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The medical !eld presents unique Natural Language Processing (NLP) challenges through
its specialized terminology, strict data regulations, and critical information needs. With the
democratization of Language Models (LM) for assisting healthcare and clinical workers in
their day-to-day work, the need for their adaptation to the domains of application became
necessary to facilitate their accessibility to a broader audience, languages, and domains
while reducing the computational cost of their usage.

On the other hand, traditional approaches to medical speech processing rely on cascade
systems that convert speech to text, apply NLP system, and sometimes regenerate speech.
While practical, these systems often lose paralinguistic features critical to clinical commu-
nication and su"er from error propagation between processing stages. Recent advances in
self-supervised speech representation quantization have created new possibilities for in-
tegrating speech representation into other systems without intermediate text conversion,
potentially preserving more communicative nuance.

In this thesis, I investigate among other things, how speech capabilities can be inte-
grated into existing text-based Pre-trained Language Models (PLM) with healthcare-related
capabilities, leveraging their embedded medical knowledge while enabling direct speech
processing. The examination of alignment between speech and text representations at
various abstraction levels reveals potential pathways for e"ective cross-modal knowledge
transfer with limited training data, a crucial consideration given healthcare’s data con-
straints.

Keywords: Speech Processing, Domain Adaptation, Cross-Modal Transfer, Healthcare
Adaptation, Language Models, Multi-modal Speech-Text Modeling, Large Language Model
(LLM)
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Le domaine médical présente des dé!s uniques en matière de Traitement Automatique de la
Langue Naturelle (TALN) à travers sa terminologie spécialisée, ses réglementations strictes
sur les données et ses besoins critiques en information. Avec la démocratisation desModèles
de Langues (ML) pour assister les professionnels de santé dans leur quotidien, leur adapta-
tion aux domaines d’application est devenue nécessaire pour faciliter leur accessibilité à un
public plus large, à di"érentes langues et domaines, tout en réduisant le coût computation-
nel de leur utilisation.

D’autre part, les approches traditionnelles du traitement de la parole médicale reposent
sur des systèmes en cascade qui convertissent la parole en texte, appliquent un système de
TALN, et parfois régénèrent la parole. Bien que pratiques, ces systèmes perdent souvent
des caractéristiques paralinguistiques essentielles à la communication clinique et sou"rent
de la propagation d’erreurs entre les étapes de traitement. Les récentes avancées dans la
quanti!cation des représentations vocales auto-supervisées ont créé de nouvelles possi-
bilités d’intégration de la représentation vocale dans d’autres systèmes sans conversion
intermédiaire en texte, préservant potentiellement plus de nuances communicatives.

Dans cette thèse, j’examine comment les capacités vocales peuvent être intégrées aux
Modèles de Langue Pré-entraînés (MLP) basés sur le texte et possédant des connaissances
liées aux domaines de la santé, en exploitant leurs connaissances médicales acquises tout
en permettant un traitement direct de la parole, sans étapes intermédiaires. l’analyse des
capacitées d’alignement entre les représentations vocales et textuelles à di"érents niveaux
d’abstraction ont révélé des méthodes plus optimales pour un transfert e#cace de con-
naissances intermodales et savorisant ainsi l’apprentissage contraint par une quantité de
données d’entraînement limitées, une considération cruciale étant donné les contraintes de
données dans le domaine de la santé.

Mots-clés: Traitement de la Parole, Adaptation au Domaine, Transfert Intermodal,
Adaptation aux domaines de la santé, Modèles de Langue, ModélisationMultimodale Parole-
Texte, Grand Modèle de Langage (GLM)
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0.1 Motivations and Research Question

Healthcare natural language understanding faces unique challenges stemming from strict
privacy requirements, limited data availability, and prohibitive annotation expenses. These
barriers signi!cantly restrict the development of accessible open-source solutions. Never-
theless, text and speech processing technologies hold tremendous potential for healthcare
applications, from supporting clinical sta" in daily activities to enhancing hospital revenue
systems and enabling researchers to process vast amounts of unstructured data in the pur-
suit of novel treatments for both common and rare conditions.

Contemporary approaches in this domain predominantly leverage machine learning
paradigms, utilizing LM either for semantic representation through vectors or direct inter-
action via autoregressive architectures such as Generative Pre-trained Transformer (GPT)
models. This thesis investigates several pivotal questions at the intersection of LM, speech,
and healthcare. We examine optimal strategies for encoding medical knowledge in LM
for downstream application, comparing the e#cacy of continual pre-training versus from-
scratch approaches for adapting to resource-constrained domains like French medical lan-
guage. My research also explores whether publicly accessible data can achieve compa-
rable performance to private clinical datasets and challenges the assumption that more
data invariably produces better outcomes. The thesis also addresses a fundamental ten-
sion, whether domain specialization compromises general language understanding.

Furthermore, we investigate howdomain-speci!c tokenization a"ects both performance
metrics and practical considerations like information density and computational e#ciency,
factors that ultimately determine accessibility across di"erent languages and specialized
!elds. Through systematic comparative evaluation, this research identi!eswhich approaches
excel in speci!c contexts andwhere they fall short. The resource-intensive nature of health-
care data annotation prompted us to compare instruction-tuned Large Language Models
(LLM), which were on the premises, with traditionally task-speci!c !ne-tunedMasked Lan-
guage Models (MLM). My !ndings reveal that LLMs demonstrate remarkable generalization
to unfamiliar tasks, occasionally surpassing specialized models in areas like question an-
swering. These insights informed that our adaptation methodology through continual pre-
training on PubMed Central’s open-access corpus, strategically leveraging the multilingual
foundation of the model to facilitate knowledge transfer to medical applications and there-
fore French.

Recognizing the advancing capability of pre-trained LLMs to generalize across special-
ized domains through diverse training and reinforcement learning techniques, we expanded
our research to incorporate speech modality into state-of-the-art LM, which showed good
capabilities spoken tasks. This multimodal integration raises compelling questions about
specialized processing requirements for speech, scaling bene!ts across data and model pa-
rameters, knowledge transfer between modalities, identifying which neural components
contribute most signi!cantly to speech comprehension, and preserving textual capabilities
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while acquiring speech understanding.

0.2 Thesis Structure

This thesis is written around eight key articles, each chapters from Chapter 1 to 8 represent
one article, they are structured into three main parts following the temporality of the thesis
and showing the incremental e"orts put in place to build language models adequate to
process speechwith healthcare related capabilities: the !rst one dedicated on the adaptation
ofMLMon the healthcare domains and their deep quantitative and qualitative analysis (Part
II). The second part (Part III) presenting MLM limitations and how the adaptation of LLM
can allow to go therefore those limitations. Finally, Part IV, about our how do we managed
to align pre-trained LLMswith speechmodality in order to leveragewidely available textual
knowledge.

0.3 Ressources

Personal publications

• Santiago Cuervo, Adel Moumen, Yanis Labrak, Sameer Khurana, Antoine Laurent, Mickael Rouvier,
Ricard Marxer (2025)
Text-Speech Language Models with Improved Cross-Modal Transfer by Aligning Abstraction Levels. -
https://arxiv.org/abs/2503.06211

• Yanis Labrak, Richard Dufour, Mickael Rouvier (2025)
TSD 2025, August 2025, Erlangen, Germany - An Empirical Analysis of Discrete Unit Representations
in Speech Language Modeling Pre-training: From Encoders to Phonemic Relations. -
https://drive.google.com/!le/d/1JzZmWreVwZ2CTfPedvC_0T6xlkmp_HjL

• Yanis Labrak, Adel Moumen, Mickael Rouvier and Richard Dufour (2024).
InterSpeech 2024, September 2024, Kos Island, Greece - Zero-Shot End-To-End Spoken Question An-
swering InMedical Domain. - https://www.isca-archive.org/interspeech_2024/labrak24_interspeech.html

• Yanis Labrak, Adrien Bazoge, Richard Dufour, Mickael Rouvier, Emmanuel Morin, et al. (2024).
ACL 2024, July 2024, Bangkok, Thailand - BioMistral: A Collection of Open-Source Pretrained Large
Language Models for Medical Domains. - https://aclanthology.org/2024.!ndings-acl.348/

• Yanis Labrak, Mickael Rouvier and Richard Dufour. (2024)
LREC-COLING2024, May 2024, Turino, Italy -AZero-shot and Few-shot Study of Instruction-Finetuned
Large Language Models Applied to Clinical and Biomedical Tasks. - https://aclanthology.org/2024.lrec-
main.185/

• Yanis Labrak, Adrien Bazoge, Béatrice Daille, Mickael Rouvier and Richard Dufour. (2024)
LREC-COLING 2024, May 2024, Turino, Italy - How Important Is Tokenization in French Medical
Masked Language Models? - https://aclanthology.org/2024.lrec-main.721/

• Yanis Labrak, Adrien Bazoge, Oumaima El Khettari, Mickael Rouvier, Pacome constant dit beau-
!ls, Natalia Grabar, Béatrice Daille, Solen Quiniou, Emmanuel Morin, Pierre-Antoine Gourraud and
Richard Dufour. (2024)
LREC-COLING 2024, May 2024, Turino, Italy - DrBenchmark: A Large Language Understanding Eval-
uation Benchmark for French Biomedical Domain. - https://aclanthology.org/2024.lrec-main.478/
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Glossary

TALN Traitement Automatique de la Langue Naturelle
NLP Natural Language Processing
LM Language Models
ML Modèles de Langues
MLP Modèles de Langue Pré-entraînés
PLM Pre-trained Language Models
LLM Large Language Models
MLM Masked Language Models
CoT Chain-of-Thought
BoW bag-of-words
TF-IDF Term Frequency-Inverse Document Frequency
GRUs Gated Recurrent Units
LSTM Long Short-Term Memory
GPT Generative Pre-trained Transformer
NER Named Entity Recognition
POS Part-of-Speech
RE Relation extraction
QA question-answering
ICO Intervention-Comparator-Outcome
NLI Natural Language Inference
EMR Exact Match Rate
EDRM Euclidean Distance-based Relative Metric
SSL Self-Supervised Learning
ASR Automatic Speech Recognition
CNN Convolutional Neural Network
RVQ Residual Vector Quantization
STFT Short-Time Fourier Transform
MFCC Mel-Frequency Cepstral Coe#cients
TTS Text-To-Speech
WER Word Error Rate
CER Character Error Rate
SQA Spoken Question Answering
MCQA Multiple-Choice Question Answering
NLL Negative Log Likelihood
NACHOS opeN crAwled frenCh Healthcare cOrpuS
OCR optical character recognition
BPE byte-pair encoding
RAG retrieval-augmented generation
TSLMs Text-Speech Language Models
MLP Multi-Layer Perceptron
NSP Next Sentence Prediction
BERT Bidirectional Encoder Representations from Transformers
SFT Supervised Fine-Tuning
QLoRa Quantized Low-Rank Adaptation
LoRA Low-Rank Adaptation
AWQ Activation-aware Weight Quantization
BnB BitsandBytes
HPC high-performance computing
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0.4 Language Modeling

NLP has been transformed by large pre-trained language models based on the Transformer
architecture [275]. These models, trained on massive text corpora and then !ne-tuned for
speci!c tasks, have become the standard approach in both general and specialized domains
like medical NLP. Models such as GPT-4 [219] and Med-PaLM 2 [254] have demonstrated
unprecedented performance, sometimes matching or exceeding human expert capabilities
in medical tasks.

To understand the foundations of these powerful approaches, this chapter traces the
evolution of text representation methods through four major paradigms: discrete repre-
sentations that established basic computational text processing; statistical representations
that introduced probabilistic approaches to word sequences; continuous but static word
embeddings that enabled semantic relationships in dense vector spaces; and !nally, cur-
rent contextualized representations powered by transformer architectures.

NLP, whether in the general domain or in the medical !eld, develops and utilizes sta-
tistical methods, particularly machine learning or deep learning methods. The use of such
methods requires a text representation adapted to these tools, generally in vector form.
Various forms of vector representations of text have been proposed, ranging from discrete
representations to numerical representations. The evolution of these statistical methods
has been accompanied by an evolution in vector representations of words, with increas-
ingly e"ective representations for incorporating word semantics.

