. 2015) where the model is trained on either the ground truth previous
frame or the predicted one based on a coin flip using a defined distribution probability.

A further difficulty with training attention-based acoustic models is learning the alignments
between the encoder outputs and the decoder steps. To overcome this issue, Tachibana et al.
2018 introduced a guided attention loss which encourages the attention matrix to be diagonal.
As a result of this training, the decoder progresses monotonically through the input, but for
our purposes in iTTS, it is important to remember that the model does still depend on the
full context due to the bidirectional LSTM layer in its encoder.

Training Fastspeech 2 is faster and easier than Tacotron 2 because all the predictions
are made in parallel. It is also more robust to unseen data; it does not suffer from the
same slurred speech problem. The first Fastspeech model, which also employed a duration
prediction + upsampling method, did suffer from less expressivity than Tacotron 2, and that
is why Fastspeech 2 introduced additional variance predictors (pitch and energy) to mitigate
this issue.

In this Chapter (Section 3.3), we use Tacotron 2 for our experiment, as Fastspeech 2 had
not yet been released in 2020. But in later chapters, we switch to Fastspeech 2 because of its
speed and robustness.

3.1.3 Vocoders

The current state-of-the-art in vocoding is neural models. WaveNet (Oord et al. 2016) was
the first major entry in this paradigm. It is an autoregressive model that uses dilated con-
volution layers to increase the receptive field and capture long-range dependencies. WaveNet
produces very high quality speech, however its inference time is very slow. To make vocoding
more efficient, modifications to the autoregressive system have been proposed (e.g., WaveRNN
(Kalchbrenner et al. 2018)), and alternative solutions based on generative and source-filter
techniques have been developed. Generative techniques include Generative Adversarial net-
works (GANs), (e.g., Parallel WaveGAN (Yamamoto et al. 2020), HiFi-GAN (Kong et al.
2020)), Flow-based models (e.g., WaveGlow (Prenger et al. 2019)), and Diffusion models (e.g.,
Diff Wave (Kong et al. 2021)). A source-filter model, LPCNet (Valin and Skoglund 2019), uses
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a neural network to predict the excitation of the speech signal, but uses a less computational
intensive linear prediction method to model the spectral envelope.

In our work, we have experimented with both flow-based (WaveGlow) and GAN-based
models (Parallel WaveGAN and Hifi-GAN). These models were selected because of their qual-
ity (e.g., acoustic feature reconstruction abilities (Perrotin et al. 2021)) and their inference
speed (AlBadawy et al. 2022). While these models are not the absolute simplest/fastest mod-
els available, we favoured models with high synthesis quality since our primary concern is with
creating natural prosody and we did not want evaluations to be effected by distortions in the
vocoding process.

3.2 What considerations for iTTS

Text-to-speech systems, discussed in the previous section, have made great strides with the in-
troduction of seq2seq neural models, combined with end-to-end trainable architectures. These
models are able to learn a direct mapping between phonemes and spectrogram or waveform
outputs without the need for feature engineering and they produce very natural sounding
speech. However, most of these neural TTS systems are designed to work at the sentence
level, i.e., the synthetic speech signal is generated after the user has typed a complete sen-
tence. When processing a given word, the system can thus rely on its full linguistic context
(i.e. both past and future words) to build its internal representation.

Despite its ability to generate high-quality speech, this synthesis paradigm is not ideal
for several applications. For example, when used as a substitute voice by people with severe
communication disorders (Augmentative and alternative communication (AAC)) or integrated
in a dialog system (e.g. personal assistant, simultaneous speech interpretation, etc.), the
system’s need to wait until the end of a sentence introduces a latency which might be disruptive
to conversational flow and system interactivity.

Incremental TTS (iTTS, sometimes called low-latency or online TTS) aims to address
these issues by synthesizing speech on-the-fly, that is by outputting audio chunks as soon as
a new word (or a few of them) become available. This task is particularly challenging since
producing speech without relying on the full linguistic context can result in both segmental
(phonological) and supra-segmental (prosodic) errors (Le Maguer et al. 2013).

There are several factors that need to be considered when building and evaluating an iTTS
system. In this section, we will examine these aspects and review the related work that has
been carried out in the field.

3.2.1 Unit of processing and text entry interface

The incremental unit of processing (or granularity) has to be determined for an iTTS system
(e.g., the word, the phrase), particularly for AAC purposes where the rate of typed input
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can be very slow. Both the interface units and synthesis units need to be selected. Some
existing systems go as granular as the phoneme (the Synthé 5 and 6 models?, HandiVoice and
Finger Foniks (described in Glennen and DeCoste 1997) or the syllable level (Leblatphone?).
Synthesis at this rate (i.e. every time a new phoneme/syllable is entered) can be quite difficult
for the listener to comprehend, as word boundaries are not well demarcated, and coarticulation
and syllabification (in the case of phoneme units) cannot be properly modelled. The full speech
sequence must therefore be repeated when the sentence is complete. But this technique can
be used to maintain the line of communication, in the same manner as a filled pause in direct
human-to-human communication (Ball 1975). Synthesis can be delayed until larger (but still
incremental) units are made available, but machine learning techniques will be required to
group the phonemes into syllables/words (Bartlett et al. 2009).

An interface that contains syllables or morphemes as input has the potential to speed up
text input since fewer keystrokes are required for each word, but it will require the user to
learn a new spelling system, whereas a standard alphabetic keyboard may be more intuitive to
use for an experienced typist. Selecting the most appropriate interface will of course depend
on the user.

Synthesizing speech at the word level does provide units that are easy to delineate, but this
may still not provide sufficient input to the TTS model: Saeki et al. 2021a and Yanagita et al.
2019 found that synthesized units smaller than two words were unintelligible. Moreover, pro-
cessing one-word-at-a-time may not be sufficient to build natural intonational contours. The
phrase level corresponds to more natural thought groupings, but determining phrase bound-
aries, generally but especially in an incremental setting, is not a straightforward task. Some
systems (Proloquo4Text*, Predictable®) offer the possibility to store and reuse full sentences,
which is very useful for commonly used utterances; but keyboard interfaces are still necessary
for more granular and flexible inputs.

In this thesis, we consider increments at the word level (the current chapter, chapters 4
and 5) and at the phrase level (Chapter 5).

3.2.2 Amount of context

Deciding when to trigger synthesis is a fundamental question for iTTS. Is speech synthesized
when the current incremental unit is made available or is it delayed to provide the system
with some lookahead (i.e., future/right context)? And if lookahead is permitted, does this
involve a fixed lookahead policy (e.g., always waiting for the next word/next two words/etc.)
or an adaptable one where the delay can be modulated based on the ambiguity of the current
context.

http://www.synthe-aria.com

3https://hacavie.fr/aides-techniques/essais-d-aides-techniques/articles /machine-a-parler-portative-
leblaphone-fabriquee-par-la-sas-leblat /

“https:/ /www.assistiveware.com/products/proloquodtext

Shttps://therapy-box.co.uk/predictable
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3.2.2.1 Fixed lookahead

In the context of HMM-based T'TS synthesis, Astrinaki et al. 2012 evaluated a limited training
context (the previous, current and next syllable) to obtain phoneme labels, as well as a limited
phoneme label context to obtain vocoder parameters (the current and next phoneme). Subjec-
tive and objective evaluations showed only a slight degradation from full context, however the
naturalness of even full-context TTS was not very high at this time. Baumann and Schlangen
2012a examined the effects of lookahead on the prosody of the current chunk depending on
when the TTS system gained knowledge of the subsequent chunk. The words near the be-
ginning of current chunk were not hugely affected by a lack of knowledge about the future
chunk, but if integration was delayed for too long, the level of distortion (pitch and duration)
for words near the end of the chunk would rise rapidly. This is because the later words did
not form a continuation intonation (preparing to lead into the next chunk), but rather an
utterance final intonation. The authors conclude that one chunk of lookahead is sufficient and
that the incorporation of that chunk can wait until after the first word of the current chunk
has been processed; this allows for a balance between the delivery of speech and processing
time (i.e., the critical prosodic updates from the future chunk can be processed while the first
word is being spoken).

In the context of speech-to-speech translation using neural TTS, Ma et al. 2020 used a
wait-k policy (inspired by the prefix-to-prefix framework introduced for translation in Ma
et al. 2019a), which consists in having access to a future context of k input tokens while
generating speech output (Prefiz in this type of system denotes the combined previous and
current context). The system must wait for an initial & tokens to be entered, but it then
outputs one new token at each subsequent timestep. The authors found that one word of
lookahead, for both the Mel-spectrogram prediction and the waveform prediction, gave the
best results, however the vocoder lookahead only provided very minor improvements.

3.2.2.2 Adaptable lookahead

A fixed lookahead policy has the advantage of being easy to determine. But while an adaptable
policy does require some additional computation, adaptability is the better option with regards
to the latency/quality trade-off, because a delay is only tolerated for input that is ambiguous
and requires more context to disambiguate. Pouget et al. 2016, in the context of HMM
synthesis, proposed an adaptive decoding policy based on the online estimation of the stability
of the linguistic features: the synthesis of a given word is delayed if its part-of-speech (POS)
is likely to change when additional (future) words are added. While also contributing to
synthesis quality, this method improved chunking properties (i.e., deciding on natural breaks
to output speech). We extend this work in Chapter 5.

Mohan et al. 2020 investigated the use of reinforcement learning to establish the optimal
read-speak policy where read refers to the encoding of an additional character and speak refers
to the decoding of the current queue of encoded characters. Their model was able to balance
latency and quality and it successfully navigated some ambiguous pronunciation issues, for



3.2. What considerations for iTTS 47

example waiting for more information when the character sequence secret was encountered, as
with more information the pronunciation could change to secretary (/sizkrot/ — /sekro'teri/).

3.2.2.3 History

Considering the maximum amount of history to retain is a further design question. Including
all past context from an on-going conversation will soon become unwieldy. Limiting context
history to the prefix for the current sentence is more computationally feasible. Martos et al.
2021 tried setting a six word limit for previous context, however they hypothesize that this
limited context may be partially responsible for the degraded speech quality they observed.

It is possible to summarize the past context in the form of a context embedding, as done
in Saeki et al. 2021a. As far as we know, most of the works on iT'TS that incorporate previous
context reprocess the past as the context window moves forward. However, if there is some
overlap between past contexts (e.g., when a context window moves one step forward, all but
the previous “current” word were part of the past context of the previous timestep), there is a
potential for computational savings by updating a past context embedding from its previous
state instead of recalculating everything from scratch, similar to the average embedding layer
proposed for incremental machine translation by Zhang et al. 2020.

3.2.3 Latency

Every stage of the iTTS process has the potential to introduce latencies. These latencies stem
from either the time collecting input data, the time processing the data, or from a backlog
of previously synthesized audio. Processing speed will depend on the size, architecture and
complexity of the model, as well as the strength of the hardware the system is deployed on.

3.2.3.1 Input latency

The latency caused by the input stream will vary greatly depending on the intended appli-
cation. In the case of automatic interpreters, the rate of input will depend on the automatic
speech recognition (ASR) system transcribing the incoming speech and the machine transla-
tion (MT) unit that converts the source language into the target language. Dialogue systems
will similarly depend on ASR, on natural language understanding (NLU) and on text genera-
tion. In AACs the input will depend on the typing speed of the user, which can vary greatly
based on the input mode (i.e., manual typing or eye gaze typing) and the user’s motor control
abilities (Koester and Arthanat 2018).

ASR should not be a major cause of delay, since several current models are able to tran-
scribe speech in real time (See Addlesee et al. 2020 for an evaluation of ASR systems judged on
incremental criteria). MT and NLU can similarly be processed quickly, however these applica-
tions also have latency/performance tradeoffs and there are stability issues to consider (i.e., is
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the translation/meaning likely to change when more input is made available?) (Arivazhagan
et al. 2019; DeVault et al. 2011). Input latencies for AAC can be very large but they can be
partially reduced through the implementation of predictive text (Judge and Landeryou 2007).
Predictive text can either provide next word options for the user to choose from or eliminate
input keys based on statistical probabilities of future letters.

3.2.3.2 Computational latency

Input length Inference speed will be affected by the size of the input units. Ma et al. 2020
evaluated the computational latency for TTS in a neural speech-to-speech translation setting.
The latency for full sentence synthesis grew in a linear manner with the size of the sentence,
whereas their wait-k policy gave a fixed latency. Using wait-k, they were able to achieve a
positive time balance (i.e., the next word could be synthesized in the time it took to play the
current word).

