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Introduction 

• The acquisition of phonology 

• Discovering discrete and invariant units from noisy acoustic 
inputs 

• inter speaker variability 

• intraspeaker variability (coarticulation, Liberman (e.g., 1957))
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/a/ - /t/ ?

/i/ - /p/ ?

/b/ - /u/ ?

Source: Anne Vilain (GIPSA-lab)
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• Invariance can be found in the articulatory 
domain !  

• Motor & perceptuo-motor theories of 
speech perception  (Liberman and Mattingly, 85) (Schwartz 

et al., 2012) 

• Internal motor simulation: transforming 
an auditory input into a set of motor 
commands  

• Efficient when learning a new sound + 
in adverse conditions 

• Neuro-physiological correlates (Pulvermuller et al., 

2006), (Sato, Tremblay, & Gracco, 2009), (D’Ausilio et al. 2011; Skipper et 
al. 2017; Möttönen et al. 2013; Murakami et al. 2015; Du et al. 2016, 
etc.) 
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A weakly-supervised learning
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• Children seem to learn the « sound-gesture-speech units » relationships 
in a weakly supervised manner  

• no labeling of the acoustic input 

• no access to the target configuration of the vocal tract for a given 
input sound (children learn the acoustic-to-articulatory mapping)  

• Acoustic-articulatory mapping, a ill-posed problem 

• non-linear & many-to-one (Atal, 1978), (Qui & Carreira-Perpiñán, 2007), (Neiberg et al, 
2008)

/a/
?
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Computational model of speech learning

• Studying speech learning using computer-based 
simulations 

• Explicit integration of speech production knowledge  
(Moulin-Frier et al., 2014), (Rasilo et Räsänen, 2017) (Philippsen et al., 2021), (Pitti 
et al., 2021) 

• But most of them are built from (and tested on) simple 
linguistic material, sometimes synthetic 

• Deep learning approach exploiting massive data 

• (Dupoux, 2016) « constructing scalable computational 
systems  that can, when fed with realistic input data, 
mimic language acquisition as it is observed in 
infants ». 

• STELLA model (Lavechin et al., 2023) able to learn 
phonological units, but only from clean audio data  

• No information about speech production 
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STELLA Model (Lavechin et al. 2023)

(Philippsen  et al. 2021)
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Our research goal

• Build a computational model of speech acquisition based on deep 
learning, with explicit knowledge of speech production 

• Research questions   

• How the visual information (aka lip movements) change the embedding of SSL 
models based on predictive coding? (Hueber et al., Neural Computation, 2020)  

• Does an explicit access to articulatory knowledge improve speech decoding in 
adverse conditions? (Georges et al., Interspeech 2021) 

• Can prior articulatory knowledge make the learning of phonological units easier? 
(Georges et al., Interspeech 2022) 

• How the speech-gesture-unit relationship can be learned in a self-supervised 
manner? (Georges et al., ICASSP 2022)
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Marc-Antoine Georges PhD
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Role of articulatory knowledge in phonological unit discovery

• VQ-VAE ~ VAE but with a discrete embedding space  

• Common model used in the Zero-Ressource challenge for unsupervised 
speech unit discovery (Tjandra et al., 2019), (Niekerk et al., 2020) 

• Approach:  

• VQ-VAEs trained either from acoustic / articulatory / acoustic+articulatory data  

• Assessing the phonetic discriminability of the learned embeddings using ABX 
tests (Schatz et al., 2013)

7

VQ-VAE (van den Oord et al., 2017) 
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ABX methodology  

Two representations of the same unit should be 
closer to each other than to any other unit 

representation

Role of articulatory knowledge in phonological unit discovery

Datasets: PB2007 & BY2014 (2 French speakers) and MOCHA-TIMIT (7 English speakers), Codebook size K=32,64,128,256, 512
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Role of articulatory knowledge in phonological unit discovery
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Structure of the latent space  

Articulatory modality =  place of articulation 

Acoustic modality =  manner of articulation. 
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Fusion of articulatory and acoustic modalities       better phonetic discriminability

ABX score for the consonants - Place vs. manner of articulation - 3 speakers (out of 9)

Role of articulatory knowledge in phonological unit discovery
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Computational model of speech learning

L = LVQVAE + Lacoustic (               ,,                ) + Ljerk (                         )d3

dt3

Inverse model  
LSTM

Phonological encoder  
VQ-VAE

Audio input

Articulatory  
synthesizer  

 pretrained DNN + neural vocoder

Articulatory trajectories Acoustic signal« discrete » speech units

Synthetic speech is intelligible  
(but only for speakers relatively  

close to the reference speaker)
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Computational model of speech learning

12

Inverse model  
LSTM

Articulatory trajectories

Phonological encoder  
VQ-VAE

Original 

ABX score

 Predicted

a[b]a - Predicted vs. ground truth vocal tract config.

ABX test
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Conclusions and perspectives

• Goal : Investigate how a child learn the relationships between phonological unit - speech sound and 
articulatory gestures 

• Approach : Computer-based simulation using deep networks + SSL trained from raw speech datasets  

• Main results : Complementary role of articulatory and acoustic knowledge  

• in adverse condition (AR-VAE) 

• for discovering phonological unit (VQ-VAE)  

• current model unable systematically infer plausible articulatory trajectories :-( 

• Perspectives 

• Introducing biomechanical constraints in the inverse model (PhD Angelo Ortiz, co-dir E. Dupoux) 

• Investigating the role of babbling strategies (Post-doc Marvin Lavechin) 

• Introduce a weak supervision signal (RL, multimodal input)
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The end
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