0.4.1 Discrete Representations

Discrete representations form the foundation of early text processing methods in NLP.
These representations encode text data into mathematical structures that computers can
process, while maintaining the discrete nature of language units such as words or char-
acters. Unlike continuous representations, discrete representations treat each word as a
distinct, atomic unit, without an inherent notion of similarity or relationship between dif-
ferent words.

Bag-Of-Words

The most straightforward and historically signi!cant approach to discrete text represen-
tation is the bag-of-words (BoW) model. This method, rooted in distributional semantics,
as introduced by Zellig S. Harris [115], operates on a fundamental premise: the essential
meaning within a text can be captured by considering word occurrences while disregarding
grammatical structure and word order.

In its simplest form, a bag-of-words representation transforms a text into a vector whose
dimension equals the size of the vocabulary. Each dimension corresponds to a speci!cword,
and its value represents the frequency of that word in the text. Figure 1 illustrates this
transformation process, where an input text is converted into a !xed-size vector based on a

7
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prede!ned vocabulary. Note how words present in the vocabulary but absent from the text
(such as "bird" and "park") receive zero frequency values, while frequent words like "the"
have higher counts.

Input text:

"The cat and the dog
play in the garden"

Vocabulary (size=9)

the cat and

dog play in

garden bird park

BoW vector:

3

the

1
cat

1

and

1

dog

1

play

1

in

1

garden

0

bird

0

park

Figure 1: Illustration of the BoW representation. The input text is transformed into a !xed-
size vector where each dimension corresponds to a word in the vocabulary, and the value
represents the frequency of that word in the text. Note that words in the vocabulary that
don’t appear in the input text ("bird" and "park") have a frequency of 0.

Formally, letV denote the vocabulary size. Then, a text is represented as aV -dimensional
vector T , where each component corresponds to a word in the vocabulary :

ωT = (f1, f2, ..., f|V |)

where fi represents the frequency of the i-th word in the vocabulary.

The BoW model can be extended beyond simple word frequencies to capture word co-
occurrences within a context window. For a given word w, its representation considers
surrounding words within a !xed window size f . Formally, a word c co-occurs with w if:

c → [w→f , w→1] ↑ [w1, wf ]

This process results in a co-occurrence matrix M → R|V |↑|V |, where each entry Mij

represents the number of times word i co-occurs with word j within the speci!ed context
window.

The BoW approach o"ers several advantages. Its implementation is straightforward and
computationally e#cient, making it well-suited for processing large text corpora. More-
over, as illustrated in Figure 1, the representations are inherently interpretable, with vector
dimensions directly corresponding to vocabulary words.

Despite its advantages, the BoW approach faces several signi!cant limitations. As il-
lustrated in the !gure, the resulting vectors are inherently sparse, with many dimensions
containing zeros, particularly for rare words or those absent from the training text. This
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sparsity issue is compounded by the high dimensionality of the representations, as the
vocabulary size determines the vector dimensions and can reach hundreds of thousands
in large-scale applications. The quality of word representations also varies considerably:
while common words bene!t from rich contextual information, leading to meaningful rep-
resentations, rare words su"er from limited contextual data, resulting in less reliable vec-
tors. Moreover, the fundamental premise of BoW, discarding word order and grammatical
relationships, leads to a loss of important semantic nuances that could be crucial for un-
derstanding the text’s meaning. For example, the vectors for the sentences "The vehicle is
stationed on the left." and "The car is parked on the left" are far from each other despite
having the same meaning.

Term Frequency-Inverse Document Frequency

While the basic BoW model captures word frequencies, it treats all words equally, regard-
less of their importance or discriminative power. The Term Frequency-Inverse Document
Frequency (TF-IDF) weighting scheme addresses this limitation by balancing two factors:
how frequently a term appears in a document (term frequency) and how unique that term
is across the entire corpus (inverse document frequency).

Document corpus:

Doc 1: " The cat and the dog play in the garden "
Doc 2: " A bird in the garden "
Doc 3: " The dog barks at the cat "

BoW vectors:

Doc 1:
3

the

1

cat

1

and

1

dog

1

play

1

in

1

garden

0

bird

0

barks

TF-IDF vectors:

Doc 1:
0.0

the

0.13

cat

0.30

and

0.13

dog

0.30

play

0.13

in

0.13

garden

0.0

bird

0.0

barks

Figure 2: Illustration of TF-IDF transformation. The raw frequency counts from BoW are
converted to weighted values that re%ect term importance across the document corpus.
Common words like "the" receive lower weights despite high frequency, while distinctive
terms maintain higher importance.

Term Frequency (TF) measures how often a term occurs in a document, similar to the
basic BoW approach:

TF(t, d) =
Number of times term t appears in document d

Total number of terms in document d

Inverse Document Frequency (IDF) penalizes terms that appear in many documents, as
these are likely less informative, such as the stop words:
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IDF(t,D) = log
Total number of documents in corpus D
Number of documents containing term t

The TF-IDF score for a term in a document is then calculated as:

TF-IDF(t, d,D) = TF(t, d)↓ IDF(t,D)

This weighting scheme e"ectively reduces the importance of common words like "the"
or "and" that appear in most documents while emphasizing rare, potentially more mean-
ingful terms. Figure 2 demonstrates how TF-IDF transforms the raw frequency counts from
the BoW model into weighted values that better re%ect term importance.

The TF-IDF representation o"ers several advantages over the basic BoWmodel. It e"ec-
tively reduces the impact of common, less informative words while emphasizing distinctive
terms that better characterize document content. This weighting scheme has proven par-
ticularly e"ective for information retrieval and document classi!cation tasks, where iden-
tifying discriminative features is crucial.

Despite these improvements, TF-IDF still inherits some limitations of the BoW ap-
proach. The representations remain sparse and high-dimensional, and the method con-
tinues to disregard word order and semantic relationships between terms. For instance,
synonyms like "vehicle" and "car" are treated as entirely di"erent dimensions despite their
semantic similarity. Additionally, TF-IDF requires a prede!ned corpus to calculate the IDF
component, making it unable to handle out-of-vocabulary terms.

These inherent limitations have spurred the development of more sophisticated word
representation techniques, particularly continuous word embeddings. By projecting words
into a !xed-dimensional dense vector space, these advanced methods e"ectively address
the challenges of sparsity and high dimensionality while preserving or even enhancing the
capture of semantic relationships between words. This evolution in representation tech-
niques has provided more practical and e#cient solutions for modern NLP applications.

0.4.2 Statistical Representations

While discrete representations like BoW provide a foundation for text processing, they lack
the ability to model sequential patterns in language. Statistical representations, particularly
n-gram language models, emerged as a way to capture local word dependencies and predict
the probability of word sequences. These models build upon the distributional hypothesis
while incorporating sequential information, making them particularly e"ective for tasks
like speech recognition and machine translation.

N-gram Probabilistic Language Models

N-gram language models represent one of the most in%uential statistical approaches to
language modeling. Unlike BoW, which treats words as independent units, n-gram models
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like KenLM [119] consider sequences of n consecutive words to estimate the probability of
the next word in a sequence. Formally, an n-gram model approximates the probability of a
word sequenceW = (w1, ..., wm) as:

P (W ) ↔
m∏

i=1

P (wi|wi→n+1, ..., wi→1)

where each word’s probability depends on its n↗ 1 preceding words (its past context).

KenLM implements two e#cient data structures for storing and querying these proba-
bilities: PROBING and TRIE. The PROBING structure uses linear probing hash tables opti-
mized for speed, while TRIE employs a trie with bit-level packing and interpolation search
focused on memory e#ciency. For a trigram model (n=3), probabilities are stored in the
form:

logP (wi|wi→2, wi→1)

A signi!cant challenge with n-gram models is data sparsity: many possible n-gram
sequences are never observed in training data, resulting in a sparse probability matrix. To
address this issue, language models typically implement backo" mechanisms, which fall
back to lower-order n-grams when a higher-order sequence is not observed. For example,
if a speci!c trigram is not found in the training data, the model can back o" to bigram or
unigram probabilities using computed backo"weights. This technique allows the model to
make reasonable probability estimates even for previously unseen sequences.

One advantage of n-gram models, including KenLM, is their ability to e#ciently cap-
ture local word dependencies and idiomatic expressions while minimizing memory usage.
For instance, in the phrase "New York City," the model learns that "City" is highly prob-
able following "New York" and stores this information compactly. KenLM achieves this
e#ciency through di"erent data structures: the PROBING structure allows fast hash-based
lookups, while the TRIE structure reduces memory footprint using careful bit-packing and
interpolation search.

However, like all n-gram models, these methods face inherent challenges. The spar-
sity problem remains signi!cant: as n increases, the number of possible n-grams grows
exponentially, making it impossible to observe all valid combinations in the training data.
Additionally, n-gram models are constrained by their !xed context window size, limiting
their ability to capture long-range dependencies or semantic relationships beyond their
order.

Another major limitation is their inability to generalize beyond observed sequences.
For example, if a model is trained on the phrase "the car’s color is red" it will recognize this
exact sequence but struggle to generalize to variations like "the car’s color is magenta" This
rigidity stems from the discrete nature of n-gram representations, which lack the ability to
infer relationships between words beyond their explicit occurrence in the training data.

These constraints, particularly the di#culty in capturing semantic similarities and long-
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range dependencies, led to the development of continuous representations, such as word
embeddings and neural language models, which o"er greater %exibility and generalization
capabilities.

0.4.3 Continuous and Static Representations

Traditional n-gram language models, while e"ective for local patterns, struggle with data
sparsity and discrete word representations. Word embedding methods were introduced to
address these limitations. These methods map words into continuous vector spaces where
each word is represented by a dense, real-valued vector of !xed dimension n. These vectors
are learned on large amounts of data using neural network approaches, capturing semantic
relationships more e"ectively than discrete vectors: semantically similar words will have
similar vectors and will be close to each other in the representation space, where this would
not be possible previously.

This fundamental shift toward a !xed dimension vector that allows a semantic compari-
son betweenwordswas, at the time of the release ofWord2Vec in 2009, a game-changing ap-
proach that heavily in%uenced the future of modeling approaches of words and sequences.

Importantly, these word embeddings serve as crucial building blocks in modern neural
architectures, where they are used to initialize the hidden layers of various neural net-
work systems. Before the transformer architecture became dominant, word embeddings
were generally pre-trained and therefore extensively employed in recurrent neural net-
works such as LSTMs! (LSTMs!) and Gated Recurrent Units (GRUs), bootstrapping these
models with rich semantic representations that signi!cantly improved their performance
on various NLP tasks. This integration of pre-trained word embeddings into neural archi-
tectures established a fundamental paradigm that continues to in%uence how we represent
and process language in deep learning systems.

Word2Vec embeddings: CBOW and Skip-gram architectures

Word2Vec, introduced by Mikolov et al. [205], revolutionized word representations by
proposing two neural architectures for learning n-dimensional word embeddings: Contin-
uous Bag-of-Words (CBOW) and Skip-gram. As illustrated in Figure 3, these architectures
approach the learning task from opposite directions.
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CBOW

wt→2

wt→1

...

wt+1

wt+2

Projection wt

Skip-gram

wt Projection

wt→2

wt→1

...

wt+1

wt+2

Figure 3: Word2Vec architectures: CBOW predicts the target word from context words,
while Skip-gram predicts context words from the target word.

The CBOW architecture (left side of Figure 3) predicts a target word given its context.
Initially, both the target word and its context are converted to one-hot vectors (vectors
where all components are 0 except for one position which is 1). The input layer is the sum
of the context’s one-hot vectors, while the output layer is the target word’s one-hot vector.
The hidden layer forms the embedding layer where each vocabulary word is represented by
a real-valued vector. The model is trained by comparing predicted and actual embeddings
of the target word and adjusting the vector representations through backpropagation.