Architectural design and complexity The architectural choice of model can be a poten-
tial cause of latency. Autoregressive T'TS models can be slow to produce the speech sequence
since you must wait for one frame to be inferred before you can infer the next. Ellinas et al.
2020 propose methods to accelerate this process with their lightweight neural TTS model,
designed to be more agile and operable on CPUs. Their modified Tacotron (a combination of
both Tacotron 1 and 2), uses a simplified attention mechanism and its decoder infers several
spectrogram frames at each timestep; they found that predicting 5 frames/timestep (240ms
increments of speech) was comparable in quality to 2 frames/timestep while reducing latency
by almost half. Increasing the prediction rate to 10 frames/timestep resulted in a dramatic
drop in quality. Non-autoregressive models that predict all Mel-spectrogram frames in parallel
could also be used to speed up inference.

Other possibilities for reducing the complexity of TTS models (and in so doing, decrease
latency) include techniques such as pruning (Lam et al. 2022) to eliminate redundant or
unnecessary model parameters, neural architecture search (Luo et al. 2021) to find the most
efficient design, and compression strategies (e.g., quantization, low-rank matrix approximation
(Koc et al. 2021) and knowledge distillation (Wang et al. 2021b) to simplify computations.
Making the model as efficient as possible is paramount if the iTTS system is to be used on a
portable device with limited battery power.

3.2.3.3 Backlog

Liu et al. 2022, Zheng et al. 2020 and Fukuda et al. 2021 call attention to the issue of backlog
as a cause of latency. This is an issue that can arise when one audio unit has been synthesized,
but the previous unit has not finished playing. This can occur for instance in speech-to-speech
translation when the target speech is significantly slower than the source speech. To eliminate
this problem, Liu et al. 2022 propose duration scaling (i.e., speeding up the audio) and Zheng
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et al. 2020 propose self-adaptive translation which modifies the length of the translated text to
adapt to the speaking rate of the source speaker. The latter method has the added advantage
of reducing unnatural pauses when the speaking rate decreases. A further cause for backlog
comes from the asynchronous deployment of modules in a system’s pipeline.

3.2.4 Predicting future context

Language is not a random string of words. It has recognizable syntactic structure and collo-
cational /phraseological patterns that make predicting the future text (or at least something
similar) possible. Furthermore, language is constrained by context. For example, in a discus-
sion about cooking, the probability of hearing the words broil, bake and steam is much higher
than hearing abacus, tractor and constellation. Using these constraints has the potential to
fill in some of the missing information for an iTTS model.

In Chapter 4, we explore the use of language models for future word prediction. In a
contemporary work, Saeki et al. 2021a also investigated the use of “pseudo-text”. They (1)
predicted five words into the future using GPT-2, (2) passed both the past context and pre-
dicted future to a context encoder and (3) conditioned the synthesis of two-word chunks on
this context embedding. They further propose fine-tuning the context encoder so that the
representations of the pseudo and ground truth futures are closer together. They report posi-
tive results from this method, however it is unclear whether they would have achieved similar
results using a random future context, as this condition was not evaluated in their listening
test.5 In a follow up paper, Sacki et al. 2021b sped up inference time by training an LSTM
model to replace GPT-2; through knowledge distillation, the LSTM learns to predict the
context embedding directly from the past context and the current words, as opposed to first
predicting the future text and then encoding that representation.

3.2.4.1 Quality of predictions

Liu et al. 2022 also conditioned an iTTS model on pseudo-lookahead as part of their speech
translation model. They improved future word prediction by using the speech translation unit,
which is conditioned on the source speech signal, to generate their predictions. This resulted in
major gains in accuracy (70%-+ accuracy versus less than 20% when using a separate language
model).

The quality of predictions depends on the prompt given to the language model. With too
little context, the predictions are not grounded and hence are likely to simply be the most
common words in English (or whichever language it was trained on). Saeki et al. 2021a tested

5Saeki et al. 2021a do report the fine-tuned context embeddings give better results than the non-finetuned
version, i.e., context embeddings closer to the ground truth result in more natural audio, and the random future
embeddings were farther away than the GPT-2 generated ones. The details of the random text generation are
not reported; it is possible that the randomly generated text does not match the distribution of function words
in natural speech and this could cause the large gap between pseudo and random, since function words are an
important clue for phrase boundary prediction in end-to-end models.
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this experimentally” and confirm that predictions at the beginning of the sentence (after the
first word) are worse than those at the end. This issue could likely be overcome by including
context from previous sentences (Mikolov and Zweig 2012; Tiedemann and Scherrer 2017),
as sentence initial words are usually more predictable because they serve to link the current
discourse segment to what has come before (Ferreira and Chantavarin 2018).

Future prediction will never be entirely accurate and incorrect predictions could have a
negative effect on speech quality. Skantze and Hjalmarsson 2013 propose speech plans that
consider multiple dialogue paths at a time. By doing the same, an iTTS model could prepare
multiple intonational contours and be ready to deploy the correct one as soon as disambiguat-
ing information becomes available.

3.2.4.2 How far into the future?

How much future text to predict is an important question. In the work described in the
next chapter, we chose to limit prediction to the next word, so we could study the effects of
language model predicted text to random next word generation. Predicting longer stretches
of text could be beneficial, as it provides more context to the model, but with each subsequent
prediction you risk greater divergence from the ground truth text. As we shall see, predicting
beyond a certain point may have little impact on the features of the current word and could
therefore add unnecessary computational steps.

3.2.5 Revision/Disfluencies, disruptions and repetition

In an incremental system, it is inevitable that mistakes will be made. This is also true in
human speech where disfluencies such as false starts, repetitions and revisions are common
occurrences (2 to 26 disfluencies for every 100 words according to Faure 1980). If an error is
detected as more data becomes available (i.e., as we get more input text), it may be beneficial
for cognitive processing to signal this revised understanding/prosodic representation to the
listener. For such a system to function properly, it would be necessary to define/threshold
prosodic changes that alter the understanding of a sentence; in other words, we would expect
there to be minor changes to the prosodic predictions with each unit of additional context,
but we would only want to revise the speech if the new predictions alter the meaning. This
would not be straightforward, as shifts in meanings are gradient and dependent on context.
Consideration would also have to be paid to the stability of the revisions.

The insertion of disfluencies may be advantageous when the speaker /typist wants to revise
the content of their message. In an AAC, we could imagine a restart triggered by the deletion
of previously typed words. Other disfluencies could be integrated in order to assist turn-
management. For this purpose, Betz et al. 2015 tested the use of filled and silent pauses,
word fragments and word lengthening in a dialogue system. Users rated the silent pauses and

"The prediction quality was measured using the cosine difference between ground truth context encoder
embeddings and pseudo-lookahead context embeddings.
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word lengthening positively, but not the other disfluencies; the authors attribute this to a
lack of variability in these synthetic features. Skantze and Hjalmarsson 2013 and Baumann
and Schlangen 2013 used filled pauses to bide time while a dialogue system waited for crucial
information to be processed.

Buschmeier et al. 2012 tested a feature for dialogue systems that allows the system to
adapt to environmental factors, such as loud noises. If speech is disrupted, the model stops
the ongoing utterance and rephrases the parts that went unsaid. Human raters judged this
behaviour as significantly more human-like than a second condition where the model simply
paused during the interruption and then continued the already generated utterance. The
authors advocate a just-in-time processing strategy, where generation is held off until right
before it is needed, so that the model can remain as reactive as possible to the communicative
context. Similar work was conducted in the context of an in-car dialogue system (Kousidis
et al. 2014) where for safety, the system must sometimes pause as to not distract the driver
from events that require their full attention.

Also in the context of dialogue systems, Yu et al. 2015 investigated reactivity to the
listener’s attention. Sentence restarts have been linked with speaker coordination (i.e., if the
speaker does not have the attention of the listener at the beginning of their utterance, they
will employ pauses and/or restarts as a means to coordinate a grammatical phrase with the
listener’s shifting gaze), as in the following example (from Goodwin 1981 as cited in Yu et al.
2015):

(1) She - she’s reaching the p- she’s at the* point I'm

The dotted line shows the listener’s moving gaze, * indicates the point where the gaze meets
and the solid line shows a period of mutual gaze. Their implemented attention aligning
procedure was not entirely successful, as the pausing behaviour was frequently interpreted
as the end of utterances/floor releases. This problem could potentially be overcome with
modifications to the speech synthesis unit, which could convey desired continuation.

Wester et al. 2017 looked into adaptive systems that respond to user interruptions. They
tested a model that would react with increasing levels of annoyance in the synthetic voice upon
repeated interruptions by the user. A focus group had mixed reactions to this behaviour, some
members were amused by the sassiness of the system, but generally the public felt an artificial
agent should remain cooperative. Baumann 2014a investigated methods for aligning synthetic
speech with a robot’s pointing gestures. Speech tempo was modulated on-the-fly to ensure
deictic expressions (e.g., this button) were coordinated with the gesture. Alignments were
achieved but at the cost of speech quality degradation.

3.2.6 Model and training modifications

Modifying models or their training regime is another option for improving incremental predic-
tions. These methods take direct account of the demands of on-line processing and prepare
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the models to deal with uncertainty or simply to process incoming data as soon as it becomes
available.

The Inpro 1SS was one of the first speech synthesis systems built specifically for incre-
mental processing (Baumann and Schlangen 2012b). It was part of an incremental processing
toolkit for dialogue systems InproTK (Baumann et al. 2010; Baumann and Schlangen 2012c¢).
This toolkit handles incremental units (IUs) at different levels of linguistic abstraction (e.g.,
phoneme, word, pragmatic plan) and keeps track of the dependencies between these units. As
the system’s state changes, connected units in the network are updated. Unspoken dependent
units can thus be modified to suit the current context.

Other early (HMM) iTTS systems developed strategies to deal with uncertainty. (Bau-
mann and Schlangen 2012a; Pouget et al. 2015; Pouget et al. 2016). In this paradigm, models
are trained on a set of explicit linguistic features (e.g. number of syllables in the next word)
and Baumann and Schlangen 2012a and Pouget et al. 2015 developed coping mechanisms to
handle missing features when making predictions for iTTS: unknown future context informa-
tion is replaced with the most common values for these features at inference time in Baumann
and Schlangen 2012a, whereas uncertainty on those features is explicitly integrated at training
time by Pouget et al. 2015.

Training TTS models directly on incremental data (i.e. randomly selecting a truncated
sequence that is shorter than the full sequence) has the potential to increase TTS quality in
incremental mode. Liu et al. 2022 and Ellinas et al. 2020 supplement the full input training
data with prefixes. When training on prefixes/sentence fragments, it is important to make
the model aware of the position in the sentence as the prosody of words/phrases at the
beginning, middle and end of an utterance are very different (e.g., declination (Ladd 1984),
boundary tones (Pierrehumbert 1980)). Yanagita et al. 2019 tested an approach which consists
in (1) marking three subunits within the training sentences using start, middle and end tags,
(2) training a Tacotron 2 TTS model with these tags so it learns intrasentential boundary
characteristics, and (3) synthesizing sentences by inputting chunks of length n words (up to
half a sentence) with the appropriate middle or end tag. In subjective tests, it was found that
three-word units were indistinguishable from the full sentence speech.

3.3 What the future brings: the effect of lookahead in neural
TTS

In this section, we present our own investigation into the topics presented in Section 3.2.2:
lookahead and adaptability. This work was presented at Interspeech 2020.

How many future words do you need to know to predict a natural sounding, coherent
utterance with a neural seq2seq model? Human speech production is incremental in nature
(Levelt 1989); full speech utterances are not usually completely planned out when the utterance
begins. A certain amount of lookahead is certainly necessary if one is to satisfy the contextual
constraints discussed in the previous chapter. And there is evidence of anticipatory speech
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errors (e.g., Fill the gas up with car Target: Fill the car up with gas (Dell and Reich 1981))
that show that there is some advanced planning. For humans, it has been hypothesized
that abstract conceptual plans of the upcoming utterance are sketched out and that specific
words/phonemes are slotted into place as they become activated.

Of course an artificial neural network does not function in the same way as a human
brain. Where a human is the author of their own conceptual thoughts and this is what shapes
their speech, an artificial neural network is relying solely on statistical regularities (that it
encountered in the training data) to predict an adequate prosodic form. Now the question is,
do these models take advantage of long-range features or do contextual effects remain fairly
local? And is the degree of dependence on the future contingent on the specific context?

The goals of the work presented here are twofold: (1) to evaluate the amount of necessary
future context for neural TTS models and (2) to pave the way toward an adaptive decoding
policy for neural iTTS. Similarly to the HMM-based iTTS system described in Pouget et al.
2016, where synthesis was delayed based on the stability of POS tag predictions, the envisioned
neural iTTS is expected to modulate the lookahead (and thus the latency) by the uncertainty
on some features due to the lack of future context.