Conversely, the Skip-gram architecture (right side of Figure 3) attempts to predict the
context words given a target word. However, with large vocabularies, this approach faces a
computational challenge: for each positive pair (target word, context word), themodel must
generate numerous negative pairs (target word, vocabulary words not in the context) for
training. To address this optimization problem, the authors introduced negative sampling,
which stochastically samples only a subset of negative pairs for each positive example,
signi!cantly accelerating the training process.

GloVe embeddings

GloVe (Global Vectors for Word Representation) [229] combines the advantages of two ap-
proaches: statistical word co-occurrence methods and neural word embeddings. As shown
in Figure 4, GloVe builds upon a word co-occurrence matrix and learns embeddings through
matrix factorization.

The model !rst constructs a co-occurrence matrix from the text corpus, measuring how
often each word pair appears within a given context window. From this matrix, word co-
occurrence probabilities are calculated, representing the conditional probability of word j
co-occurring with word i. The model is then trained by minimizing:

V∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j ↗ log(Xij))

2

where Xij represents the co-occurrence counts and f(Xij) is a weighting function.
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X11 X12 X13 · · ·

X21 X22 X23 · · ·

X31 X32 X33 · · ·

...
...

...
. . .Word Vector wi Context Vector w̃j

wT
i w̃j + bi + b̃j ↔ log(Xij)

Figure 4: GloVe word vectors based on factorizing the word co-occurrence matrix.

FastText embeddings

Unlike Word2Vec and GloVe, which treat words as atomic units, FastText [33] extends the
skip-gram model by representing each word as a bag of character n-grams, called subword
units, as shown in Figure 5. Instead of learning a single vector per word, FastText learns
representations for character n-grams (typically of length 3-6) and represents words as the
sum of these n-gram vectors.

For example, the word "where" would be broken down into character n-grams: <wh,
whe, her, ere, re> plus the special sequence <where>. The model adds special boundary
tokens < and > to mark the beginning and end of words, helping distinguish between n-
grams that appear in di"erent positions. Like skip-gram, the model is trained to predict
context words, but uses the sum of n-gram vectors instead of word vectors. The !nal word
embedding is computed as:

s(w) =
∑

g↓Gw

zg

where Gw is the set of character n-grams in word w and zg are the learned n-gram
vectors.

This approach o"ers two key advantages: First, it can generate embeddings for out-
of-vocabulary words by combining their character n-gram vectors. Second, it better cap-
tures morphological relationships between words, particularly bene!cial for morphologi-
cally rich languages, as words sharing similar character sequences will have similar repre-
sentations.

These static word embedding approaches marked a signi!cant advancement in word
representation. However, they share a common limitation: each word has a single !xed
representation regardless of its context.
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"where"

<wh whe her ere re>

z1 z2 z3 z4 z5

s(w) =
∑

zg

Figure 5: FastText word representation as the sum of its character n-gram vectors.

0.4.4 Continuous and Contextualized Representations

While static word embeddings represented a signi!cant advancement in NLP, they face
a fundamental limitation: each word has only one representation regardless of its con-
text [90]. This limitation becomes particularly apparent when dealing with polysemous
words or context-dependent meanings. For instance, the word "bank" in "river bank" ver-
sus "!nancial bank" should ideally have di"erent representations re%ecting their distinct
meanings. Contextualized representations address this limitation by dynamically generat-
ing word representations based on their surrounding context [230].

The emergence of contextualized representations was made possible by several key de-
velopments: advanced tokenization methods, the transformer architecture [276], and novel
self-supervised training objectives. These innovations collectively enabled the creation of
powerful language models that could capture nuanced semantic relationships and generate
context-aware word representations.

Tokenization Algorithms

Modern language models process text at a subword level rather than treating words as
atomic units. This approach addresses the vocabulary size limitations and out-of-vocabulary
problems faced by word-level models [249]. Three main tokenization algorithms have
emerged as standards in the !eld: Byte-Pair Encoding (BPE) [249], WordPiece [295], and
SentencePiece [158]. Figure 6 illustrates the general pipeline these algorithms follow, from
raw text to !nal subword tokens.
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c-e-p-h-a-l-o-g-r-a-p-h-y

c-e-p-h-al-o-g-r-a-p-h-y

c-e-ph-al-o-g-r-a-p-h-y

c-e-ph-al-o-gr-a-p-h-y

c-e-ph-al-o-gr-a-ph-y

ce-ph-al-o-gr-a-ph-y

ce-phal-o-gr-a-ph-y

ce-phal-o-graph-y

ce-phal-o-graphy

cephal-o-graphy

Merge: a+l → al
Merge: p+h → ph
Merge: g+r → gr
Merge: p+h → ph
Merge: c+e → ce

Merge: ph+al → phal
Merge: gr+aph → graph

Merge: graph+y → graphy
Merge: ceph+al → cephal

Red: current merge

- : possible merge points

Figure 6: BPE segmentation process for the medical term "cephalography". Each step shows
a merge operation (highlighted in red) based on the frequency of character pairs in the vo-
cabulary. The process demonstrates how BPE can identify meaningful medical morphemes:
"cephal" (head), "o" (combining vowel), and "graphy" (process of recording/imaging). Hy-
phens indicate possible merge points for the next iteration.

Byte-Pair Encoding, originally developed for data compression [95], iteratively merges
the most frequent pairs of bytes or characters to build a vocabulary of subword units. As
shown in Figure 6, the algorithm begins with character-level splitting and progressively ap-
plies merge operations based on frequency statistics from a training corpus. These merge
operations combine frequent character sequences into larger subword units, creating a vo-
cabulary that e#ciently represents the training data.

WordPiece follows a similar pipeline but modi!es the merging criteria. Instead of using
pure frequency counting, it employs a likelihood-based approach for merge operations.
This modi!cation helps create more linguistically meaningful subword units, particularly
useful for morphologically rich languages. The algorithm evaluates potential merges based
on how much they would improve the likelihood of the training data given the current
vocabulary.

Finally, SentencePiece implements a language-agnostic tokenization approach by treat-
ing input text as a sequence of Unicode characters. Unlike BPE and WordPiece, which
typically operate on pre-tokenized text, SentencePiece applies its tokenization process di-
rectly to raw text. This makes it particularly suitable for languages without clear word
boundaries, such as Chinese or Japanese, as it learns word segmentation and subword tok-
enization jointly.

Transformer Architecture

The Transformer architecture, introduced by Vaswani et al. [276], revolutionized NLP by
replacing recurrent neural networks such as long short-term memory (LSTMs) [124] and
gated recurrent neural networks [61] with self-attentionmechanisms [18]. This mechanism
enables parallel processing of input sequences and captures long-range dependencies more
e"ectively than previous approaches.
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At its core, the Transformer uses self-attention to compute representations of input to-
kens by considering their relationships with all other tokens in the sequence [276]. Each to-
ken’s representation is computed as a weighted sum of all tokens’ values, where the weights
are determined by learned attention patterns. The multi-head attention mechanism allows
the model to capture di"erent types of relationships simultaneously, such as syntactic de-
pendencies and semantic associations.

The architecture consists of multiple layers of self-attention and feed-forward neural
networks, combined with residual connections [117] and layer normalization [12]. Position
information is incorporated through learned positional encodings, allowing the model to
understand token order despite its parallel processing nature.

Self-supervised Training Objectives

The e"ectiveness of contextualized representations largely depends on their training ob-
jectives. Self-supervised learning enables models to learn from vast amounts of unlabeled
text by creating supervised learning tasks from the data itself [192]. Three primary training
objectives have emerged: masked language modeling, autoregressive language modeling,
and encoder-decoder language modeling, which we will explore in the following parts:

Encoder-only models: BERT and variants Bidirectional Encoder Representations from
Transformers (BERT) [81] involves two tasks during pre-training: MLM and Next Sentence
Prediction (NSP).

Masked language modeling, mainly popularized by BERT, consists of randomly mask-
ing tokens in the input sequence and training the model to predict these masked tokens,
as shown in Figure 7. This objective forces the model to develop a deep understanding of
bidirectional context and linguistic patterns. The masking strategy typically includes re-
placing tokens with a special [MASK] token in 15% of the cases, random tokens, or leaving
them unchanged, helping the model learn robust representations [192].

Input: [CLS] my little [MASK] is cute [SEP]

Masked Language Model

Output: [CLS] my little dog is cute [SEP]

dog: 0.7, cat: 0.2, poney: 0.05

Figure 7: Masked Language Modeling (MLM) predicts masked tokens using bidirectional
context.

The second training objective, NSP, consists of training the model to understand re-
lationships between sentences by predicting whether two sentences appear consecutively
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in the original text, using a special [CLS] token prepended to the input to capture this
relationship.

The model architecture consists of multiple transformer encoder layers that process
input text in both directions simultaneously. BERT’s architecture comes in two variants:
BERTBASE (12 layers, 12 attention heads, 768 hidden size, 110M parameters) and BERTLARGE

(24 layers, 16 attention heads, 1024 hidden size, 340M parameters), both pre-trained on 3.2B
words from Wikipedia and BooksCorpus [317].

BERT’s input representation combines three embeddings as shown in the Figure 8: to-
ken embeddings (using WordPiece tokenization with a vocabulary of size 30K), position
embeddings (encoding token position in the sequence), and segment embeddings (distin-
guishing between sentence pairs).

RoBERTa (Robustly Optimized BERT Approach) [192] represents a signi!cant enhance-
ment of the BERT architecture through several carefully designed optimizations. One of the
key innovations is the implementation of dynamic masking, where the model generates
new masking patterns each time a sequence is presented during training. This contrasts
with BERT’s static masking approach and helps prevent the model from memorizing spe-
ci!c mask patterns, leading to more robust learning.

InputTokens

TokenEmbeddings

PositionEmbeddings

SegmentEmbeddings

FinalEmbeddings

[CLS] my dog is cute [SEP] he likes play #ing [SEP]

Etok Etok Etok Etok Etok Etok Etok Etok Etok Etok Etok

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

EA EA EA EA EA EA EB EB EB EB EB

E1

+

+

E2

+

+

E3

+

+
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+

+
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+
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+

+
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Figure 8: BERT input representation showing the combination of token, position, and seg-
ment embeddings. The !nal embedding for each token is the sum of its corresponding
token embedding, position embedding, and segment embedding. [MASK] tokens are used
for masked language modeling training.

A crucial modi!cation was the elimination of BERT’s NSP task. This seemingly simple
change had profound implications: it not only streamlined the training process but also
allowed for larger batch sizes, signi!cantly improving training e#ciency. The experiments
also show that NSP’s bene!ts were minimal compared to the computational overhead it
introduced.

RoBERTa also re!ned the tokenization strategy by implementing byte-pair encoding
(BPE) with a larger vocabulary of 50K tokens, enabling more nuanced text representa-
tion. While maintaining the same architectural scale as BERTLARGE with 355M parameters,
RoBERTa’s training process was substantially more extensive, utilizing a massive 160GB
text corpus (compared to BERT’s 16GB). This corpus included not only BERT’s original
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training data but also additional datasets like Common Crawl News [114] and OpenWeb-
Text [102], contributing to its improved performance across various NLP tasks.

The success of RoBERTa’s optimized training approach inspired several language-speci!c
adaptations, particularly for French. CamemBERT [199] emerged as a signi!cant French
language model, applying RoBERTa’s architecture and training methodology to French
text from the OSCAR corpus [221]. Unlike multilingual models that often compromise
performance due to vocabulary distribution across languages, CamemBERT was speci!-
cally designed for French, achieving state-of-the-art performance on French NLP bench-
marks. Similarly, FlauBERT [174] represents another notable French adaptation, incor-
porating both RoBERTa’s architectural improvements and training strategies while being
trained on diverse French corpora. Both models demonstrate the e"ectiveness of adapting
proven architectural innovations to speci!c linguistic contexts, validating the transferabil-
ity of RoBERTa’s key improvements across di"erent languages and domains.

These modi!cations, combined with optimized hyperparameters and longer training
times, resulted in a model that consistently outperformed BERT on benchmark tasks.

A key limitation of BERT and its variants is the quadratic computational complexity of
self-attention with respect to sequence length, restricting input sequences to 512 tokens.

Decoder-only / Auto-regressive Models: GPT and variants Autoregressive language
modeling, used in GPT-style models [236, 237], trains the model to predict the next token
given all previous tokens in the sequence, as shown in the Figure 9. This objective naturally
aligns with the way humans process language left-to-right (in most languages), making
it particularly e"ective for text generation tasks. The model learns to capture complex
dependencies and patterns in language by repeatedly predicting the next token in context
[38].

The Generative Pre-trained Transformer family of models [236] pioneered the use of
transformer decoders for generative pre-training. The original GPT architecture consists
of 12 transformer decoder layers, 12 attention heads, and a hidden size of 768, using BPE
tokenization with a 40K vocabulary. Like BERT, GPT follows a two-stage approach: pre-
training and !ne-tuning. During pre-training, the model uses Causal Language Modeling
on continuous sequences of 512 tokens, initially trained on the BooksCorpus dataset.

GPT-2 [237] introduced signi!cant innovations in multi-task learning and zero-shot
transfer. Rather than traditional !ne-tuning, GPT-2 treated task-speci!c learning as unsu-
pervised pre-training examples. The model was trained on WebText, a dataset introduced
in the same article and carefully curated from web pages taken from Reddit’s outbound
links that received positive feedback from the community, chosen for content quality and
for the naturally occurring demonstrations of various tasks in varied domains and contexts.
This dataset results in 8 million documents for a total of 40 GB of text after de-duplication
and cleaning.
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Input: I like cats more than

Autoregressive Language Model

Output: dogs

dogs: 0.7, birds: 0.2, !sh: 0.1

Figure 9: Autoregressive Language Modeling predicts the next token based on previous
context.

GPT-2 pioneered the use of prompting or conditioning, where task instructions are
prepended to the input sequence, enabling zero-shot task adaptation to perform multiple
tasks such as reading comprehension, translation, summarization and question answering
without explicit !ne-tuning.

GPT-3 [38] scaled this approach dramatically to 175 billion parameters, trained on 300
billion tokens from diverse sources including !ltered Common Crawl (410B tokens), Web-
Text2 (19B tokens), Books1 and Books2 (67B tokens combined), and English Wikipedia.
The model introduced various prompting paradigms: few-shot (using multiple examples),
one-shot (single example), and zero-shot (task description only) learning.

The rapid evolution of increasingly large autoregressive models led to important ques-
tions about the relation between data and parameters, also called scaling laws. One of the
!rst contributions in this direction is the Chinchilla scaling law [125] which suggests that
model parameters and training tokens should scale proportionally for optimal compute
e#ciency, revising earlier assumptions about faster parameter scaling. This insight in%u-
enced the development of subsequent models like BLOOM [292], PaLM [56], OPT [312],
and later on LLaMA [267], each accompanied by instruction-tuned variants (BloomZ [207],
Flan-PaLM [59], OPT-IML [134] and Alpaca [259]) optimized for zero- and few-shot per-
formance with natural language instructions.

These developments demonstrated that scale, combined with sophisticated prompting
techniques, enables powerful general-purpose language capabilities [219, 138, 28]. The
emergence of prompt-based !ne-tuning, also called in-context learning (ICL), has made
the need for adapting the model parameters to newer domains, data distribution, or tasks
less obvious [86], has further enhanced the adaptability of these models to speci!c tasks
while maintaining their general-purpose capabilities.

Encoder-Decoder Models: T5 and BART Encoder-decoder models are a fundamental
architecture in NLP, where an encoder transforms an input sequence into an intermediate
representation, and a decoder generates an output sequence from this representation. This
architecture is particularly e"ective for tasks such as machine translation, text summariza-
tion, and text generation.
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Text-to-Text Transfer Transformer (T5) [239] uni!ed various NLP tasks into a single
text-to-text format, where both inputs and outputs are treated as text strings. This uni!ca-
tion is achieved through task-speci!c pre!xes (e.g., "summarize:" for summarization, "sst2
sentence:" for sentiment analysis) that are prepended to input texts, building upon GPT’s
prompting approach. T5 was pre-trained on both unsupervised and supervised tasks, using
the massive C4 (Colossal Clean Crawled Corpus) [239] dataset made of 750GB of cleaned
Common Crawl data, along with supervised tasks from GLUE [279] and SuperGLUE [278]
benchmarks.

Original: The cat sat on the mat today

Encoder Input: The cat <X> on the <Y> today

Bidirectional Encoder

Autoregressive Decoder

Decoder Target: <X> sat <Y> mat

Original tokens

Sentinel tokens

Figure 10: Encoder-Decoder training objective with span corruption. The encoder pro-
cesses text with corrupted spans (replaced by sentinel tokens <X>, <Y>), while the decoder
learns to reconstruct the original spans. This approach combines BERT-style masking with
sequence-to-sequence learning.

T5’s pre-training introduced span corruption, where randomly sampled spans covering
15% of input tokens are replaced with unique sentinel tokens, o"ering a more structured
alternative to BERT’s random masking. During training, the encoder processes the cor-
rupted text while the decoder reconstructs the original spans, with targets consisting of
the removed tokens delimited by their associated sentinel tokens as shown in Figure 10.
The model has evolved into several variants, including mT5 [299] for multilingual tasks
(supporting 101 languages), UL2 [260] with diverse pre-training objectives, and instruction-
tuned versions like Flan-T5 [59], Tk-Instruct [283], T0 [246] and Flan-UL2, available in sizes
ranging from millions to billions of parameters.

BART [178] combined the bidirectional encoder of BERT with the autoregressive de-
coder of GPT, featuring 12 layers in both encoder and decoder with a 1024 hidden size. Its
pre-training involves sophisticated text corruption strategies: text in!lling, where spans
of text with lengths drawn from a Poisson distribution (ε = 3) are replaced with single
mask tokens, and sentence permutation, which randomly reorders document sentences.
Using the same BPE tokenization and training data as RoBERTa, BART excels at both un-
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derstanding and generation tasks, particularly in sequence-to-sequence applications like
summarization and translation.

The encoder-decoder architecture’s versatility stems from its natural separation of un-
derstanding and generation: the encoder captures semantic and structural information from
the source text into a continuous representation (context), while the decoder generates tar-
get text by considering both this encoded context and its previously generated tokens. This
architecture has proven particularly e"ective for tasks requiring both deep understanding
and structured generation, such as machine translation, text generation, and summariza-
tion, making it a more e"ective approach which allows to obtain better performances until
the release of ChatGPT and Llama.

Pre-training and Model Adaptation Strategies for Healthcare

Adapting LLM for healthcare applications presents unique challenges in bridging general
language capabilitieswith specializedmedical knowledge. These adaptation strategiesmust
address the complexity of medical terminology while ensuring models can process diverse
clinical document formats, including progress notes, discharge summaries, and diagnostic
reports. Successful adaptation enables models to generate outputs that align with medical
reasoning patterns and documentation standards.

Pre-training Approaches Two principal paradigms guide the adaptation of language
models for healthcare applications:

Continual pre-training o"ers an alternative strategy that builds upon existing general-
purpose languagemodels by extending their training withmedical domain data. This trans-
fer learning approach preserves the model’s general language understanding and tokeniza-
tion process while incorporating specialized medical knowledge using sources like PubMed
or MIMIC [142]. This approach is relatively a"ordable and was used as the !rst method to
obtain a domain-speci!c variant of BERT in healthcare with BioBERT [176], ClinicalBERT
[5], and BlueBERT [228].

Pre-training from scratch domain-speci!c models, on the other hand involves train-
ing them exclusively on medical corpora, enabling them to develop specialized vocabulary
and embed domain-speci!c knowledge. This resource-intensive approach requires substan-
tial medical text data, typically drawn from sources like PubMed abstracts, complete medi-
cal articles, and when available, clinical documentation from electronic health records. This
foundational training establishes broad medical knowledge and terminology comprehen-
sion, creating a base for specialized applications. A signi!cant challenge in this approach
is developing e"ective tokenization strategies to handle complex medical terminology, ab-
breviations, and specialized nomenclature. Among the !rst language models, architecture
adaptation from-scratch to the healthcare domains arrived with BERT and its variants like
PubMedBERT [109] and SciBERT [26].
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In-Context Learning In-context learning has emerged with GPT-2 [37] as a powerful
paradigm for learning new capabilities and knowledge on-the-%y, making it quite aligned
with sparse and diversi!ed medical applications, allowing models to adapt to speci!c medi-
cal tasks without !ne-tuning. Models like GPT-4 [220] andMed-PaLM 2 [254] have demon-
strated remarkable capabilities in few-shot medical reasoning [217], where they can lever-
age a small number of examples to perform complex medical tasks (See Figure 11). This
approach has been particularly e"ective in the clinical context, where models can analyze
patient cases by referencing similar examples provided in the prompt.

Input: Patient with
fever, cough, fatigue
Output: Consider upper
respiratory infection

Input: Patient with
chest pain, shortness of
breath
Output: Evaluate for
acute coronary syndrome

Input: Patient with
headache, neck sti"ness
Output: Screen for
meningitis

Input: Patient
with fever, joint
pain, rash

LM

Output: Evaluate for systemic
lupus

New
Query

Model
Response

Figure 11: Few-shot learning in medical diagnosis with a number of examples set to three.
The language model learns from a few example cases (also called "shots") and applies this
knowledge to classify the input or generate appropriate responses for new medical cases.
Each example contains an input-output pair showing symptoms and corresponding diag-
nostic considerations.

Recent studies have shown that carefully crafted medical examples can signi!cantly im-
prove diagnostic accuracy and clinical reasoning. For instance, ChatDoctor [181] and Doc-
torGLM [298] have demonstrated that providing structured medical examples with detailed
symptom-diagnosis relationships helps models better understand clinical presentations and
generate more accurate medical assessments.

Chain-of-ThoughtReasoning Chain-of-Thought (CoT) [285] prompting has revolution-
ized medical reasoning in LLM by enabling step-by-step clinical reasoning processes (see
Figure 12). This approach mirrors the systematic thinking patterns of healthcare profes-
sionals, breaking down complex medical decision-making into logical steps.

Medical reasoning bene!ts signi!cantly from CoT, where models explicitly articulate
the progression from symptoms to the !nal task (e.g, di"erential diagnoses or codi!cation),
considering various factors such as patient history, lab results, and potential complications.

23



C3%4#/$ 0

Clinical Case: 65-year-
old female presents with:
- Sudden chest pain
- Shortness of breath
- History of hyperten-
sion
- Recent long %ight

Step 1: Identify key symptoms:
Acute chest pain ; Dyspnea

Step 2: Consider risk factors:
Age > 60 ; Recent immobilization

Step 3: Form di"erential: PE vs.
ACS vs. Aortic dissection

Step 4: Evaluate urgency: High-
risk presentation

Assessment & Plan: 1. High suspicion for Pulmonary Embolism ; 2. Im-
mediate CT-PA needed ; 3. Consider empiric anticoagulation ; 4. Urgent ED
evaluation

Medical Knowl-

edge:

- Wells criteria
- PERC rule
- Risk strati!cation
- Treatment guide-
lines

Figure 12: Chain-of-Thought reasoning in medical diagnosis. The model follows a system-
atic approach to clinical reasoning, breaking down the diagnostic process into logical steps
while incorporating relevant medical knowledge. Each step builds upon previous observa-
tions and considerations, leading to a comprehensive assessment and management plan.
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0.4.5 Downstream Tasks

NLP encompasses a wide range of computational tasks designed to understand, analyze,
and generate human language. These tasks form the foundation for various applications in
text processing and analysis, ranging from basic linguistic analysis to complex reasoning
tasks. While many NLP tasks were initially developed for general domain text, they have
been adapted and specialized for various domains, including healthcare.

Named Entity Recognition Named Entity Recognition (NER) is a fundamental NLP task
that aims to identify and classify named entities in text into prede!ned categories such as
person names, organizations, locations, medical codes, time expressions, quantities, and
more (as shown in Figure 13). In the biomedical domain, NER is particularly valuable for
extracting structured information from unstructured clinical notes, research papers, and
other medical texts. This task presents unique challenges in the biomedical context due
to the domain’s specialized terminology, frequent abbreviations, complex naming conven-
tions, and the high cost of annotation requiring expert knowledge.