Unlike in the HMM-framework, where models are trained on explicit linguistic features,
neural networks learn which features are most important during training. The gain in natu-
ralness provided by end-to-end models is accompanied by reduced interpretability. Because
of the black box nature of the models, studying the importance of missing features is a chal-
lenging task. To address this, we analyse the evolution of the encoder representations of a
neural TTS (Tacotron 2) when words are incrementally added (i.e. when generating speech
output for token n, the system only has access to n + k tokens from the text sequence, k being
the lookahead parameter). We also investigate which text features are the most influential on
this evolution towards the final encoder representation. Finally, we evaluate the effects of the
lookahead at the perceptual level using a MUSHRA listening test.

The heart of our investigation here is the influence of incrementality on the acoustic model,
as it is responsible for predicting the prosody of the input text. We do however perform some
initial evaluations to verify that other components of the T'TS pipeline, G2P and the vocoder,
are not causing major disturbances. We use the variable k to refer to lookahead (i.e., future
context) for both the study on G2P and the acoustic model, however lookahead is defined
slightly differently in the two cases. For the acoustic model a trailing space character will
affect the output whereas for G2P, it does not, and so space characters are counted as tokens
in the acoustic model. See Section 3.3.4.2, for a formal description of the encoding policy.

3.3.1 Models

For these experiments, we use a sequence-to-sequence TTS model, Tacotron 2 (Shen et al. 2018,
see Section 3.1.2) (this architecture was state-of-the-art when this study was conducted). We



54 Chapter 3. Incremental text-to-speech

use an implementation developed by NVIDIA®. The TTS model was pre-trained on the LJ
Speechset (Ito 2017), a collection of non-fiction books read by a single, female, American
speaker. The corpus contains 24 hours of audio recordings. The sampling rate of the audio
clips is 22050Hz. The Mel-spectrogram frames have 80 bands and they were computed with
short time Fourier transform (STFT) of hann window size 1024 samples (46ms) and a hop size
of 256 samples (11ms). For vocoding, we use a flow-based model, WaveGlow (Prenger et al.
2019) also developed and pretrained by Nvidia.”

3.3.2 Incremental grapheme-to-phoneme conversion

To test the effects of the incremental mode on G2P conversion, we evaluate the changes from
k=0and k=1 (ie., a lookahead of no/one word(s)) to the full context on the tokens in the
LJSpeech corpus using the G2P algorithm (Park 2019). G2P performs text normalization,
differentiates between heteronyms using POS labels, uses the CMU Pronouncing Dictionary
(Rudnicky 2015) for unambiguous words, and uses a neural network to predict the pronunci-
ation of out-of-vocabulary words.

We find that only 67 of the 221,097 tokens in the corpus change from k& = 0 to the full
context. This number drops to 13 when G2P is given one word of lookahead. Out of the 67
phoneme shifts, 29 involve a change in voicing (most of these changes are for the word used
and this change does not affect the token’s identity but would have an impact on naturalness)
and 38 involve a vowel shift and/or a stress shift (e.g. the representation of presents changes
from a noun to a verb: P R FH1 ZAHONT S —-P RIY0Z EHI N T S.

Based on these results, G2P conversion in an incremental setting does not appear to be
a major issue for iTTS in English: only 0.03% of the tokens we tested required additional
input. English may however be a particularly easy language for this task, since the majority
of homographs can be differentiated by their POS and the separation between words is clearly
demarcated. Additional modification may be necessary for languages with greater numbers of
homographs like Arabic (Azmi et al. 2022) and for languages that also require word segmenta-
tion as part of their front-end processing like Chinese (Chang et al. 2008) or Thai (Yamasaki
2022).

3.3.3 Incremental vocoding

To test the quality of incremental, neurally-vocoded audio, we compared distortions between
ground-truth utterances and vocoded utterances synthesized with different quantities of Mel-
spectrogram frames at each timestep. In other words, we fed the vocoder (WaveGlow) f
Mel-spectrogram frames at a time, concatenated the resulting waveforms together, and then
compared the root mean squared error (averaged over the frames of each utterance) of the
newly computed Mel-spectrograms with the spectrogram from the ground-truth audio. 50

Shttps://github.com/NVIDIA/tacotron2
https://github.com/NVIDIA /waveglow
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utterances from the LJSpeech corpus, vocoded with chunks of f = {1,2,...,25} and f = full
were used for this evaluation.

While the distortion between full context and incremental inputs does not become statisti-
cally insignificant (as measured by a paired t-test) until f = 25 (p-value = 0.17), the differences
in RMSE (Figure 3.4) from f = 4 onwards are fairly minor: a Cohen’s d test (Cohen 2013)
indicates that the mean difference is less than half the standard deviation of the pooled groups
f =4 and f = full (Cohen’s d = 0.47). Furthermore, the distortions are usually isolated
to the points where segments were concatenated together. The segments do not necessarily
connect smoothly and this results in audible artifacts. We found that using a simple cross-fade
could eliminate this issue. Since very few words are less than 4 Mel-spectrograms frames in
length (only 3 in our test corpus), we conclude that incremental vocoding does not degrade
the quality of speech (provided a cross-fade procedure is implemented).!’
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Figure 3.4: Mel-spectrogram RMSE for different value of f (i.e., the number of frames fed to
the WaveGlow at each timestep).

3.3.4 Incremental acoustic modelling

3.3.4.1 Test corpus

For our analysis, the test sentences used as input sequences are taken from the LibriTTS
corpus (Zen et al. 2019). We filter 1,000 utterances with sentence length ranging from 5 to 42
words. We follow the procedure outlined on Sketch Engine!'! (Kilgarriff et al. 2004; Kilgarriff
et al. 2014; Kilgarriff 2001) to verify that word distribution is similar to that of larger general
corpora (Brown and BNC corpora). This is done by (1) extracting the 5000 most common

10Ma et al. 2020 propose an alternative strategy for handling this problem: they include additional buffer
frames around each chunk to be synthesized.
"https: //www.sketchengine.eu
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words in each corpus and then aggregating the two lists (removing duplicates), (2) calculating
the keyness score for each word (a measure of the relative significance of a word between
corpora (see Gries 2016 for more information)) and (3) averaging the 500 largest keyness
scores. The difference measures, using the BNC as the reference, between Brown, our corpus
and a specialized Covid-19 corpus (Wang et al. 2020) are 1.59, 2.24 and 4.0 respectively. The
small divergence between Brown and our corpus can be attributed to the smaller size of our
corpus which contains 34, 768 tokens and 4, 085 types.

3.3.4.2 Incremental encoding policy

We consider an input sequence of tokens, where each token can be either a word, a space or
a punctuation mark. We define an iTTS system with the following simple policy (similar to
Ma et al. 2020): the encoder starts by reading k input tokens (k is the lookahead parameter)
and then it alternates between generating speech output and reading the next token until the
complete input token sequence is consumed. Formally, we use the following notations and
definitions (see Table 3.1 for an example of the listed items):

N is the length of the input sequence (in number of tokens);

e X, is the token at position n (the “current” token); x;.5 is the complete sequence of input
tokens; x1.,, is the subsequence of input tokens from position 1 to position n;

e vy, is the speech output segment corresponding to token x,,;

e ¢(n,k) = min(n+k, N) is the number of input tokens read when generating y,, (recall that
k is the lookahead parameter); z'" is the corresponding encoder output.'? In other words,
yn is obtained after reading the partial sequence of input tokens Xi.c(n k); z?:’f(mk) is the
sequence of encoder representations obtained so far;

Conventional offline encoding (using the full sequence of input tokens xi.x at each position
n) is also processed for comparison, and z{“}%, denotes the corresponding encoded sequence.

3.3.4.3 From character to word representations

In the Tacotron 2 model, input sequences are encoded at the character level. However, in our
study, we consider an iTTS decoding policy at the word level; this is because token breaks
are a natural trigger for synthesis or evaluation in a practical iTTS system. Consequently, we
need to go from character representation to word representation. We start from the encoder’s
bidirectional LSTM network: forward and backward layers each provide a 256-dimensional
vector for each input character. For each new token x,,, we extract the output of the forward
layer corresponding to the last character of x,. The forward layer continues up to the last

12 n,k

n is used two times in 2" since we will see that the value at other positions, e.g. z,,, also depends on

n and k.



3.3. What the future brings: the effect of lookahead in neural TTS 57

Table 3.1: Incremental inputs (for different lookahead k) for sentence “The dog is in the yard.”
to generate x3 (the word “dog.”).

n | k | c¢(n,k) | Input at ¢(n,k) Xp,

310 |3 The dog dog
311 |4 The dog dog
312 1|5 The dog is dog
3 dog
318 |11 The dog is_in_the yard | dog
319 | N=12 | The dog is in the yard. | dog

256

dimensions

256
dimensions

The dog 1is in the yard.

Figure 3.5: Illustration of the word embedding extraction procedure for the word dog. Em-
beddings are extracted from the LSTM layer of the Tacotron 2 encoder. The embedding
corresponding to the first character is taken from the backward layer and the last character
from the forward layer. These two embeddings are concatenated together to represent the
word.

character of token X, ). Then the backward layer goes from the last character of token x;, 1)
to the first character of token x;. We extract the output of the backward layer corresponding
to the first character of x,,. Both vectors are concatenated to get a 512-dimensional vector
representation zV" of x,,. See Figure 3.5 for an illustration of the process for a full sentence
input. Note that the input sequence is re-encoded for each new token (i.e., for each increment
of n), leading to new values for the sequence z?jﬁfl. Of course, this sequence also depends on
k, which is the purpose of this study. In other words, when encoding the sequence Zy..x With
different values of n (and of course of k), we obtain different values for each vector z of the
sequence, which is not apparent from the notation. In contrast, there is only one single value
for the sequence zﬁ“}\lf We keep this notation for simplicity of presentation.
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3.3.4.4 Incremental decoding

y'I y2 yN -I:N

Figure 3.6: Illustration of the incremental speech waveform generation process for lookahead
parameter k = 1. The available context for the current word (including lookahead) is synthe-
sized at each timestep, but only the waveform corresponding to the current word is retained.
The excised waveforms are concatenated together to obtain the full utterance.

We build the iTTS decoder output as follows. For a given value of k, and for the current
token x,,, we first produce the speech waveform corresponding to the encoded sequence Z?Z’S .
Then, using the Munich Automatic Segmentation system (Kisler et al. 2017) (an automatic
speech recognition and forced alignment tool which employs an HMM and Viterbi decoding
to find the best alignment between the text and audio), we select the portion y, of the
waveform corresponding to x,. Finally we concatenate this speech segment y,, to the speech
segment resulting from the processing of previous tokens, that we can denote as yi.,—1. In
short, we simply update the generated speech waveform as yi., = [y1.n—1 ¥n]- For example,
for £ = 2, we extract the speech waveform segment y; corresponding to token x; from the
signal generated from z%jg; then we extract the speech waveform segment ys corresponding
to token x5 from the signal generated from zi;i; we concatenate y; and ys, and we continue
this process until the end of the input sequence is read. This process is illustrated in Fig. 3.6
for k = 1. Segment concatenation is done with a 5-ms cross-fade, a simple and efficient way
to prevent audible artefacts in our experiments. Note that the overall encoding and decoding
process simulates an effective k-lookahead iTTS system that generates a new speech segment
yn When entering the new input token x(, ). Sound examples obtained with this procedure

are available online.!?

3.3.4.5 Analyzing the impact of lookahead on encoder representation

Our first goal is to analyze the impact of the lookahead parameter k on the representation
of a given token x, at the encoder level. Given the two encoder representations of x, (zﬁk

full

in incremental mode and z,,

with Equation 3.1.

in offline mode), we compute the cosine distance between them

Bhttps://shorturl.at/emyPV
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Figure 3.7: Change in token representations over time. Each colored line represents a token
from the utterance “Grethel wept bitterly, and said to Hansel, What will become of us?”
The height of the colored line shows the distance between encoder outputs zﬁ’k (incremental
decoding) and z!"! (offline decoding) at different values of k. The vertical grid line where x,,
(the colored line) first appears represents k = 0 for that token; the next vertical grid line to

the right represents k = 1 for x,, and k = 0 for x,+1, etc.
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We then average this distance for all tokens of our corpus or all tokens of a given syntactic
category.

Our analysis consists in investigating which token features could best explain the observed
variance in our data (i.e., why are some tokens relatively far from their final representation
while others are close at the same value of k7). We did this using random forest (RF) regressors
(Pedregosa et al. 2011) which optimize cosine distance predictions and can provide information
about which input features contribute the most towards these predictions.