DISEASE MEDICATION CONDITION BIO-SUBSTANCE ANATOMY

The patient presents with hypertensionDIS and has been taking lisinoprilMED

since their myocardial infarctionCOND . Lab tests revealed elevated levels of

creatinineBIO in the bloodANAT .

Figure 13: Examples of Named Entity Recognition (NER) in healthcare domains.

For French biomedical texts, several datasets are available: QUAERO [211] contains
103,056 words from drug lea%ets and biomedical titles, annotated with 10 entity categories
corresponding to UMLS [188] Semantic Groups, with 26,409 entity annotations mapped to
5,797 unique UMLS concepts. E3C [196] provides clinical entity and temporal information
annotations, split into 70/10/20 for train/validation/test as shown in Table 1. Mantra-GSC
[155] o"ers biomedical NER annotations from three sources (Medlinewith 11 classes, EMEA
and Patents with 10 classes), similarly split 70/10/20. DEFT-2021 [107] contains 275 clinical
cases with 13 types of entities. The PxCorpus [153] includes 1,981 transcribed dialogues
with 38 NER classes. For English, BC5CDR [180] serves as a benchmark for chemical and
disease entity recognition, while the NCBI-disease [85] corpus targets disease name recog-
nition and normalization.

Subset Train Validation Test

Clinical 87.38 % of layer 2 12.62 % of layer 2 100 % of layer 1

Temporal 70 % of layer 1 10 % of layer 1 20 % of layer 1

Table 1: Description of the sources for E3C.
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Relation Extraction Relation extraction (RE) is a natural language processing task that
aims to identify and classify semantic relationships between entities mentioned in text as
shown in the Figure 14. In the biomedical domain, this typically involves detecting mean-
ingful associations between biomedical entities such as genes, proteins, diseases, drugs, and
symptoms. For example, a relation extraction system might identify that a particular gene
"causes" a disease, a drug "treats" a condition, or a protein "interacts with" another pro-
tein. This task is more complex than named entity recognition as it requires understanding
not just what entities are present, but how they relate to each other semantically. Relation
extraction is crucial for building structured knowledge bases from unstructured text, en-
abling advanced biomedical applications like drug discovery, clinical decision support, and
literature-based discovery.

Studies show that BRCA1 mutations increase the risk of breast cancer .

increases_risk

Figure 14: Example of Relation Extraction with an angled arrow showing the relationship
between entities.

Currently, relation extraction tasks are primarily represented by English-language datasets,
with the Genetic Association Database (GAD) [36] serving as a comprehensive resource of
human genetic association studies, providing annotations of gene-disease relationships ex-
tracted from biomedical literature.

Text Classi!cation Text classi!cation is a fundamental NLP task that involves catego-
rizing text documents into prede!ned classes or categories. In the biomedical domain, this
typically includes assigning medical specialties, disease codes, or thematic categories to
clinical notes, research papers, or patient records. Text classi!cation tasks generally fall
into two main types: multi-class and multi-label classi!cation. In multi-class classi!cation,
each document belongs to exactly one category from a set of mutually exclusive classes
(e.g., assigning a single primary diagnosis). In contrast, multi-label classi!cation allows
documents to simultaneously belong to multiple categories (e.g., a clinical case exhibiting
multiple conditions or relevant to several medical specialties). The latter is particularly
common in biomedical contexts, where patients often present with comorbidities and doc-
uments frequently span multiple medical domains.

French healthcare classi!cation datasets include MorFITT [171] (3,624 biomedical ab-
stracts annotated across 12 medical specialties, totaling 5,116 annotations), DiaMed [166]
(739 clinical cases annotated with 22 ICD-10 chapters, DEFT-2021 [107] (275 clinical cases
annotated with 23 MeSH axes), and PxCorpus (1,981 recordings with 4 intent classes). For
English, datasets include HoC [22], LitCovid [47], PubHealth [210], and the N2C2 2006
Smokers [272] dataset.

QuestionAnswering Themedical domain bene!ts from various question-answering (QA)
datasets, each with distinct characteristics. These datasets cover a broad spectrum of tasks,
ranging from pharmacy professional examinations (FrenchMedMCQA) to medical board
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questions (MedMCQA), and biomedical research comprehension (PubMedQA). The formats
vary considerably, including multiple-choice questions with single or multiple answers,
yes/no/maybe questions, and questions requiring in-depth analysis of clinical trials. These
datasets are also linguistically diverse, with some also available in French, English, or Chi-
nese, re%ecting the international nature of medical research.

FrenchMedMCQA [163] represents the !rst French medical QA dataset, containing 3,105
pharmacy specialization exam questions. Each question o"ers 5 options (A through E) and
comes from real French pharmacy specialization diplomas. The dataset balances between
single-answer (1,080) and multiple-answer (2,025) questions, providing a diverse testing
ground for French medical language understanding.

MedMCQA [222] stands as a comprehensive medical dataset comprising 193,155 ques-
tions from AIIMS and NEET PG exams. It spans 21 medical subjects across 2.4k healthcare
topics, with each question accompanied by detailed explanations. The dataset’s diversity is
re%ected in its question types, including diagnosis (16.39%), treatment (14.36%), and logical
reasoning (28.83%), supporting both single and multiple correct answers.

PubMedQA [140] focuses on biomedical research comprehension, featuring 211.3k ar-
ti!cially generated questions alongside 1,000 expert-annotated ones. Questions follow a
yes/no/maybe format and are derived from PubMed research articles and abstracts. The
dataset emphasizes complex reasoning, with 57.5% of questions requiring inter-group com-
parisons and 96.5% demanding quantitative reasoning skills.

MMLU ’s [120] medical component consists of 1,089 questions across 6 medical subjects.
As part of a broader evaluation benchmark, this multiple-choice dataset tests both basic and
advanced medical knowledge, designed speci!cally to evaluate model capabilities against
human expertise levels.

MedQA [139] o"ers amultilingual perspective onmedical board exams, featuringUSMLE
questions in English (10,178 training + 1,273 test samples) with parallel datasets in simpli-
!ed and traditional Chinese. The dataset emphasizes clinical reasoning and knowledge
retrieval, complemented by accompanying medical textbook knowledge sources.

SciQ [287] presents a crowdsourced approach to science questions, including medical
topics. Itsmultiple-choice format derives questions from science textbooks, withmost ques-
tions including their source passages, ensuring context-rich learning opportunities.

BioASQ 7b [268] specializes in biomedical question-answering, incorporating various
question types including factoid, yes/no, and list-type questions. The dataset demands pre-
cise answer extraction and tests comprehensive biomedical domain expertise.

Evidence Inference 2.0 [82] targets clinical trial analysis through 12,616 prompts derived
from 3,346 articles. It employs Intervention-Comparator-Outcome (ICO) triplets, requiring
sophisticated understanding of clinical trial reports and their implications for treatment
e"ects.

Semantic Similarity Semantic similarity is a NLP task that aims to quantify the degree
of semantic relatedness between texts, ranging from words and phrases to entire docu-
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ments. In the biomedical domain, this task is particularly valuable for identifying related
medical concepts, !nding similar clinical cases, or determining if two medical descriptions
refer to the same condition despite using di"erent terminology. Unlike classi!cation, which
assigns discrete categories, semantic similarity produces continuous scores that re%ect the
gradation of relatedness. These scores typically range from 0 (completely unrelated) to a
maximum value (identical or perfectly related). Semantic similarity assessment in medi-
cal texts is especially challenging due to the domain’s complex terminology, where similar
concepts may be expressed using entirely di"erent vocabularies, and subtle di"erences in
description might indicate signi!cant clinical distinctions.

In French, CLISTER [123] provides 1,000 manually annotated clinical case pairs with
similarity scores (0-5), based on three dimensions: surface similarity, semantic similarity of
medical concepts, and clinical compatibility. DEFT-2020 [40] o"ers similarity scoring (0-5)
across di"erent medical text types including clinical texts, encyclopedia entries, and drug
labels, with annotations based on annotator intuition. The corpus contains 1,010 sentence
pairs from the CLEAR corpus [104].

Natural Language Inference Natural Language Inference (NLI), also known as textual
entailment, is a task that evaluates the logical relationship between a premise (a given state-
ment) and a hypothesis (a potential conclusion). The goal is to determine whether the
hypothesis can be inferred from the premise. Typically, the relationship is classi!ed into
three categories: entailment (the hypothesis logically follows from the premise), contra-
diction (the hypothesis contradicts the premise), or neutral (the premise neither con!rms
nor contradicts the hypothesis). In the biomedical domain, NLI is particularly valuable for
verifying clinical reasoning, checking if conclusions drawn from patient information are
valid, and assessing whether medical texts contain contradictory information. This task
requires deep semantic understanding and often domain-speci!c knowledge to correctly
identify logical relationships between medical statements.

The English healthcare-speci!c MedNLI dataset [251] focuses on clinical domain infer-
ence using MIMIC-III notes, with premises drawn from the Past Medical History sections
and hypotheses generated by clinicians. The dataset contains 14,049 sentence pairs (11,232
train, 1,395 dev, 1,422 test) with entailment annotations. SciTail [149] provides 27,000 entail-
ment pairs derived from science question answering tasks, where hypotheses are created
from science questions and correct answer candidates, while premises come from relevant
web sentences. The dataset is unique in using naturally occurring sentences rather than
arti!cially created ones. Currently, there are no prominent French datasets speci!cally
dedicated to natural language inference in the medical domain.

Part-Of-Speech Part-of-Speech (POS) tagging is a NLP task that involves labeling each
word in a text with its corresponding grammatical category, such as noun, verb, adjective,
or adverb as shown in Figure 15. In the biomedical domain, POS tagging serves as a prepro-
cessing step for many advanced NLP applications, includingNamed Entity Recognition, syn-
tactic parsing, and information extraction. Medical texts present unique challenges for POS
tagging due to their specialized vocabulary, complex noun phrases, abbreviated terms, and
domain-speci!c syntactic patterns. Accurate POS tagging in clinical and biomedical texts
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enables better understanding of the grammatical structure of medical language, which in
turn improves the performance of downstream tasks like relation extraction and semantic
analysis.

DET NOUN VERB ADJ ADV PREP PUNC

LeDET patientNOUN présenteVERB uneDET hypertensionNOUN artérielleADJ

sévèrementADV depuisPREP plusieursNOUN annéesNOUN .PUNC

Figure 15: Example of Part-of-Speech (POS) tagging in French medical text. Each word is
highlighted with a color corresponding to its grammatical category, with tiny subscripts
indicating the speci!c part of speech.

Two signi!cant French corpora provide part-of-speech annotations for medical texts.
The CAS corpus [105] consists of 3,790 clinical cases with 31 distinct POS tags. These an-
notations were automatically generated using the Tagex tool1 and subsequently validated
against manual annotations, achieving a high precision of 98%. The ESSAI corpus [73] en-
compasses 7,247 clinical trial protocols and CAS corpus [105] comprises 3,790 clinical cases,
annotated with a more granular set of 41 POS tags using TreeTagger [247]. Neither dataset
originally included prede!ned data splits; therefore, both were randomly partitioned fol-
lowing the same distribution: 70% for training, 10% for validation, and 20% for testing pur-
poses.

1https://allgo.inria.fr/app/tagex
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0.4.6 Downstream Tasks Metrics

Evaluating NLP downstream tasks requires specialized metrics that capture the unique
characteristics of each task. Here, we present the primary metrics used to assess model
performance across various textual NLP tasks.

Named Entity Recognition For NER, the SeqEval F1 score is the standard metric, which
extends traditional F1 to sequence labeling by considering entity-level rather than token-
level performance:

F1 = 2↓
Precision↓ Recall
Precision+ Recall

(1)

where Precision measures the percentage of predicted entities that are correct:

Precision =
True Positives

True Positives+ False Positives
(2)

and Recall measures the percentage of actual entities that were correctly identi!ed:

Recall =
True Positives

True Positives+ False Negatives
(3)

Unlike token-level metrics, SeqEval only counts an entity as correct if both its span
boundaries and entity type are correctly predicted.