We investigate a range of different features in our model including: the frequency of the
current word in the training corpus, the word length and POS of the current/next/previous
word, the relative position of the current word in the full sentence, as well as correlates of
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its position within smaller phrases (i.e., distance from the next punctuation mark, distance
to the parent phrase end in a constituency tree.14)
significance are summarized in Table 3.2.

Our selected features and their statistical

The RFs were fit using 100 estimators, mean squared error measures and bootstrapping.
We followed the following procedure to determine which features are the most significant: (1)
we add a column of randomly distributed values to our data set; (2) we fit an initial RF and
eliminate all variables with a Gini importance!® lower than the random feature; and (3) we
fit a new RF using only the remaining features and then calculate the permutation feature
importance (i.e. the drop in R? that results from swapping columns in the dataset) (Altmann
et al. 2010).

mm  Punctuation

mmm  Spaces
Function Words

mmm Content Words
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Figure 3.8: Distance d(n, k) between encoder representations z™! (offline) and z,* (incremen-
tal decoding) averaged over all tokens of a given category (punctuation, space, function word,

content word), for lookahead parameter k = 0 to 8. Error bars represent standard deviation.

3.3.4.6 Analyzing the effect of lookahead on decoder output

We evaluate the perceptual impact of the lookahead k using a MUSHRA listening test (ITU-R
2015). To that purpose, we selected 20 sentences and generated each at multiple values of
k, namely k = 1,2,4,6. k = 1 corresponds to a lookahead of one space (or one punctuation

14We use the Benepar constituency parser (Kitaev and Klein 2018) (available at https://spacy.io/).

5The Gini importance score (Breiman 2001) is a measure used to evaluate the importance of features in
a decision tree. It is calculated based on how much the node impurity (i.e., the degree to which data points
belong to different classes at the node) decreases when a feature is used to split the data. This measure has a
bias towards features that have many split points (Strobl et al. 2007) and that is why it should not be used
alone to judge importance.
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mark). It was chosen as the baseline and should be considered as the low-range anchor for the
test. In general, £ = 2 represents a 1-word lookahead, k = 4 a 2-word lookahead and & = 6
a 3-word lookahead, although other permutations occasionally occur (e.g. a space followed
by an open parenthesis). Note that k& = 0 was not selected because the output signal was
deemed too unintelligible to warrant evaluation. The reference stimuli were generated with
the offline TTS mode, and were used both as reference and as the hidden high-range anchor.
21 participants, all native English speakers, were asked to assess the similarity between the
reference and each of the stimuli obtained with the incremental decoding policy (plus the
high-range anchor) on a 0-100 scale (100 means that sample and reference are identical). The
MUSHRA test was done online, using the Web Audio Evaluation Tool (Jillings et al. 2016). 3
participants were excluded from analysis because they did not give high similarity ratings for
the reference and the hidden high-range anchor (which were identical). Statistical significance
between different experimental conditions (different values of k and incremental vs. offline
synthesis) were assessed using paired t-tests.

3.3.4.7 Results and discussion

Encoder representations Figure 3.7 displays an example of distance (in log-scale) between
encoder representations in incremental versus offline modes for a given sentence and all possible
values of k. While the global trend is a movement towards the final (offline) representation
as k increases (d(n, k) decreases with k), we also observe some cases where an increment of
the context leads to a representation that is farther away from its offline counterpart (see for
instance the comma after the word “Hansel”). One possible explanation for this might be that
Tacotron interprets the input as the end of an intonational or intermediate phrase and when
further input is received, it reassesses the token representation.

We further notice that the addition of future context effects groups of words in a similar
fashion. For example, the clause Grethel wept bitterly, syncs up after the first few timesteps,
and every additional word pushes or pulls the group away from or towards its final representa-
tion to a more or less equal degree. This may be the result of the model trying to accommodate
rhythmic constraints that are affected by the length of the units within the global structure
(Zvonik and Cummins 2003; Krivokapic 2010).

Figure 3.8 also shows the distance d(n, k) for £ = 0 to 8, but this time averaged over all
tokens of the 1,000 test sentences and for the different token categories: punctuation, space,
function word and content word. As in Figure 3.7, increasing the lookahead consistently
reduces the distance between the encoder outputs in incremental and in offline mode, on
average. Importantly, the most significant decrease is observed between k = 1 and k = 2, that
is, when considering a lookahead of one space and one word (in addition to the current word).
A slower decrease toward the final representation is observed for k > 2. This is consistent with
Figure 3.7. A series of paired t-tests on d(n, k) (averaged over all test sentences and all token
categories) reveals a tiny but systematically significant difference between pairs of consecutive
lookaheads (e.g., k =3 vs. k=4, k =7 vs. k= 8) up to the end of the sentence. This might
show that, on average, each new token considered in future context contributes slightly but
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significantly to the evolution of the encoder representation.

We also observe that, while representations of content words are more stable to context
variation, those of punctuation, spaces and function words are further away from their final
representation in offline mode when not enough context is given (k < 2). This makes sense
for function words that are usually unstressed and often become cliticized with their sur-
rounding content words in continuous speech, unless they are at the end of a prosodic phrase
(Selkirk 2008). Since function words would initially be interpreted as phrase final, but then be
reinterpreted with future context, we would expect to see a large shift in the representation.
Similarly for space characters, which sometimes correspond to pauses in the speech stream,
but are more often empty symbols that represent coarticulatory features between two consec-
utive words (exploration of the vector space shows that space vectors preceded and followed
by the same phoneme pairings form clusters). The lack of stability in punctuation marks is
slightly more surprising since they typically mark the end of a clause or a sentence. Clause
endings in human speech possess phrase final features (phrase accents and boundary tones)
that indicate how one clause/sentence relates to the next and are thus highly dependent on
future context. However synthetic speech has not mastered this skill; it nonetheless relies
heavily on future context to shape its representation.

A more fine grain analysis of the factors that impact d(n, k) is provided by the results
of the RF analysis, which are summarized in Table 3.2. For k = 0, the length of x,, is the
most effective predictor of cosine distance, and for k = 2 the lengths of x,+1 and x,2 (i.e.
the future tokens that the encoder sees when encoding x,) are the most effective predictors.
For instance, at k = 2, our model correctly predicts that the token “to” in Sentence A below
(lookahead = space + “be”) is farther away from its final representation than “to” in Sentence
B (lookahead = space + “Kitty”). The cosine distances are 0.135 and 0.057 respectively. An
alternative possibility for this difference, that “to” in Sentence A is farther from its parent
constituency phrase end than Sentence B, is not considered significant by our RF model.

A) I suppose, he said, I ought to be glad of that.

B) And the Captain of course concluded (after having been introduced to Kitty) that Mrs
Norman was a widow.

Perceptual evaluation of the decoder output Results of the MUSHRA listening test are
presented in Figure 3.9. First, statistical analyses show significant differences for all pairs of
considered lookahead (k=1vs. k=2, k=2vs. k=4, and k =4 vs. k =6). This confirms
at a perceptual level the tendency observed on the evolution of the encoder representation
(see Section 3.3.4.7): each additional lookahead brings the incremental synthesis closer to the
offline one. The degree of change to the decoder outputs is however much larger than the
corresponding change in the encoder outputs, which suggests there may be other factors than
context influencing the audio quality. We also found a significant difference between k = 6
and k = N (offline mode), i.e. with a lookahead of typically 3 words. This is in contradiction
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Table 3.2: Influence of text features on the distance d(n, k) estimated by RF regression for
k =0 and 2 (NS=not significant; * = weak effect; ** = medium effect; *** — strong effect).

Permutation Feature
Importance
Feature Definition k=0 k=2
Token Length ;éé of characters in | 44 .
3

POS Part of speech NS NS

of z,,
Frequency # of instances of % NS
in Training Z, in LJ Speechset

. Token’s relative
Relative S « "
Positi position 1n input
osition -

sequence = n/N
Penultimate Doesn=N —17 * NS
Followed by Is 41 a punc-
Punctuation tuation mark? NS NS
Distance to # of tokens bgfore . i
Punctuation next punctuation

mark
Distance to # of tokens to the
Parent Phrase | end of parent cons- | NS NS
End tituent group of x,

Part of speech of
POSPrev + m token ,,_,, NS NS

Part of speech of o
POSNext + m token Ty NS m=1
Word Length # of charactersin | m=1F% NS
of Prev + m Trem m=2%

. m = 1: ¥¥%F

Word Length # of characters in N I
of Next + m Tntm m— L o*
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Figure 3.9: Perceptual evaluation of the impact of lookahead parameter k using MUSHRA
listening test.

with Yanagita et al. 2019 who did not report any difference between incremental and offline
synthesis for such lookahead. Possible explanations for this include (1) the use of a different
evaluation paradigm (MUSHRA vs. MOS in Yanagita et al. 2019), (2) duration distortions
caused by the concatenation of speech segments or (3) by the fact that contrary to Yanagita
et al. 2019, we did not retrain Tacotron 2 on shorter linguistic units. We observed increased
instability of the attention mechanism when it was presented with truncated inputs, and so
retraining on smaller units is probably advisable for such models (in the following chapters,
we use a Transformer-based TTS model which does not have the same issue).

3.4 Conclusion

This study presents several experiments which probe the impact of future context in a neural
TTS system, based on a sequence-to-sequence model, both in terms of encoder representation
and perceptual effect. Reported experimental results allow us to draw the contours of an
adaptive decoding policy for an incremental neural T'TS, which modulates the lookahead (and
thus the overall latency) by potential change in the internal representations. Shorter words
are more dependent on future context than longer ones. Therefore, in a practical iTTS, if the
lookahead buffer is fed a short word, it may be preferable to delay its synthesis because the
internal representation associated with it is likely to change when additional tokens become
available. Also, it may be more useful to define the lookahead parameter in terms of future
syllables rather than words.

In addition, perceptual evaluation shows that the dynamics between encoder and decoder
are such that even if the encoder representation of an individual token changes slightly, the
length of the encoder representation sequence will influence the way in which the decoder treats
that token. By examining the attention weights the decoder uses when making predictions,
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we see that focus is placed on the current character’s immediate surroundings (one or two
characters ahead and behind), but focus is also placed on the end of the encoded sequence
(the Tacotron 2 model we used in this experiment was not trained with a guided attention
loss (See Section 3.1.2) and thus was not encouraged to learn diagonal attention weights).
We can conjecture that the decoder is regulating the duration of each segment with respect
to sequence length. The decoding phase would most likely be more stable if trained with a
guided attention loss. Now that the importance of future context has been assessed, in the
next chapter we will move on to context extension through prediction of future tokens using
contextualized language models.
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In this chapter, we present the work from our Interspeech 2021 paper Alternate Endings:
Improving prosody for Incremental Neural TTS with predicted future text input (Stephenson
et al. 2021).

Inferring the prosody of a word in text-to-speech synthesis requires information about its
surrounding context. In incremental text-to-speech synthesis, where the synthesizer produces
an output before it has access to the complete input, the full context is often unknown, which
can result in a loss of naturalness. In this work, we investigate whether the use of predicted
future text from a Transformer language model can attenuate this loss in a neural iTTS
system. We compare several test conditions of next future word: (a) unknown (zero-word),
(b) language model predicted, (c¢) randomly predicted and (d) ground-truth. We measure the
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prosodic features (pitch, energy and duration) and find that predicted text provides significant
improvements over a zero-word lookahead, but only slight gains over random-word lookahead.
We confirm these results with a perceptive test.

Our analyses show that the additional syntactic context provided by the LM-generated
text does not improve prosody predictions. To further investigate the syntactic sensitivity
of the TTS model used for this experiment (Fastspeech 2), we analyze the prosody feature
predictions for (1) garden-path sentences and (2) a single prefix with multiple LM-generated
sentence completions controlled for syntactic construction. The garden-path sentences, in line
with the results from the previous chapter, show that standard TTS models make shallow
use of context beyond the very local environment. The multiple sentence completions show
prosodic distinctions based on frame building function words (e.g., who, and).

4.1 Introduction

In incremental text-to-speech synthesis (iTTS), the system starts to output chunks of synthetic
audio before the full text input is known (Baumann and Schlangen 2012a; Baumann 2014c;
Pouget et al. 2015; Pouget et al. 2016). The missing input information often hinders the
ability to produce a natural sounding speech sequence, mostly because prosodic features that
will be determined by the future context (i.e., the remaining words in the sentence) have not
yet been specified. Fortunately, the future input is not completely random; human language
is characterized by several lexical and syntactic patterns, which can be statistically learnt and
then predicted to a certain extent. Recent advances in language modelling, namely the use of
transformer models such as BERT (Devlin et al. 2019) and GPT-2 (Radford et al. 2019) (and
more recently GPT-3 and 4 (Brown et al. 2020; OpenAl 2023)) give us accurate representations
of the probability distribution of future words. If this information can be mobilized to fill in
the missing data for an iT'TS system, it may be possible to retain naturalness while minimizing
latency.