Accuracy is also sometimes reported, measuring the proportion of correctly predicted
entities among all predictions:

Accuracy =
Number of correctly predicted entities

Total number of entities
(4)

Text Classi!cation For text classi!cation tasks, Weighted F1 balances precision and re-
call while accounting for class imbalance:

Weighted F1 =
n∑

i=1

wi ↓ F1i (5)

where wi represents the proportion of samples belonging to class i, and F1i is the F1
score for that class i. This metric is particularly valuable in medical contexts where cer-
tain conditions or specialties may be underrepresented but equally important to identify
correctly.
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QuestionAnswering Question answering tasks utilize specializedmetrics depending on
the answer format. For multiple-choice questions, Exact Match Rate (EMR) measures the
percentage of questions where the model’s prediction exactly matches the correct answer:

EMR =
1

N

N∑

i=1

⊋(ŷi = yi) (6)

where⊋ is the indicator function, ŷi is the predicted answer, and yi is the correct answer.

For multiple-answer questions, Hamming Score evaluates partial correctness:

Hamming Score =
1

N

N∑

i=1

|Ŷ i ≃ Yi|

|Ŷi ↑ Yi|
(7)

where Ŷ i is the set of predicted answers and Yi is the set of correct answers for question
i.

Semantic Similarity For semantic similarity tasks, Euclidean Distance-based Relative
Metric (EDRM) measures how well a model’s predicted similarity scores align with human
judgments:

EDRM = 1↗

∑N
i=1(si ↗ ŝi)2∑

i = 1N(si ↗ s̄)2
(8)

where si is the gold standard similarity score, ŝi is the predicted score, and s̄ is the mean
of all gold standard scores.

Spearman’s rank correlation coe#cient assesses how well the ranking of text pairs by
predicted similarity aligns with human judgments:

ϑ = 1↗
6
∑N

i=1 d
2
i

N(N2 ↗ 1)
(9)

where di is the di"erence between the ranks of corresponding predicted and gold stan-
dard similarity scores, and N is the number of text pairs.

Part-Of-SpeechTagging POS tagging employs SeqEval F1 similar to NER, but with eval-
uation conducted at the token level rather than entity level:

Accuracy =
Number of correctly tagged tokens

Total number of tokens
(10)
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Additionally, per-class F1 scores are calculated to assess performance on speci!c gram-
matical categories, which is particularly important for identifying specialized medical ter-
minology with the correct grammatical function.

These comprehensive metrics provide a robust framework for evaluating model perfor-
mance across a diverse range of textual NLP tasks, enabling precise assessment of language
understanding capabilities in specialized domains such as healthcare.
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0.5 Speech Processing

0.5.1 Raw Signal

Audio signals are fundamentally represented as numerical sequences capturing sound am-
plitude variations over time. The temporal resolution of these signals is de!ned by the
sampling rate, measured in Hz (samples per second), with higher rates corresponding to
increased audio !delity.

The precision of amplitude measurement is determined by bit depth, which de!nes the
number of possible discrete values each sample can take. An 8-bit audio sample represents
28 = 256 distinct amplitude levels, while professional recording equipment typically uses
16-bit (65,536 levels) or 24-bit (16,777,216 levels) depth for higher !delity. These higher bit
depths capture nuances in vocal timbre and acoustic characteristics. Recording format also
matters: mono (single channel) serves basic voice recordings, while stereo (dual channel)
captures directional and spatial sound characteristics.

The information density of audio creates signi!cant storage challenges. A 24-hour
continuous recording at 16 kHz with 16-bit depth requires approximately 2.7GB, while its
textual transcription might occupy only 100KB, a 27,000 reduction factor. Similarly, a 15-
minute high-quality stereo recording at 44.1 kHz with 24-bit depth requires about 150MB,
compared to just 5KB for a text summary. This disparity impacts storage infrastructure,
computational resources for processing, research budgets, data pipeline design, and imple-
mentation of e#cient storage solutions for speech projects.

0.5.2 Spectrogram

While raw audio signals capture amplitude variations over time, they don’t directly repre-
sent critical features such as frequency components and phonetic characteristics. In speech
analysis, the spectrogram provides a sophisticated visualization of frequency distributions
over time, o"ering crucial insights for various linguistic and acoustic applications. This
frequency-time representation is particularly valuable in speech processing, where subtle
acoustic patterns can indicate speci!c phonetic elements.

The spectrogram is constructed through sequential frequency analysis of short time
windows, typically using the Fourier transform [93]. Each spectrum represents the fre-
quency composition within a speci!c time window, revealing linguistically signi!cant pat-
terns. In speech analysis, vowels typically show formant frequencies with the !rst formant
(F1) between 273-805Hz and the second formant (F2) between 770-2524Hz (as measured
in French vowels produced by female speakers [201]), while fricative consonants like /s/
produce distinctive energy in higher frequency bands around 4000-8000Hz [50].

The temporal evolution of these frequency patterns creates a comprehensive spectro-
gram, visualized as a frequency/time image. In speech applications, this representation
enables to identify and track various phonetic elements and speech characteristics. For ex-
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ample, in speaker identi!cation or emotion recognition, the fundamental frequency (F0)
patterns di"er signi!cantly between speakers: adult male voices typically show F0 around
100-150Hz, while females range from 170-220Hz [92, 234]. Variations in these patterns can
also indicate di"erent speaking styles [8], emotional states [25], or accent characteristics
[262].

For enhanced perceptual relevance, frequency components are often converted to the
mel scale, creating mel-spectrograms that better align with human auditory perception.
This transformation is particularly valuable in speech recognition and synthesis, as it bet-
ter represents how listeners actually perceive sound. The Mel-Frequency Cepstral Coe!-
cients (MFCC) [76] provide an even more re!ned representation by applying a discrete co-
sine transform to the mel-scaled frequencies. MFCCs have proven especially useful across
multiple speech domains.

0.5.3 Speech Feature Extraction

Self-Supervised Learning (SSL) represents a paradigm shift in machine learning [277, 66]
wheremodels learn from the inherent structure of data rather than human-annotated labels,
fundamentally transforming speech feature extraction. While traditional approaches relied
on hand-crafted features like MFCCs, SSL has emerged as a powerful technique for learning
robust speech representations from vast amounts of unlabeled audio data [190, 46]. These
learned feature extractors capture more nuanced aspects of speech signals, forming the
foundation ofmodern speech processing systems. SSL objectives can be broadly categorized
into contrastive approaches, which maximize similarity between related speech segments
while minimizing similarity with unrelated ones [274], and non-contrastive approaches,
which often involve reconstruction tasks or predictive modeling of speech features [62].
This self-supervised paradigm has proven particularly e"ective when combined with deep
learning architectures, enabling systems to extract meaningful representations that capture
both acoustic and linguistic information without requiring extensive labeled datasets [288].

In the following sections, we will explore two main types of learned representations:
continuous representations, which capture information in a dense and continuous manner,
and discrete representations, which encode information as distinct, quantized units.

Continuous Representation

Recent advances in speech SSL models have enabled the extraction of high-quality contin-
uous representations from speech signals. These learned representations, or embeddings,
capture rich acoustic and linguistic information that can be leveraged for downstream tasks.

Wav2Vec. Wav2vec 2.0 [17] represents a signi!cant advancement in speech SSL, intro-
ducing a powerful architecture that combines feature extraction with contextual represen-
tation learning. The model employs a Convolutional Neural Network (CNN) encoder to
extract latent speech representations from a raw signal, followed by a quantization module
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and a transformer encoder. Its training objective involves predicting quantized latent rep-
resentations of masked regions, using a contrastive loss function where negative examples
are sampled from other masked regions within the same sequence. This architecture has
demonstrated remarkable performance, particularly in Automatic Speech Recognition (ASR)
tasks, achieving state-of-the-art results with minimal labeled data, as little as 10 minutes of
transcribed speech [15].

Context
representations C

Quantized
representations Q

Latent speech
representations Z

raw waveform X

CNN

q

CNN

q

CNN

q

CNN

q

CNN

q

Transformer Masked

Contrastive lossL

Figure 16: Architecture of wav2vec 2.0. The model processes rawwaveform through a CNN
encoder to obtain latent speech representations, which are then quantized. A Transformer
processes these representations with masked prediction, using a contrastive loss between
the context representations and quantized targets.

HuBERT. HuBERT (Hidden-Unit BERT) [127] introduces an innovative approach to speech
SSL by incorporating iterative pseudo-labeling. While sharing architectural similarities
with Wav2Vec 2.0, HuBERT distinguishes itself through its unique training objective [127].
Instead of contrastive learning, it employs a prediction-based approach where the model
learns to predict cluster assignments of masked regions [127]. These clusters are initially
derived from MFCC features and later re!ned using the model’s own representations in
subsequent iterations. This iterative re!nement process enables HuBERT to capture in-
creasingly sophisticated speech patterns, leading to superior performance in various speech
processing tasks [288].

WavLM. WavLM [48] builds upon HuBERT’s framework while introducing signi!cant
enhancements for real-world speech scenarios. It maintains the masked prediction objec-
tive but extends it with a denoising component and explicit training on diverse speech
conditions, including clean, noisy, and overlapping speech. Architecturally, WavLM intro-
duces a gated relative position bias in its self-attention mechanism to better model multi-
speaker scenarios. Like its predecessors, WavLM employs a CNN encoder that converts raw
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waveforms into latent representations with a 20ms stride, followed by transformer layers
for contextualization. The resulting embeddings (768 or 1024-dimensional, depending on
model size) capture both acoustic and linguistic features, with di"erent layers specializing
in di"erent aspects of speech [250].

Whisper. Unlike the previously discussedmodels that focus on self-supervised pre-training
objectives, Whisper [235] employs a supervised approach trained on 680,000 hours of la-
beled multilingual and multitask data. While it shares the encoder-decoder transformer ar-
chitecture common in modern speech systems, Whisper distinguishes itself through its in-
put processing and trainingmethodology. Rather than operating directly on rawwaveforms
likeWav2Vec 2.0, HuBERT, andWavLM,Whisper !rst converts audio intomel-spectrogram
features. Its encoder processes these spectrograms to produce contextualized embeddings
where each vector represents 25ms of speech with a 10ms stride, o"ering denser temporal
coverage than WavLM’s 20ms stride. The encoder generates 1024-dimensional feature vec-
tors (in the large model) that capture both local acoustic properties and broader linguistic
context. What truly sets Whisper apart is its multitask training approach, which enables a
single model to perform speech recognition, language identi!cation, and translation across
99 languages.

Discrete Units

Speech Units

Traditional approaches to discrete speech representation often relied on phonetic units
or hand-crafted features. More recently, self-supervised learning has enabled the discov-
ery of discrete speech units directly from data [17, 52]. These learned units can capture
meaningful acoustic and linguistic patterns without requiring explicit phonetic annotations
[173]. For instance, Wav2Vec 2.0 introduced quantized speech representations through
Gumbel-Softmax quantization [17], while HuBERT employed iterative k-means clustering
to discover discrete units [127].

However, these discrete representations are primarily limited by their dependence on
vocoders for speech reconstruction [154]. Vocoders are required to convert the discrete
units back into continuous audio waveforms, introducing additional complexity and po-
tential quality degradation in the reconstruction process [154]. This limitation has moti-
vated the development of neural codec approaches that can both discretize and reconstruct
speech signals e#ciently.

Neural Codecs

Neural codecs represent a signi!cant advancement in speech processing, o"ering ef-
!cient discrete representations while maintaining high-quality reconstruction capabilities
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[307]. These models combine the bene!ts of discrete representations with end-to-end train-
ing, eliminating the need for separate vocoders.