4.2 Related work

4.2.1 Human prediction

Language is a balance between the predictable and the unpredictable; we need some struc-
ture/predictability to facilitate the transfer of information, but if everything is predictable,
there is no point in actually speaking, because our interlocutor can already anticipate what
we are going to say. Anticipating upcoming semantic and syntactic content is a natural part
of human language processing, although the degree to which exact words can be predicted is
highly dependent on the context (Figure 4.1); the level of predictability fluctuates from word
to word, with varying degrees of constraints coming from structural, semantic, collocational,
and topical factors as well as the broader situational context. Levels of predictability have
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been shown to affect the duration of spoken words (e.g., Jurafsky et al. 2008), reading times
(e.g., Roland et al. 2012) and the types of contributions offered by conversation partners when
the other partner hesitates (Howes et al. 2012).

A standard measure for predictability is the cloze score (Taylor 1953). This is similar to
the language modelling task used for GPT-2. Participants have access to the past words in
a passage and they must try to reconstruct the next word using contextual clues. The per-
centage of responses that match the original word show the word’s predictability. Luke and
Christianson 2016 conducted a large scale cloze test and found that only a small percentage of
words have a high cloze probability: 5% of content words and 19% of function words. Many of
the words in this evaluation had a more probable competitor, but reading time tests showed no
processing penalty for the incorrect guesses. These results provide evidence for graded predic-
tion in human language processing, where many words are activated based on their contextual
probability. Contrary to specific lexical predictability, semantic and morphosyntactic features
were highly predictable. Human predicted words matched the POS of the actual word 70% of
the time; predicted nouns and verbs shared the same morphological characteristics (number
and tense) in over 72% of cases.

LEXICALLY &
SYNTACTICALLY
CONSTRAINED SYNTACTICALLY CONSTRAINED UNCONSTRAINED

! —

Who is responsible Can you go to the What -~ ]

-] store and buy
some[ -

(apples, oranges, (kind, school, the, to,
milk, batteries) percentage, counts,
evidence, they)

Figure 4.1: Constraints affecting the predictability of future words.

4.2.2 Predictive text

Predictive text, which is related to our proposed method, is commonly used in AAC and
text-messaging applications. These applications offer word options for the user to select from
when entering their message. The options are based on word frequency, language model word
probabilities, or context-based vocabulary builders. Efforts to improve word prediction have
included training or fine-tuning LMs on an individual user’s data (Lee et al. 2017), on the
current topic of conversation (Trnka et al. 2006) and text style (Li et al. 2020). The incor-
poration of the conversational partner’s speech through ASR has also been tested (Adhikary
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et al. 2019; Wisenburn and Higginbotham 2008), as has the use of text external context such
as location (Epp et al. 2012; Kane et al. 2012) and objects in the immediate environment
(Kane and Morris 2017). Adaptation to specific task types can further improve prediction as
measured by number of keystrokes required from the user (Higginbotham et al. 2009).

The work presented in this chapter differs from predictive text in two ways: (1) Our system
does not require the user to select from potential words. Rather it runs in the background,
sampling future words that will not be part of the audio output, but simply used as additional
input to an iTTS system. (2) We process input at the word level, whereas predictive text
systems continually update or filter their predictions with each additional character (e.g.,
Schadle 2004). Permitting slightly more latency so an iTTS user can enter the first character
of the next word could have dramatic effects on prediction accuracy, however we leave this for
future work.

4.2.3 Pseudo-lookahead for iTTS and other neural model applications

When part of the input for a statistical model is missing, as is the case for iTTS, accommo-
dations must be made to replace or compensate for the unknown. This can be done with
either concrete replacement values obtained from imputation techniques or with descriptive
statistics (e.g., the mean) which can help to infer average behaviour.

In the HMM-based paradigm of T'TS, explicit features derived from the linguistic content
were fed to the models in order to predict the acoustic signal. An intermediate step in this
design included decision trees that would learn to cluster different contexts that were used
to predict prosodic features. Baumann 2014b studied the effects of missing future features
by replacing decision tree split criteria with default values and evaluating the degradation in
speech quality: while cepstral and aperiodicity features could be estimated fairly accurately
with just a local context, prosodic features (f0 and duration) were found to be more dependent
on longer range context. Pouget et al. 2015 explicitly specified unknown features in the context
clustering process and found improvements over a default value strategy.

Recent research in iTTS (contemporary and subsequent works to the research presented
in this chapter) has focused on end-to-end neural models. While these models create more
natural speech, they are also more difficult to analyze because the relevant features for the
task are learnt during training and are subsequently not easily human interpretable. In this
framework, both predicted future text and more abstract future-context representations have
been tested.

Saeki et al. 2021a used a language model to predict the next five-word sequence for an
iTTS system (pseudo-lookahead) and then used a context encoder to learn a more abstract
representation of that future. The context encoder was first trained on ground-truth future
and past textual contexts. Then the context encoder was fine-tuned to bring the ground-truth
and pseudo-lookahead embeddings closer together. In a follow-up study (Saeki et al. 2021b),
they trained a language model to predict the context embeddings directly, without a separate
context encoder, to further reduce latency. Saeki et al.’s work, while similar in concept to our
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proposed method, differs in the amount of future context predicted and the level of abstraction
of the future context. We will address these differences throughout this chapter.

As part of a simultaneous speech-to-speech translation system, Liu et al. 2022 mobilized the
translation unit to generate future text for the T'TS unit; the translation decoder would predict
the translation up to the current input state and then simply predict one additional word.
Since the translation was conditioned on the source language audio, it had more contextual
information available compared to a standard language model. This increased prediction
accuracy considerably.

Other works in natural language processing have also experimented with predicted future
text to adapt to an incremental setting. Zheng et al. 2019 hallucinated future words to balance
the latency/quality trade-off in simultaneous translation and Madureira and Schlangen 2020
tested “prophecies” to improve the performance of a full-sentence language model (BERT) on
incremental sequence tagging and classification tasks.

4.3 Proposed Method

GPT-2 NEXT WORD

PROMPTS PREDICTIONS SPEECH SYNTHESIS WAVEFORMS
——

what are = _ oo, |po#| what
. & -

what 15 =l the == SRRITEL mp- (bt | is

what is next wesp-|for = WAVEGAN ' walp- |i» | next

Figure 4.2: Utilizing language model predictions to improve incremental TTS quality while
keeping limited latency.

In the present work, we propose an iTTS system that incorporates a language model to
predict future lookahead. Our approach (described in Figure 4.2) takes all available context
from the input stream and predicts one word into the future. The current context and pseudo-
future are then passed to a T'T'S model that synthesizes the audio and all but the current word
is discarded. The current word is vocalized and this procedure repeats for each successive word.
For example, if the first word entered by a user is What, we use What as a prompt for the
language model and sample a possible next word (are). We then synthesize What are, but
only vocalize the word What.

We chose a limited lookahead so that the effects of correct and incorrect predictions could
be studied. We assume that a large number of sampled words will not match the ground-truth
future text and so we want to evaluate how LM-generated text, that is likely to share syntactic
traits with the ground-truth, compares with randomly generated future words. A larger
lookahead complicates matters because the combinatorics that increase with each additional
word (e.g., the n*? future word /POS may match, but n+1 word may not or vice versa) must be
accounted for, but the distribution of these conditions can be heavily skewed. Furthermore, the
results from the last chapter show only a limited amount of lookahead was actually responsible
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for bringing word representations the majority of the way to their final representation in a
TTS model.

We evaluate our system by contrasting different future word contexts: (a) unknown, (b)
language model predicted, (c¢) randomly predicted (a control group) and (d) ground-truth
(see Table 4.1 for examples). Differences are measured at the TTS encoder level and from the
generated speech signal through a listening test.

Table 4.1: Examples of input sequences with unknown, ground-truth, predicted and random
future context. In each sequence, the word in bold is the word which is synthesized from the
sequence.

Input Type Lookahead Input Sequences

Full sentence,

Ground-truth Do you think that you could manage, Tidy?

k=N-n
Unknown (future) | k& =0 word st .o = Do, Do you, Do you think, ...
Ground-truth k =1 word SEEH = Do you, Do you think, Do you think that, ...

GPT-2 prediction | k=1 word slff;’il = Do they, Do you agree, Do you think this, ...

Random k =1 word s{{f;‘fl = Do dance, Do you until, Do you think art, ...

4.3.1 Language model feature prediction and sampling techniques

By sampling pseudo-future text, our aim is to predict textual features that will improve
prosody modelling. Future features that proved helpful before end-to-end models took over
TTS included the POS, the number of syllables and the stress pattern of the next word, as
well as its accent and boundary status.

Ideally, to match all of these features, we would like to predict the exact next word. How-
ever, we have seen from human cloze tests that the number of highly constrained contexts
where the exact next word can be predicted is fairly limited. And comparing LM’s exact next
word prediction capabilities to humans’, we can expect even worse performance, since LMs
have the disadvantages of restricted world/common-sense knowledge and imperfect syntactic
and semantic representations (see Section 2.2.3). Moreover, their predictions are conditioned
on a limited context (one/a few sentence(s)) which further hinders performance. In their
pseudo-lookahead experiment, Madureira and Schlangen 2020 compared ground-truth sen-
tences with GPT-2 predicted continuations until the end of the sentence using BLEU scores
(Papineni et al. 2002) and found the results were very low (0.004).

Indeed, correctly projecting the exact future text is quite unlikely. If we take an example
sentence from our test corpus Besides, he’s not the sort of person to complain (Figure 4.3),
and we use GPT-2 to predict the next word at each point in the sentence we see that only two
of the words are correctly predicted when sampling the most probable next word (not and of ).
Figure 4.3 shows the top three most likely next words for each point in the sentence and their
corresponding probabilities according to the language model. At some points, GPT-2 is fairly
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Figure 4.3: Probability of future words for the sentence Besides, he’s not the sort of person
to complain. The words in the legend show the point in the sentence when the prediction is
made and the corresponding bars show the probability of the top three most likely next words
given by GPT-2.

confident about its predictions (at the, sort and person), but only one of these predictions
ends up matching our sentence.

Nonetheless, the predicted words are plausible continuations and many match the POS of
the words in our sentence. If words belonging to the same syntactic category can be predicted,
this could have potential benefits for the prediction of natural prosodic contours. Previous
studies in TTS have demonstrated that including syntactic information can be useful for pre-
dicting prosodic feature assignment (Hirschberg and Rambow 2001; Fitzpatrick and Bachenko
1989; Liu et al. 2021). Some of these works entail deep syntactic parsing, however even surface
features like POS tags can assist with both structural and prominence prediction. Sanders
and Taylor 1995 found a trigram POS model could successfully predict phrase boundaries, and
even yielded better results than some more complicated models which considered additional
features. And Hirschberg and Litman 1993 achieved high pitch accent prediction accuracy
(77%) by basing predictions on fine-grained POS categories.

The quality /naturalness of the generated words will depend on the sampling technique used
to select them. Our limited lookahead reduces the impact of the sampling strategy, however
we briefly outline these options below to discuss their potential influence on our experiment
and related works.

1. Greedy Search: The most probable next word is selected at each timestep.

2. Beam Search: The top n most probably next words are selected, and branches for each
of these words are created with the top m words to follow them. The most likely next
sequence is chosen based on the combined probability of the words in each branch.

3. Top-k sampling: The next word is sampled from the distribution of the top k most
probable next words (Fan et al. 2018) (not to be confused with the variable k used to
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denote lookahead in iTTS). This eliminates low-probability words from being selected,
but an appropriate number k is difficult to set for continuous generation, since it could
include inappropriate words for highly constrained conditions and exclude appropriate
words for less constrained conditions.

4. Top-p/Nucleus sampling (Holtzman et al. 2020): Sampling is performed over the words
in the top-p set, where p is cumulative probability. This allows for more adaptable
sampling (overcoming the rigid parameters of top-k sampling).

5. Locally typical sampling (Meister et al. 2023): This sampling method models the ex-
pected information at a given point in the generation. It was developed to emulate the
way humans communicate, which is not to always say what is most likely since words
that are less likely carry greater information content. Locally typical sampling attempts
to keep the rate of information transfer constant by conditioning the generation of the
current word on the information value of the previous words in the sequence.