EnCodec. EnCodec [87] is a neural audio codec that achieves state-of-the-art results
acrossmultiple sampling rates (8 to 48 kHz) and bitrates (1.5 to 24 kbps). Themodel employs
a streaming convolutional encoder-decoder architecturewith a quantized latent space using
Residual Vector Quantization (RVQ). A key innovation is its training approach that combines
reconstruction losses (in both time and frequency domains) with adversarial losses from a
multi-scale Short-Time Fourier Transform (STFT) discriminator, e"ectively reducing artifacts
in the reconstructed audio. EnCodec introduces a novel loss balancer mechanism that auto-
matically adjusts the weights of di"erent loss terms based on their gradients, stabilizing the
challenging multi-objective training process. The model achieves real-time encoding and
decoding on a single CPU core while maintaining superior perceptual quality compared
to established codecs like Opus and EVS across various audio domains, including speech,
noisy speech, andmusic. Additionally, a lightweight Transformer model can be used for en-
tropy coding to further compress the representation by up to 40% while maintaining audio
quality.

SpeechTokenizer. SpeechTokenizer [313] introduces a uni!ed approach to speech to-
kenization that hierarchically disentangles di"erent aspects of speech information across
RVQ layers. The model adopts an encoder-decoder architecture with RVQ, where the
!rst layer captures semantic content while subsequent layers encode paralinguistic infor-
mation like timbre and prosody. Unlike previous approaches requiring separate tokeniz-
ers, SpeechTokenizer employs semantic distillation from HuBERT to guide the !rst RVQ
layer, enabling better alignment between tokens and linguistic content. The model uses
a convolution-based encoder-decoder network with a two-layer BiLong Short-Term Mem-
ory (LSTM) replacing EnCodec’s LSTM to enhance semantic modeling capabilities. Speech-
Tokenizer introduces a novel "D-axis" continuous distillation loss that calculates cosine
similarity across each dimension rather than at each timestep, providing richer supervi-
sion signals. Experiments on their proposed SLMTokBench benchmark demonstrate that
SpeechTokenizer achieves comparable reconstruction quality to EnCodec while showing
stronger performance on speech language modeling tasks. The !rst-layer tokens exhibit
high mutual information with text (signi!cantly outperforming EnCodec’s !rst-layer to-
kens on Phone-Normalized Mutual Information), while the complete token set maintains
high-quality audio reconstruction capabilities, making it particularly suitable for uni!ed
speech language models.

Mimi. Mimi [88] is a neural audio codec developed speci!cally for the Moshi speech-
text foundation model, designed to enable real-time dialogue applications. Unlike previous
approaches requiring separate encoders for semantic and acoustic tokens, Mimi introduces
a novel "split RVQ" architecture that addresses the semantic-acoustic trade-o". The model
builds on SoundStream and EnCodec’s SeaNet autoencoder design but adds Transformer
modules in the bottleneck (8 layers, 8 heads) to improve both audio quality and seman-
tic information capture. Mimi operates at 12.5Hz (one token per 80ms) with 8 quantizers
of 2048 codes each, resulting in a bitrate of 1.1kbps. A key innovation is its distillation
approach, where non-causal semantic information from WavLM is distilled into the !rst
level of quantization, while the remaining levels capture acoustic details. To prevent the
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semantic-acoustic trade-o" from degrading audio quality, Mimi employs a split RVQ where
semantic information is distilled into a plain VQ, with a parallel 7-level RVQ for acoustic in-
formation, and their outputs are summed. This architecture maintains causal processing for
streaming applications while e"ectively combining semantic and acoustic information. An-
other notable !nding is that training with adversarial losses only (removing reconstruction
losses) signi!cantly improves subjective audio quality despite degrading objective metrics
[88].
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0.6 Multi-Modal Speech-Text Language Modeling

Speech constitutes a primary mode of human communication, yet it remains signi!cantly
underrepresented in digital data compared to text. While text-based language models can
train on trillions of tokens harvested from the web, high-quality speech datasets are orders
of magnitude smaller. This data disparity creates a fundamental challenge for developing
robust speech understanding systems, particularly for domain-speci!c applications where
speech data is even more limited.

This asymmetry in data availability, however, opens up promising research directions.
By developing methods to e"ectively transfer the rich semantic knowledge embedded in
text-based models to the speech domain, we can potentially overcome the inherent limita-
tions of speech data scarcity. Recent breakthroughs in self-supervised learning have made
signi!cant progress toward this goal, enabling models to extract powerful representations
from unlabeled speech. These approaches have yielded impressive results across various
speech processing tasks, including automatic speech recognition, speaker identi!cation,
and emotion detection.

In this section, I present how these speech representations can be e"ectively integrated
with text-based language models to create uni!ed multi-modal systems. By leveraging
the discrete speech tokens discussed earlier, we can develop architectures that process
both speech and text within a common framework. This integration enables more nat-
ural human-machine interactions and unlocks new capabilities in speech understanding,
generation, and translation that surpass what is possible with unimodal approaches.

0.6.1 Modality Integration

The integration of speech modalities into language models has evolved through two dis-
tinct phases, each articulated around the encoder-decoder architecture, marking signi!cant
progress in the !eld and addressing di"erent challenges in multi-modal processing.

Phase 1: Continuous Representation Integration

Early approaches to speech-text integration primarily relied on encoder-decoder architec-
tures like SpeechT5 [7] and Whisper [235]. These models established the initial bridge be-
tween speech and text processing, treating the conversion as a sequence-to-sequence task.
SpeechT5 introduced a uni!ed-modal encoder-decoder framework that could handle var-
ious speech-text tasks, including ASR, Text-To-Speech (TTS), speech translation, and voice
conversion through a shared encoder-decoder architecturewith task-speci!c adapters. Whis-
per demonstrated remarkable robustness by training on 680,000 hours of multilingual and
multitask supervised data, achieving strong zero-shot generalization to unseen datasets.

While these models achieved impressive results for their speci!c tasks, they su"ered
from several limitations when considered as general-purpose speech-text interfaces. A sig-
ni!cant constraint was their decoder architecture, which typically lagged behind the rapid
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advancements in text language modeling. As the NLP community progressed from GPT-2-
scale models to much larger and more capable architectures, speech-text models continued
to use relatively simple decoders that couldn’t match the sophisticated generation and un-
derstanding capabilities of state-of-the-art text LLMs. This architectural gap limited their
ability to produce nuanced, contextually appropriate responses or to leverage the richworld
knowledge embedded in modern language models.

Models likeQwen-Audio [57] and SALMONN [258] demonstrated that continuous speech
features could be e"ectively processed by modern transformer architectures through spe-
cialized audio encoders and showed improvement by leveraging textual knowledge. Qwen-
Audio employed a uni!ed architecture that processed both audio and text inputs by con-
necting a single audio encoder (initialized fromWhisper-large-v2) to a large languagemodel
(Qwen-7B [19]), enabling zero-shot generalization across modalities. This approach al-
lowed Qwen-Audio to handle diverse audio types, including human speech, natural sounds,
music, and songs within a single model architecture.

A key innovation in Qwen-Audio was its multi-task training format framework, which
addressed the challenge of one-to-many mapping caused by variations in textual labels
across di"erent datasets. By conditioning the decoder on a sequence of hierarchical tags
(including transcription tags, audio language tags, task tags, text language tags, and times-
tamp tags), Qwen-Audio enabled knowledge sharing between similar tasks while avoiding
interference. The model also incorporated speech recognition with word-level timestamp
prediction, which improved performance on grounding-based QA tasks.

SALMONN further advanced this approach by introducing a dual encoder structure
with a speech encoder from Whisper and a BEATs audio encoder, enabling the processing
of various audio types while maintaining alignment with text representations through a
window-level Q-Former connection module. This continuous representation approach of-
fered several advantages, including the ability to process various audio types beyond speech
(such as environmental sounds and music) and the preservation of rich signal information,
including prosody, speaker characteristics, and emotional content.

However, these continuous representations posed signi!cant challenges for e#cient
training and inference. Their high dimensionality, often hundreds or thousands of times
larger than text embeddings, resulted in substantial computational requirements and mem-
ory usage. This dimensionality gap created architectural challenges when integrating with
text-based models, often requiring complex projection layers or dimension reduction tech-
niques that could introduce information loss. Additionally, the lack of discretization made
it di#cult to leverage the advances in text-based language modeling that rely on discrete
token prediction objectives.

Phase 2: Discrete Speech Tokens Integration

The current state-of-the-art approaches represent a signi!cant evolution, utilizing discrete
speech tokens that enable more e#cient integration with traditional language modeling
architectures. This discretization approach transforms the continuous speech signal into a
sequence of tokens from a !nite vocabulary, similar to text tokenization, allowing speech
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to be processed using the same mechanisms developed for text language modeling and is
more suitable for causal language modeling.

Discrete tokens o"er substantial computational e#ciency by reducing the dimension-
ality of speech representations, leading to faster training and inference compared to con-
tinuous representations. Their architectural compatibility with existing LLM frameworks
is notable, as they align naturally with architectures optimized for processing discrete sym-
bols, enabling seamless integration without signi!cant modi!cations. This uni!ed vocab-
ulary approach allows multiple modalities to be handled within a common framework,
enabling models to learn cross-modal relationships more e"ectively while signi!cantly re-
ducing memory requirements due to the compact nature of discrete representations.

Modern systems like GSLM [4], TWIST [116], and SpiritLM [215] demonstrate the ef-
fectiveness of discrete representations for speech language modeling:

GSLM (Generative Spoken Language Model) pioneered the approach of building purely
speech-based language models without relying on text supervision. The system consists
of three components: a speech tokenizer that converts raw audio into discrete units, a lan-
guage model trained on these units, and a unit-to-speech module for generation. GSLM
used HuBERT for feature extraction, followed by k-means clustering to create discrete to-
kens, achieving the best performance with 200 clusters at 50Hz. The model was trained on
6,000 hours of speech and demonstrated the ability to generate coherent speech continua-
tions while preserving speaker characteristics and prosodic elements that are typically lost
in text-based approaches. GSLM established benchmarks for evaluating speech language
models, including sWUGGY and sBLIMP for lexical and syntactic modeling.

TWIST (Textually Warm-Initialized Speech Transformer Language Models) built upon
GSLM’s foundation by introducing a novel approach that leverages pretrained text language
models to improve speech language modeling. Despite the di"erent granularity levels be-
tween speech tokens (phoneme-state level) and text tokens (subword level), TWIST demon-
strated that initializing a speech language model from a pretrained text model like OPT or
LLaMA provides consistent performance improvements. The authors conducted extensive
empirical analysis on various aspects of the model design, including the e"ect of model
scale (from 125M to 13B parameters), dataset size (from 1% to 100% of their 150,000 hours
corpus), speech tokenizer con!gurations, and model architectures. Their !ndings showed
that both model and data scaling signi!cantly improve performance, with their largest 13B
parameter model achieving state-of-the-art results on speech benchmarks. TWIST also
contributed two spoken versions of the StoryCloze benchmark to better evaluate contex-
tual understanding in speech models. Human evaluations con!rmed that TWIST models
generate more coherent and natural speech compared to cold-start models of equivalent
size.

SpiritLM (Interleaved Spoken and Written Language Model), the most recent advance-
ment, extended speech language modeling by creating a multimodal foundation model that
freely mixes text and speech. Built on a 7B pretrained text language model, SpiritLM was
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continuously trained on interleaved speech and text data, with sequences concatenated as
a single stream of tokens using a word-level interleaving method. The model comes in two
versions: a BASE version using HuBERT phonetic units and an EXPRESSIVE version that
incorporates pitch and style tokens to model vocal characteristics. For text, both versions
use subword BPE tokens. This architecture allows SpiritLM to maintain the semantic capa-
bilities of text models while adding expressive speech generation. The model demonstrates
impressive few-shot learning capabilities across modalities, enabling tasks like ASR, TTS,
and speech classi!cation without task-speci!c !ne-tuning. SpiritLM’s bitrate e#ciency
makes it particularly suitable for applications requiring both content preservation and ex-
pressive speech generation.

0.6.2 Alignment Datasets

Developingmulti-modal text-speechmodels relies heavily on specialized datasets that serve
di"erent purposes. These datasets can be broadly categorized into unsupervised, massive-
scale collections and carefully labeled, task-speci!c datasets.