Using greedy sampling is the most straightforward method for getting the most likely next
words, however if one is sampling repeatedly into the future, this can result in a dull, repetitive
text that does not match the normal sequence distribution in terms of word lengths, because
more common,/probable words are often shorter. Locally typical sampling is a proposal that
post dates our work from this chapter, however it has the potential to provide better phrase
length approximations because it encourages less likely /longer words to be sampled at regular
intervals (this remains to be verified). In this work, we do notice a short word bias in the
predicted text, and we control for this in our random sampling method (details below).

Saeki et al. 2021a used top-k sampling to project five words into the future and they
evaluated different values of k for their similarity to the ground-truth (as measured by the
cosine distance between vectors from a context encoder). They found that k£ = 1 (i.e, greedy
search) gave the best results. In this work, since we are interested in teasing apart the effects
of language model predicted text from random future text, we sample multiple future words
for the same k = 1 position (here k refers to lookahead). This allows us to compare the
prosodic feature predictions from multiple future contexts. We are only projecting one word
into the future, so we do not employ beam search.

4.4 Method

4.4.1 Definitions

For each token in our corpus, we prepare different sequences which are used as input to the
TTS model, FastSpeech 2 (Ren et al. 2021).

® Xi., = IT1,T2,...,Ty 1S the sequence of tokens up to n. In the proposed iTTS system,
the tokenization policy is to split the sentence on space characters, and then synthesis is
triggered when a space character is encountered.
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k is the lookahead parameter (number of future tokens available when synthesizing token

® Sinik = {T1, T2, cccy Tp, Tpily ooy Ttk } = {X1m, Xnt1:mtk ) 18 the sequence used for the syn-
thesis of token z,,, where for the ground-truth condition (GT) X414k = Xn+1:n+k, for the
prediction condition (Pred) X, 1.tk is given by the language model, and for the random
condition (Rand) X,41.n+k 1s random. The random token generation is described in Section
4.5.1.

® Sy, is the input prompt used to generate language model predictions.

e Near the end of the sequence, we replace n 4+ k with min(n + k, N) where N is the length
of the full utterance.

4.4.2 Models
4.4.2.1 Language model used for prediction

We use the GPT-2 language model for our study. This is an auto-regressive model trained to
predict the next word given a sequence of past words (causal language modeling task), based
on a Transformer architecture. The auto-regressive architecture is well suited to incremental
prediction. The original GPT-2 (Radford et al. 2019) is large (1.5B parameters) and since
our intended use requires fast predictions, we opted to use a smaller version of GPT-2, called
“distilled GPT-2” (Wolf et al. 2020).! This model has been trained to produce the same
output probability distribution as the original GPT-2 but using fewer layers/parameters. It is
a six-layered model that uses twelve attention heads and a hidden layer size of 768 dimensions.

4.4.2.2 TTS model

For TTS we select a fast and high-quality end-to-end model: FastSpeech 2. The imple-
mentation we use (Hayashi et al. 2020),2 trained on the LJ Speech Dataset (Ito 2017), takes
characters as input and converts them to phonemes. Phoneme embeddings are passed through
several self-attention layers before the model makes duration, pitch and energy predictions for
each phoneme. These feature predictions and the latent phoneme representations are then
passed to the decoder (more self-attention layers) which produces a Mel-spectrogram.® The
Mel-spectrogram is then input into a Parallel WaveGAN vocoder (Yamamoto et al. 2020)
(trained on full-sentence inputs) for waveform generation. This model is well suited to iTTS
because (1) it is fast which is desirable when the objective is to reduce latency (the speed
is achieved by predicting all Mel-spectrogram frames in parallel), and (2) it makes explicit
duration predictions for each phoneme, which makes it possible to segment words and only
synthesize the word(s) of interest.

"https://huggingface.co/distilgpt2
https://github.com/espnet /espnet
3For implementation details, see https://tinyurl.com/s7p38hcr
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4.4.3 Incremental synthesis (iT'TS)

We implement an incremental synthesis procedure where each token z, is synthesized from
the input sequence si., 1. Mel-spectrogram frames corresponding to individual tokens are
identified using the internal duration predictions made by FastSpeech 2. Successive word-
level Mel-spectrograms are input into the Parallel WaveGAN vocoder on a word-by-word
basis. Resulting waveforms are concatenated together using a 1-ms crossfade to eliminate
glitches (synthetic audio samples are available at https://bstephen99.github.io/iTTS/
interspeech2021/interspeech2021.html).

4.5 Experiments

4.5.1 Corpus and predictions

The English corpus we use for analysis consists of 1,000 sentences from LibriTTS (Zen et al.
2019). Sentence length ranges from 5 to 42 words, with a total of 16,965 tokens and 62,556
phonemes.

For each token z, in the corpus, we sampled five GPT-2 and five random next word
predictions (Zp41). The GPT-2 predictions are constrained to the 30 most likely next words
(top-30 sampling strategy). The random words were selected from a list of 1,266 of the most
common words in English (Speer et al. 2018). Importantly, we force GPT-2 predictions and
random predictions to have comparable lengths in term of characters/phonemes because (1)
GPT-2 tends to predict shorter words because they are more frequent, (2) in our previous
study (Stephenson et al. 2020), we found that longer future words have more influence on the
current token’s internal representation (in a seq2seq model) than shorter ones, (3) otherwise,
our results may be biased by the fact that the random condition simply has more future
context. To control for word length in the random condition, we (1) took the word-length
distribution of GPT-2 predictions, (2) randomly sampled a word-length category from this
distribution (e.g., 2-4 characters), (3) limited our most-common list to only words in this
category and (4) randomly sampled a word from this list using a uniform distribution.

GPT-2 uses byte pair encoding (BPE) which breaks words down into subword units to
better handle out-of-vocabulary tokens. As such, some of its predictions extend the final
prompt word rather than predicting a new token (e.g., previous — previously). To avoid such
distortions to our input text, we sample until the first character in the predicted text is a
space. This also prevents erroneous punctuation marks from being predicted.

We compare the exact word and word category (POS) prediction rates between the Pred
and Rand conditions and the Ref sentences. As expected, the Pred exact-word matches are
quite low (6.8%), however they are a lot more frequent than the Rand condition (0.09%). To
obtain POS tags, we use the Spacy POS tagger.* This is not an incremental tagger and so the

“https://spacy.io/
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tagging error rate will be higher than under full-sentence conditions. However comparisons
are made with incrementally tagged Ref sentences, so the errors should often be aligned. For
example, the word that in sentence final position is tagged as a pronoun, even though with
more context it could be revealed to be a determiner (e.g., that cat); if the Pred and Ref k =1
words are both that, this will be counted as a match, even though the tag is incorrect. The
confusion matrices for Pred and Rand are shown in Figure 4.4. The overall POS accuracy for
the Pred condition is 43.5% and 18.0% for Rand.

4.5.2 Metrics
4.5.2.1 FastSpeech 2 representations

We aim at evaluating the prosody obtained in the different test conditions: no context (k = 0),
ground-truth context (GT'), predicted context (Pred), random context (Rand). For this aim,
we compare the pitch, duration and energy values produced in those conditions with the values
produced in the reference condition (Ref) where the full context (full sentence input) is used.
In the present study, we concentrate on the case k = 1 (one-word lookahead).

As for duration and energy, they are first computed at the phoneme level, using the
FastSpeech 2 internal predictions (see Figure 4.5 for a plot of duration values from an example
sentence). A phoneme duration is defined as (the log of) the number of Mel-spectrogram
frames of that phoneme. The energy is the squared magnitude of the short-time Fourier
transform (STFT), averaged across all frequency bins and across the duration of the phoneme.
Then the mean absolute error (MAE) is computed by averaging the absolute value of the
difference of duration values obtained in each test condition and in the reference condition
across all phonemes of the dataset, and the same for the energy feature. The results are
reported in Table 4.2.

Pitch is evaluated at the sentence level.> We first align the Mel-spectrograms obtained
in the test and reference conditions with Dynamic Time Warping using the Librosa library
(McFee et al. 2015). Then we extract the pitch curves from the concatenated audio (see
Section 4.4.3) using Praat/Parselmouth (Boersma and Weenink 2018; Jadoul et al. 2018) and
we compute the MAE in cents between the aligned fj trajectories:

1200 Test (¢
MAE = —=> " |log, (ORT()) . (4.1)
T = 0 (1)

Then the sentence-level MAEs are averaged across all sentences of the dataset. The results
are reported in Table 4.3.

5We did not evaluate error in the internal FastSpeech 2 pitch predictions because we observed a few extreme
prediction values which did not materialize in the resultant audio. We do however use these values in our follow
up analyses after verifying the absence of outlier values.
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Figure 4.4: Confusion matrices for predicted POS categories. The upper matrix shows the
GPT-2 predicted categories and the lower matrix the randomly selected future words.
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a log scale) for each phoneme in the sentence “Are there bears up here?” and for the different
tested prediction conditions.

Table 4.2: MAE (and standard deviation across phonemes) between duration (resp. energy)
obtained with full context and with limited context. *unit = number of Mel-spectrogram
frames on a log scale; **arbitrary unit: signal is digital, normalized and averaged.

’ Input type ‘ # phonemes | Duration* ‘ Energy** ‘

k=0 62,556 0.262 +£0.297 | 0.301 £+ 0.364
GT k=1 62,556 0.077 £0.133 | 0.176 £ 0.241
Pred k=1 5x62,556 0.135+0.198 | 0.247 £ 0.296
Rand k=1 5x62,556 0.147 £0.208 | 0.260 £ 0.304
Correct pred. 38,274 0.086 £0.132 | 0.187 £+ 0.239
Incorrect pred. | 274,506 0.142 + 0.205 0.255 + 0.301

Table 4.3: MAE between the pitch curves obtained with the full context and with limited
context.

Input type | # sentences | Pitch MAE (Cents)

k=0 1,000 203.56 £ 45.50
GT k=1 1,000 88.57 £ 26.33
Pred k=1 5x1,000 120.03 £ 29.34

Rand k=1 | 5x1,000 123.03 + 30.27
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4.5.2.2 Perceptive test

Finally, we evaluate the global quality using 40 native English speaking evaluators® and a
MUSHRA test (ITU-R 2015). We selected 20 sentences from our corpus and for each sentence,
we presented the listeners with a reference audio clip (generated with the full-sentence context)
and then asked them to assign a similarity score to five test clips: the hidden reference
(identical to the reference and used as the MUSHRA high anchor), k£ = 0 (used as the low
anchor), Ground-Truth & = 1, GPT-2 prediction k£ = 1 and random prediction k = 1. We then
compare the distributions of the similarity scores. The responses from four of the participants
were removed because these listeners consistently failed to assign a high similarity score to
the high anchor. See Figure 4.7 for results.

4.6 Results and discussion

For all metrics, with regards to the mean, we see a clear ranking in the similarity to the
full-sentence reference: k& = 0 is farthest away, GT k = 1 is the closest and Pred and Rand
are in between, the former being slightly closer to full context than the latter. Statistical tests
(t-test for pitch, duration and energy measures and Wilcoxon for the listening test) confirmed
that Pred and Rand do not belong to the same distribution (p-value < 0.05) and that Pred
is better by a small but significant margin.

We notice that duration predictions for k = 0 are almost always longer than the other
conditions (Figure 4.5). And as in Baumann and Schlangen 2012a, we observe pitch drops for
k = 0 words. This is because all words are interpreted as the end of a sentence (as they are
the final word in the FastSpeech 2 input, hence sentence final characteristics are predicted by
the model). Both the prediction and the random conditions reduce this effect thanks to the
additional padding words.

4.6.1 Correct vs. incorrect predictions

When we separate the correct from the incorrect GPT-2 next word predictions (see Table
4.2), we see that the MAE for the incorrect predictions is almost identical to the MAE for
the random condition. This suggests that the improved syntactical accuracy gained from the
GPT-2 predictions (recall the POS of the predicted token matches that of the GT next token
43.5% of the time vs. 18.0% for random)” does not translate into improved prosodic features.

Since we only see improvement when the exact next word is predicted, it is clear that the
minor difference between GPT-2 and random is explainable by the low exact-word prediction

5 Anonymous participants were recruited using Prolific (www.prolific.co). They were compensated at a rate
slightly above the UK minimum wage.

"The accuracy/meaningfulness of the POS tags for the random sequences is questionable due to their often
nonsensical nature. However, it is highly probable that the GTP-2 syntax is better than chance.
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Figure 4.6: Each point represents a sentence (synthesized under the Pred or Rand condition)
from the MUSHRA test. The x-axis shows the scaled and combined (pitch, energy, duration)
maximum deviation values (deviation from the full-context value) for the phonemes in the
sentence. The y-axis shows the mean similarity score for (Pred, Rand) sentences to their full
context counterpart, given by the MUSHRA participants. The Pearson correlation coefficient
is equal to —0.53.

rate. We observe that 76% of the GPT-2 sequences have a prediction rate lower than 10%,
and 97% have a rate lower than 21%. It is likely that as language models continue to im-
prove (Brown et al. 2020), we will see greater gains in naturalness from the proposed method
(improvements in semantic modelling will narrow the range of word choice, resulting in more
frequent exact-word predictions). However, these potential advances will have a fairly low
ceiling if we consider human prediction abilities as the upper limit. Further prediction gains
could be achieved if the language model was fine-tuned on the traits of a specific author (De-
lasalles et al. 2019); this would be an advisable step in the use case of assistive technologies
for the speech impaired.

4.6.2 Context sensitivity

Previous studies investigating the impact of lookahead have shown the contrast between k = 0
context and different degrees of ground-truth lookahead. The setup of the present study allows
us to investigate where the choice of future context modifies the output the most (i.e., where
do prosodic features remain stable irrespective of the future context and where do they vary
dependent on the future context). To this purpose, we calculated the range of phoneme
duration and pitch feature values predicted by the TTS model in all test conditions except
k = 0. More precisely, from the 12 predicted and ground-truth conditions (5 x Pred, 5 X
Rand, GT k = 1 and full context)®, we take the max and min values from this set and calculate
the difference. This analysis shows that a large portion of phonemes in the corpus alter only
slightly when provided with different next word contexts. The pitch range does not exceed 300
cents for approximately 75% of our samples, which falls below the Just Noticeable Difference

8The predicted word and the GT next word are sometimes the same.
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Figure 4.7: Violin plots of the distribution of similarity scores between signals generated with
full context and signals generated with limited context for the 20 sentences in the MUSHRA
test. The middle bars show the mean value.

(JND) threshold for pitch distance found by Hart 1981. The duration range is limited to a
single spectrogram frame (11.75ms) for 40% of phonemes, which, depending on the length of
the phoneme, may be imperceptible to the average listener (Quené 2007 found a JND of 5%).

We do however see some wide range values in the corpus which explain the large stan-
dard deviations in Table 4.2 and the significant variability of the Pred and Rand scores in
the MUSHRA test (Figure 4.6: the maximum deviation values in a sentence show strong
correlation with the mean MUSHRA similarity scores). By examining the corpus, we notice
discernible patterns in the locations of large context sensitivity. With respect to pitch, we see
large variation when there is a mismatch between predicted and ground-truth punctuation at
the end of the next word or when there is a reporting verb (e.g., said, exclaimed) rather than
the beginning of a new sentence following a punctuation mark. With respect to duration, the
largest variance occurs at the beginning of sentences, at punctuation marks and in function
words, especially in the coordinating conjunction and.

4.6.3 Full-sentence context sensitivity

Given the unexpected result that the syntactic context provided by GPT-2 does not improve
prosody, we conduct some small-scale additional tests to (1) probe Fastspeech 2’s use of syntax
and (2) see if the syntactic context is more impactful in the full-sentence/longer context
condition (since Saeki et al. 2021a report positive results with five-word lookahead). In the
previous chapter, we saw that Tacotron 2 uses limited future context, however this does not
necessarily hold for Transformer models that have access to the full input sequence at every
timestep. Moreover, we only looked at global trends with a single expanding lookahead. Here,
we look at the same fixed prefix with multiple sentence continuations to see if there is any
evidence that Fastspeech 2 makes use of syntax.

We expect a TTS model would be able to capture some features of syntax, given the
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common morphological features that distinguish different parts of speech (e.g., the ed past
tense morpheme on verbs). And the presence of common function words like prepositions
and determiners should assist the model to learn grouping like prepositional and determiner
phrases. But whether these features lead to local or global structural representations that
influence prosody prediction is an open question.

4.6.3.1 Garden-path sentences

In this probe, we look at garden-path sentences (i.e., sentences that trigger reinterpretation
when a certain word in the sentence is encountered) and their alternative versions (i.e., the
version of the sentence that does not require reinterpretation) (see 2.1.5.2). Sentence (1)
below is an example: When the coordinating conjunction and is present, the word loaned is
interpreted as a main verb for the subject NP the large corporations. When the coordinating
conjunction is absent, loaned is interpreted as part of a reduced relative clause (RC).

(1) The press reported that the large corporations loaned money at low interest rates (and)
kept accurate records of their expenses.

Grillo et al. 2018 found that garden-path sentences differ in prosody from their alternative ver-
sion. In their experiment, the reduced clause reading was pronounced significantly faster than
in the alternative condition, beginning from the head noun (the large corporations through
to the critical word kept). There was also a marginally significant effect on pitch reset. This
result makes intuitive sense since reduced RCs are usually used to convey given/presupposed
information and are therefore spoken faster (this association between speed and reduced RCs
goes beyond garden-path sentences).

These sentence variations are an interesting testing ground for context sensitivity in TTS:
unlike many other contextual effects (see Chapter 2) that require a deeper understanding of
the meaning of the text to select appropriate prosody?, this difference is apparent from the
surface syntactic form. The presence of a second verb with no coordinating conjunction forces
a particular structural interpretation (at least for humans).

Here we are interested in seeing if the TTS model is taking global structural features
into account, which should result in prosodic differences at a distance before the critical
disambiguating word (distal effects), or if the divergent contexts (i.e., garden-path or not) only
affect the immediately adjacent words. To do this, we look at the duration features (predicted
by Fastspeech 2) for twenty garden-path sentences and their non-garden-path counterpart. We
compare the identical phoneme sequence prior to the critical word and measure the difference

in the duration predictions.!?

9We assume the model has no understanding of semantics.

0Garden-path sentences are often read incorrectly by humans processing the sentence sequentially, and so
we might expect the same from an iTTS system, but in this case, we use the full context, which Fastspeech 2
processes in parallel and so the difference should be apparent to the model.
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In Figure 4.8, we see the distribution of changes in phoneme duration between two sets of
phonemes: (1) phonemes from the word adjacent to the critical word and (2) phonemes at a
greater distance in the past context. These results show that changes to the distal phonemes
are very minor, typically a shift less than 0.1 Mel-spectrogram frames on a log scale. We
observe larger changes for the critical word adjacent phonemes. Figure 4.9 shows the duration
predictions for an example prefix under both conditions. The distal phoneme predictions are
essentially identical. We do not find evidence that global structural considerations influence
Fastspeech 2.
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Figure 4.8: Changes in phoneme duration predictions for 20 garden-path sentences. The
phonemes are separated into two groups: (1) the words immediately adjacent to the critical
word and (2) the words at a farther distance from the critical word (distal words).

4.6.3.2 Multiple continuations

We perform a second experiment to investigate the impact of syntactic context at the local
level. We take a sample sentence prefix (The child) and we vary the next word syntactic
content. Forty utterance continuations were generated using ChatGPT (OpenAl n.d.)!! for
different next word syntactic contexts: preposition, relative pronouns, verb, the coordinating
conjunction and, noun, adverb, determiner and participle. This resulted in 320 sentence
continuations, each of which was generated until an end-of-sentence punctuation mark (see
Table 4.4 for example sentences). The continuations vary in the lexical content and phrase
lengths. The full sentences were then synthesized with Fastspeech 2 and the pitch prediction
for each phoneme in the sentence prefix were extracted.

" Replicating the prediction experiments of this chapter with ChatGPT would likely result in improved
accuracy. We do not however test this here; we simply use the tool to generate multiple continuations with
controlled POS of the next word. Our purpose being to evaluate the use of structure by the TTS model and
not prediction accuracy.
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Figure 4.9: Fastspeech 2 predicted duration values for the phonemes preceeding the critical
word and or kept in the sentence The press reported that the large corporations loaned money
at low interest rates (and) kept accurate records of their expenses.. The blue points show
the duration predictions when loaned is interpreted as the main verb and the orange points
when the loaned is part of a reduced relative clause. The red line indicates the beginning of
the word immediately adjacent to the critical word.

The predicted pitch values are displayed in Figure 4.10. Most of the syntactic contexts
result in similar contours, with two notable exceptions: and and relative pronouns (that and
who). We cannot of course draw any broad conclusions from this one prefix evaluation, but
these results suggest that the model is quite sensitive to frequent function words that serve
to structure the utterance (we also saw large context sensitivity with the word and in the
limited-context setting). For our pseudo-lookahead use case, if one of these words is predicted
incorrectly, or inversely not predicted where it should be, then we will see large difference
between the ground-truth and the predicted text. The other syntactic contexts seen here have
a lot more overlap in their predicted values, and so, we would not necessarily expect two noun
future contexts to result in closer predictions than a noun and a verb for instance.

4.7 Conclusion and perspectives

The results from all metrics for our pseudo-lookahead evaluation show that the language
model predicted text does improve prosody when compared to the £k = 0 condition. This
difference can be attributed to medial/final position distinctions, as phrase-final prosodic
features are predicted for kK = 0 words. Slight improvements over the random-text condition
are also observed. These improvements are attributed to cases where the exact next word
was predicted correctly, rather than to the pseudo-syntactic context provided by the language
model.

Language model predictions are often incorrect and context mismatches can occasionally
cause major distortions compared to the full-context prosody. To improve our model, we could
implement a wait policy that delays synthesis when a context-sensitive word is encountered,
similar to Pouget et al. 2016) (where predicted POS tag stability is used to guide output)
or the proposed strategy in Chapter 3 (where stability features like word length are used to
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Figure 4.10: Pitch predictions from Fastspeech 2 for the prefix The child with different next
word syntactic conditions (preposition, relative pronoun, verb, the coordinating conjunction
and, noun, adverb, determiner (the) and participle). The Fastspeech 2 pitch predictor is
trained on log f0 values normalized to zero mean and unit variance for each utterance.
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Table 4.4: Example sentences for next word syntactic context evaluation.

Next word

) Example Sentences
syntactic context

The child in the park played on the swings.

reposition . .
PIep The child on the soccer team scored the winning goal.

The child who hit Tommy is crying.

lati
relative pronott The child that was picking flowers was admiring their beauty.

verb The child listened attentively as their teacher told a story.
The child has been diagnosed with a form of epilepsy.

coordinating The child and the dog played in the park.
conjunction (and) The child and the sibling argued over who gets to go first.

The child athlete excelled in sports.

Houtt The child dancer gracefully performed on stage.

adverb The child eagerly waited for his turn.
The child sadly remembered the loss of a loved one.

. The child the teacher was talking about is very intelligent.

determiner ) . . . .

The child the park ranger was leading on a hike was having a great time.
. The child studying hard for their exams was determined to do well.
participle

The child exhausted by the long hike collapsed on the ground.

predict how close the word is to its final representation).

Another option is to use more abstract future context representations similar to Saeki
et al. 2021a. These abstractions could potentially help the TT'S model learn more neutral
solutions for context-sensitive words, smoothing over jarring mismatches between predictions
and the ground-truth. However these neutral solutions would most likely lead to overall flatter
prosody, which is at odds with our objectives in this thesis. We have to question what these
abstractions can learn: if different futures that diverge in contextual features such as word
choice, number of syllables, POS, and position in the prosodic phrase/utterance are encouraged
to resemble one another in a generic future embedding, what exactly do they represent? Using
concrete predicted words can encourage more bold/less generic choices from the TTS model,
but unfortunately these choices may be at odds with the actual future content.

In this chapter, we have also seen further evidence that TTS models trained exclusively
on phonemes employ a rather shallow use of syntax/context. Prediction decisions appear to
be dominated by the lexical/phonological features of the immediate local context with little
influence from the underlying structural features. As far as the local context is concerned,
Fastspeech 2 does appear to be somewhat sensitive to the syntactic context, in particular
when function words that mark coordination or subordination are involved.

In the next chapter, we will explore the use of language models to predict prosodic features
directly, as opposed to predicting future text and then relying on the TTS system to model
appropriate prosody. It is hypothesized that these representations, which encode syntactic
and semantic features, will make richer use of context when predicting prosody.
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In the previous chapters, we saw that vanilla neural TTS models make very shallow use of

context when predicting prosodic features: inferred prosodic values/representations are mostly

influenced by the immediate next word (when the previous context is held constant) and we

saw some evidence that larger structural factors are barely taken into consideration (e.g., with

garden-path sentences). What’s more, single sentence vanilla models can neither make use of

semantic factors in the local context, nor discursive factors in the wider context.

89
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These observations led us to believe that the “success” of limited lookahead iTTS, as judged
by the difference from full-sentence T'TS, was more a reflection of the shortcomings of these
full-sentence end-to-end models than it was of the true value of further lookahead. And so, in
the remainder of our work, we experimented with prosody prediction using more contextually-
informed models. More precisely, instead of using LMs to predict future context for a vanilla
TTS model, we pivoted to using LMs to predict prosodic features directly. These predictions
were then used to condition TTS synthesis; this division into prediction and synthesis allows
for more controllable/context-adaptable TTS. We also test conditioning on extended contexts
(i.e., previous utterances) with the aim of increasing contextual appropriateness.

We build on previous research that has seen positive effects of conditioning TTS on Trans-
former LMs and extended context. We apply these techniques to iTTS models and we pro-
vide new contributions by (1) investigating how the accuracy of linguistically-aware prosody
prediction changes in different context conditions (incremental, full-sentence and/or extended
context), (2) investigating the type of information provided by the LM and (3) testing context-
informed adaptation strategies for segmenting speech in large input latency iT'TS application.
We explore these themes through two information structural properties: prominence, with
special attention on contrastive focus, and the segmentation of information units (boundary
prediction).

Prosodic prominence is a speech feature that would seemingly benefit from increased
future context (beyond the very limited lookahead our results from Chapters 3 would suggest).
It is much more difficult to predict appropriate prominence assignment if future disambiguating
information is not available (e.g., I wore the RED hat, not the BLUE one vs. I wore the red
HAT, not the red SCARF). Previous context should likewise provide important information,

and so we compare predictions when our model does and does not have access to previous
sentences. In addition to evaluating the contribution of the amount of context, a further aim in
this chapter is to evaluate the type of contextual information provided by the LMs. And so we
selected a particularly challenging task that cannot rely on simple heuristics (such as POS or
lexical identity) to make correct predictions: the prediction of contrastively focused personal
pronouns, which often require discursive and pragmatic knowledge to predict correctly.

Prosodic boundaries are similarly a feature whose prediction could be aided by full-
sentence context, since the global syntactic structure and phrase length have been shown
to affect boundary placement and strength (see Section 2.1.5.1). Evaluating the effects of
lookahead for this task would be informative for continuous input iTTS applications like
speech-to-speech translation. Here however, our goal is not to evaluate prediction accuracy
with regards to normal-speed ground-truth speech samples, but rather to adapt the synthesized
speech to an incremental context where the input latency is quite high (AACs!). In this
context, there is a need to find a balance between reactivity and the digestibility of the
speech stream. Synthesizing each word as it becomes available is the most reactive form
that could be adopted, however this is not a natural form for speech to take, as language is
typically presented in informationally-motivated chunks. In this work, we compare methods
for segmenting speech that are either based on LM-predicted features (POS tags or boundary

! Augmentative and Alternative Communication
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strength values derived from the audio signal) or count-based methods (one/two-word(s)-at-
a-time). We evaluate the quality of these models with traditional subjective tests (a modified
MUSHRA and an AB test) and we experiment with a sentence verification test designed to
evaluate cognitive load.

To train our adaptable synthesis models for both the prominence and boundary tasks,
we adopt an automatic prosody annotation tool based on continuous wavelet transforms.
Previous studies have reported successful control of content words when conditioning on these
annotations. We conduct a perceptive test to evaluate the control provided over short function
words, which have relatively few prominent examples in TTS corpora, but whose emphasis
can have a large effect on intended meaning.

To summarize, our objectives in this chapter are to evaluate the ability of LMs to predict
and control prosody with limited and extended contexts. We investigate:

1. prominence prediction in different context settings (incremental, full-sentence, extended
context).

2. the knowledge provided by LMs. We do this by assessing contrastive focus prediction on
a corpus of difficult examples (that cannot be predicted correctly using simple heuristics).

3. the amount of prosodic control that can be achieved on a class of function words (personal
pronouns).

4. user preferences for segmentation in a high-input latency context.

This chapter is organized as follows: we begin by reviewing related work on the topics of
prosodic representation and control and on context-aware T'TS. In Section 5.2, we present our
work on prominence and contrastive focus (an extended version of Stephenson et al. 2022 which
was presented at Interspeech 2022)2. Section 5.3 presents our work evaluating segmentation
techniques and we finish with a conclusion.

5.1 Related works

5.1.1 Prosodic representations and control

Adapting TTS to suit a given context requires symbolic or latent representations of prosodic
features in order to control speech output (which can be controlled at different levels of granu-
larity, from phonemes to the utterance). Techniques to detect, represent and control prosodic
features in neural T'T'S fall into two main categories: unsupervised and supervised methods.

2Here we present updated results after manually correcting transcription and forced alignment errors in the
corpus. We see slightly better results, but the overall trends remain the same as in the original paper, with the
exception of the randomly initialized BERT model, which shows some improvement with extended context.
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5.1.1.1 Unsupervised methods

Exemplar-based methods In exemplar-based methods (e.g., Skerry-Ryan et al. 2018;
Wang et al. 2018), the prosodic characteristics of reference speech recordings are transferred
to new utterances. This usually involves passing a Mel-spectrogram to a reference encoder
unit, which extracts a representation of the prosodic or stylistic features of the speech. This
representation is later combined with text representations, and the TTS model uses these
combined features to generate a speech sample. These models are not always entirely success-
ful at disentangling form from content and so adversarial training and style losses have been
proposed to further separate these features (e.g., Ma et al. 2019b; Wang et al. 2021c).

Variational autoencoders (VAEs) VAEs can be used to learn prosody/style represen-
tations in a latent acoustic space (e.g., Hsu et al. 2017; Hono et al. 2020; Sun et al. 2020).
To achieve interpretable control over the audio output of these models, effort must be made
to disentangle the features of interest. And while labels are not required at the onset to
learn these spaces, human interpretation of the discovered space is required. For example,
Sun et al. 2020 proposed a hierarchical latent variable model trained with conditional VAEs
where lower-level prosody is conditioned on higher-level prosody latent representations (phone,
word, utterance). They used a training schedule to separate prosodic attributes among la-
tent dimensions (i.e., they progressively added trainable dimensions) and after training they
measured the levels of disentanglement by modifying individual dimensions in the latent space
while holding the other layers constant and measuring differences in variance between different
prosodic attributes. Clustering methods are another option for interpreting the latent space
(e.g., Ellinas et al. 2023).

Because the prosodic features learned by unsupervised models are difficult to disentangle
and interpret, work on categorized prosodic event detection (i.e., the presence or absence of
pitch accents and prosodic boundaries) has mostly been carried out using supervised methods.

5.1.1.2 Supervised methods

In supervised methods, the T'T'S model is trained on human or automatically generated labels:

Human labelling Human labelling is likely to be the most accurate reflection of perceived
prominence and boundaries, however obtaining such labels is a time consuming process that
requires expert knowledge or a large number of annotators to achieve reliable results (e.g.,
Rapid Prosody Transcription (Cole et al. 2017)). As a result, the size of human annotated
corpora is usually quite small (Calhoun et al. 2010; Ostendorf et al. 1995), which is not ideal
for neural network training. Some speech corpora have been designed specifically to provide
variations in prominence placement (e.g., Latif et al. 2021; Strom et al. 2007) but the reduced
linguistic complexity (i.e., simple SVO or repeated template sentences) and the disassocia-
tion from a meaningful communicative context can oversimplify and/or over-exaggerate the
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expression of prominence, making (detection or synthesis) models trained on these datasets
less transferable to more naturalistic speech.

Automatic labelling Automatically generated labels may not be as accurate as human
labels, however they make it possible to treat a much larger quantity of data. These labels
can be based on acoustic or linguistic features, or a combination of the two.

Prominence. Good overall performance in prominence prediction can be achieved with
text-only features (lexical, syntactic, information status properties). Models trained on these
features however do not generally perform well on marked /non-standard prosodic realizations
(an issue we address in this chapter). Previous works addressing general accent placement
(i.e., marked and unmarked structures combined) include Altenberg 1987 (as cited in Ross
and Ostendorf 1996) who came at the issue from a POS perspective, using fine-grained cat-
egories to identify those that are likely to be prominent (e.g., “wh” adverbs, ordinals and
quantifying pronouns). Hirschberg and Litman 1993 predicted labels from POS, surface order
and given/new status, Pan and McKeown 1999 used word informativeness (as measured by
n-gram probabilities) and Nenkova and Jurafsky 2007 used accent-ratio, a probability measure
of an individual lexical item being accented.

Acoustic-based models for prominence detection are better able to capture deviations from
standard prosodic pattern. These models either use measurable prosodic values as input or
learn relevant features directly from a neural network. Rosenberg 2010 developed an auto-
matic ToBI labelling system, using pitch, energy, duration, spectral tilt and contour slopes
as features and traditional machine learning techniques for identification and classification
(logistic regression, SVM). Nielsen et al. 2020 evaluated different amounts of context with
either a CNN or a CNN + bidirectional LSTM architecture and found the full utterance
input with bidirectional encoding yielded better results than single or three token windows.
They also compared text-only (using GloVe embeddings (Pennington et al. 2014)), speech-
only and combined models. They found that text-only models performed no better than an
all-content-word-accented baseline but that text features in combined models could provide a
slight improvement over speech-only ones (see Ananthakrishnan and Narayanan 2008; Chen
et al. 2004 for similar work).

Boundaries. Studies looking at boundary detection and prediction have likewise used text
and acoustic features. Some elaborate methods to predict boundaries based on the syntactic
structure of the utterance have been developed (Cooper and Paccia-Cooper 1980; Gee and
Grosjean 1983; Ferreira 1988). For example, Cooper and Paccia-Cooper 1980 devised an
algorithm that counts and weighs dominating nodes on the left and right of each potential
boundary site in a syntactic tree, excluding minor categories and non-terminal nodes on the
left side. Watson and Gibson 2004 proposed a simpler method based on the length of the most
recently completed syntactic constituent, as well as that of the upcoming syntactic constituent.
In order to execute these algorithms, the syntactic structure of the complete utterance, or at
least the distance to the end of the next syntactic constituent, are important factors, making
their implementation in the incremental setting difficult.
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Acoustic models have focused on pause, breath, pitch and duration features. Wightman
and Ostendorf 1991 trained classifiers to detect silence and breath features which could iden-
tify major prosodic boundaries. For smaller boundaries, they tested phone duration features,
such as the normalized lengths of the rhymes of word final syllables. These were compared
with the duration of onset consonants, which in the case of boundaries should not lengthen as
much as the rhyme, whereas in the case of pitch accents they should undergo a comparable
lengthening. The model was not entirely successful at fine-grained boundary type predic-
tion, but fairly good at a binary boundary/no boundary classification. Wang and Narayanan
2004 studied pitch breaks, pitch resets and break intervals to differentiate between fluent and
disfluent boundaries in spontaneous speech and achieved 75% accuracy with no other addi-
tional linguistic information. Biron et al. 2021 used speech rate discontinuities (which reflect
pre-boundary lengthening and post-boundary acceleration) to detect breaks.

Continuous Wavelet Transforms. Suni et al. 2017 proposed a signal processing-based,
hierarchical method for extracting prosodic events (both prominence and boundaries). This is
the technique we adopt for our work because it mimics human multiscale perceptive processes
and allows for the automatic extraction of word-level prosody tags. The technique uses con-
tinuous wavelet transforms (CWTS) to analyse the speech signal at several timescales which
correspond to different levels in the prosodic hierarchy (phones —syllables —words —phrases).
By detecting changes at multiple-levels, a richer representation of prosody is extracted. Values
for the strength of word-level prominence or prosodic break (i.e., boundaries) can be obtained
by: (1) combining normalized f0, energy and duration into a composite signal, (2) performing
the CWT, (3) establishing lines of maximum or minimum amplitude connecting the various
timescales (maximum for prominence (the black lines in Figure 5.1) and minimum for bound-
aries (the white lines)) and then (4) calculating a weighted sum of the points in this line
(attributing greater weight to the higher levels).

5.1.2 Context-aware TTS
5.1.2.1 Transformer language models

Several recent works have investigated the use of Transformer LMs in TTS models. These
experiments either condition synthesis directly on extracted embeddings or divide the pipeline
into prosodic feature/embedding prediction and context-conditioned synthesis (as we do in this
chapter).

Direct conditioning. Hayashi et al. 2019 tested the integration of BERT-derived repre-
sentations of subword tokens and of sentence-level representations into a Tacotron 2 model.
MOS scores showed small but significant improvements with both models, with larger gains
from the more fine-grained subword embeddings. Kenter et al. 2020 incorporated BERT into
an RNN TTS model and found it could help with the pronunciation of complex compound
noun grouping which can be determined based on semantic content (e.g., (diet (cat food)) not
((diet cat) fo