Unsupervised, massive-scale datasets prioritize quantity and diversity over precise an-
notations. LibriLight [144] stands as a prime example with 60,000 hours of unlabeled speech
data derived from audiobooks, enabling self-supervised learning at scale. Similarly, Spo-
tify Podcasts [65] o"ers approximately 100,000 hours of conversational audio with rough
transcript alignments. VoxPopuli [280] contributes 400,000 hours of parliamentary speech
across 23 languages, while YouTube-derived datasets provide virtually unlimited, though
noisy, speech data. These massive collections are crucial for pre-training foundation mod-
els like GSLM, TWIST, and SpiritLM, allowing them to learn general speech representations
and patterns. However, they often contain alignment errors, background noise, and varying
recording qualities that can introduce challenges during training.

In contrast, task-speci!c labeled datasets o"er high-quality annotations but at a much
smaller scale.

LibriSpeech [223] provides 1,000 hours of carefully transcribed audiobook readings
with precise word-level alignments.

VCTK [137] contains studio-quality recordings from 109 speakers with exact transcrip-
tions for TTS applications.

Fisher [64] and Switchboard [101] o"er conversational speech with detailed turn-
taking annotations for dialogue modeling.

CommonVoice [9] is a crowdsourced multilingual speech corpus where volunteers
contribute recordings of text prompts and validate others’ contributions. It contains over
33,500 hours of speech across 134 languages and 350,000 distinct speakers, with varying
degrees of coverage. The dataset is designed to democratize speech technology by providing
freely available data that represents diverse accents, demographics, and linguistic contexts.

These datasets enable supervised learning for speci!c applications like ASR, TTS, or
speech translation, but their limited size and domain speci!city can restrict model gener-
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alization.

Weakly supervised datasets bridge the gap between fully unsupervised and carefully
labeled collections.

GigaSpeech [45] exempli!es this approach with 10,000 hours of multi-domain En-
glish speech from audiobooks, podcasts, and YouTube, covering both read and spontaneous
speaking styles across diverse topics. It employs forced alignment and segmentation to cre-
ate sentence-level training data while !ltering out low-quality transcriptions.

Similarly, People’s Speech [97] provides 30,000 hours of diverse English speech with
commercial-use licensing, collected from appropriately licensed Internet sources. Unlike
many datasets focused on read speech in clean environments, People’s Speech includes
content from government recordings, interviews, health discussions, and more, with natu-
ral background noise that better represents real-world conditions.

The trade-o" between these dataset types is evident in how di"erent models utilize
them. GSLM primarily leveraged unsupervised data to learn speech representations with-
out text supervision. TWIST demonstrated that combining massive unsupervised pre-
training (150,000 hours) with the structural knowledge from text models yields superior
performance. SpiritLM took a hybrid approach, using a small but carefully curated parallel
corpus for speech-text alignment while continuing to train on larger unsupervised collec-
tions.

Overall, the observations suggest that the optimal approach combines multiple dataset
types: initial pre-training on massive unsupervised data to learn general patterns, followed
by !ne-tuning on weakly supervised and high-quality labeled datasets to enhance perfor-
mance on speci!c tasks. This strategy allows models to bene!t from the scale of unsuper-
vised data while maintaining the precision o"ered by carefully annotated collections.

0.6.3 Instruction Tuning

Instruction tuning has signi!cantly enhanced model performance on diverse tasks without
task-speci!c !ne-tuning, while also improving robustness. Given these notable advances in
the text domain, researchers have naturally sought to extend these bene!ts to speech pro-
cessing, where similar improvements could transform human-machine interaction. Recent
advances in cross-modal instruction tuning have produced several innovative architectures,
with particular emphasis on multi-stage training approaches to e"ectively bridge modali-
ties.

SpeechGPT [310], built on LLaMA-13B, introduced a comprehensive three-stage train-
ing methodology. The !rst stage focuses on paired speech-text data training, where the
model learns to process and align speech inputs with corresponding textual representa-
tions. This foundation stage establishes basic cross-modal understanding capabilities. The
second stage introduces speech instruction data, where the model learns to follow speci!c
commands and instructions in the speech domain. This stage utilizes carefully curated
datasets containing diverse speech-based instructions and their corresponding responses,
enabling the model to understand and execute spoken commands e"ectively. The third
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stage, termed chain-of-modality instruction training, represents a signi!cant innovation.
In this stage, the model learns to handle complex interactions involving multiple modality
transitions. This approach represents a substantial improvement over previous models like
GSLM and TWIST, which primarily focused on learning speech representations or align-
ing speech with text, but lacked the ability to follow complex instructions across modal-
ities. Unlike SpiritLM, which used interleaved speech-text training, SpeechGPT’s staged
approach allows for more systematic acquisition of cross-modal capabilities, resulting in
more robust performance on instruction-following tasks andmore natural interactionswith
users. Technically, SpeechGPT employs discrete speech representations using mHuBERT
[306] to tokenize speech into 1024 discrete units obtained using k-Means, which are then
incorporated into the LLM’s vocabulary.

Complementing these developments, Moshi [89] introduced breakthrough capabilities
in real-time spoken dialogue, featuring ultra-low latency processing and multi-stream ar-
chitecture enabling natural interruptions and overlapping speech. Its integration with He-
lium LLM and Mimi neural codec represents a signi!cant advance in natural human-AI
interaction, achieving theoretical latency as low as 160ms. The model’s architecture specif-
ically addresses the challenges of real-time interaction, allowing for more natural conver-
sation %ow and immediate response generation. While previous models like Qwen-Audio
made important strides in multimodal understanding, Moshi fundamentally reimagines the
interaction paradigm by prioritizing real-time responsiveness. Unlike earlier approaches
that processed complete utterances before generating responses, Moshi’s streaming archi-
tecture enables it to begin formulating responses while still receiving input, similar to hu-
man conversation patterns.

0.6.4 Downstream Tasks

Evaluation of multi-modal language models relies on several key benchmarks spanning
linguistic competence, reasoning abilities, and modality transfer capabilities. The sBLIMP
benchmark [214] measures syntactic competence by evaluating models’ ability to distin-
guish between grammatically correct and incorrect spoken utterances, providing crucial
insights into the model’s understanding of language structure across modalities. Simi-
larly, sWuggy [214] assesses phonological processing by testing discrimination between
real words and phonologically plausible non-words in the speech domain.

For ASR capabilities, models are typically evaluated on LibriSpeech [223], which of-
fers both "clean" and "other" (more challenging) test sets to measure transcription accuracy
across varying acoustic conditions. This provides a standardized measure of a model’s abil-
ity to convert speech to text accurately. CommonVoice [9] serves as another critical ASR
benchmark, o"ering evaluation across 100+ languages with diverse accents and recording
conditions, making it particularly valuable for assessing multilingual and cross-dialect per-
formance.

The sStoryCloze and Topic-sStoryCloze benchmarks introduced in TWIST [116] assess
semantic understanding and common sense reasoning through continuation tasks, while
tStoryCloze evaluates similar capabilities in the text domain. These evaluations span mul-
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tiple modality combinations: Speech-to-Speech, Text-to-Speech, Speech-to-Text, and Text-
to-Text. This comprehensive evaluation framework ensures models maintain coherence
and understanding across modality transitions.

This multi-faceted evaluation approach provides a holistic assessment of models’ abili-
ties to process, understand, and generate content across modalities, ensuring they meet the
requirements for practical applications in diverse real-world scenarios.

0.6.5 Downstream Tasks Metrics

Standard metrics for downstream tasks provide quantitative measures of model perfor-
mance across di"erent capabilities. For ASR tasks, Word Error Rate (WER) measures the
percentage of words incorrectly transcribed, with lower values indicating better perfor-
mance. Character Error Rate (CER) functions similarly to WER but at the character level,
proving useful for languages without clear word boundaries.

WER =
S +D + I

N
↓ 100

where S is the number of substitutions, D is the number of deletions, I is the number
of insertions, and N is the number of words in the reference. Similarly, CER uses the same
formula but operates at the character level rather than the word level.

For linguistic competence tasks, accuracy serves as the primary metric for sBLIMP and
sWuggy, where models are evaluated on their ability to correctly distinguish between min-
imal pairs. The reasoning tasks in sStoryCloze and its variants typically report accuracy
in selecting the correct continuation. For Spoken Question Answering (SQA) tasks, accu-
racy measures how often the model provides the correct answer to questions presented in
spoken or textual form.

Accuracy =
Number of correct predictions
Total number of predictions

↓ 100

Negative Log Likelihood (NLL) provides a probabilistic assessment of model predictions,
measuring how con!dently the model assigns probability to correct outputs. Lower NLL
values indicate that the model assigns higher probability to the ground truth, suggesting
stronger predictive performance.

L = ↗
T∑

t=1

log p(xt|x<t) (11)

where p(xt|x<t) represents the probability of token xt given all previous tokens x<t

in the sequence, and T is the total sequence length. This metric is particularly valuable
for evaluating generative models and their ability to accurately predict next tokens in a
sequence.
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As we described in the previous chapters, language modeling has become a fundamental
component in the making of state-of-the-art task-speci!c models in NLP [230, 81]. More
speci!cally, large-scale MLM based on transformer architecture [275] and trained on large
raw text corpora have impressively extended the performance of NLPmodels onmost tasks.

However, while these models have shown remarkable success in general domains, re-
cent works have demonstrated that optimal performance in specialized domains, such as
!nance, medical, or travel, can only be achieved using PLM adapted to the targeted con-
ditions. This is particularly challenging for languages other than English, where domain-
speci!c data are generally di#cult to obtain, resulting in quite a few specialized PLMs avail-
able.

Several key research questions arise when considering domain adaptation of language
models:

• What is the optimal trade-o" between using healthcare related data from publicly
accessible internet sources (which often di"er signi!cantly in structure and com-
plexity from real-world applications) versus using data collected from private data
warehouses when considering domain adaptation?

• How important is the variety of data sources compared to the volume of data?

• Can low-resource domain-speci!c data outperform large general-domain models?

• Is cross-lingual transfer e"ective for domain adaptation?

This chapter presents our work on developing and evaluating the !rst biomedical and
clinical transformer-based language models for French healthcare domains, based on the
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RoBERTa architecture [193]. This work, which received an Honorable Mention at ACL
2023 [165], addresses several of the aforementioned research questions through extensive
experimentation and analysis. Our main contributions are:

• We demonstrate that pre-training on constrained resources (4GB) of web-crawled
medical data can compete with, and often outperform, models trained on specialized
clinical data.

• We show that continual pre-training of English domain-speci!c models on French
data is more e"ective than adapting French general-domain models.

• We release DrBERT1, the !rst open-source French biomedical language model, along
with NACHOS2, a large French medical corpus. To ensure reproducibility and facili-
tate future research, we also make available all the code3 for training, preprocessing
and high-scale distributed learning.

Our results demonstrate that pre-training on constrained resources of web-crawled
medical data can compete with, and even frequently surpass, models trained with special-
ized data from medical reports. We also show that continual pre-training on an existing
domain-speci!c English model (PubMedBERT) is a more viable solution than on a French
domain-generalist model when targeting French biomedical downstream tasks.

1.1 Pre-Training Datasets

In the biomedical domain, previous works [109] on PLMs highlighted the importance of
matching the data sources used for its training to the targeted downstream tasks. Due to
their sensitive nature (protection of user data, protected health information of patients,
etc.), medical data are extremely di#cult to obtain. Massive collection of web data related
to this domain appears to be a solution that can overcome this lack. However, these web
documents vary in terms of quality. No comparison has been made between PLMs based
on speci!c domain data from the web and those on private documents from clinical data
warehouses, whose quality can be controlled.

We extracted two di"erent medical datasets for French. In the !rst one, I gathered
data crawled from a variety of free-of-use online sources, and the second one, collected by
Adrien, gather private hospital stays reports from the Nantes University Hospital.

Table 1.1 gives a general overview of the two collected corpora. The public web-based
data, detailed in Section 1.1.1, allowed the constitution of a corpus, called NACHOSlarge,
containing 7.4 GB of data. The private dataset, called NBDWsmall is described in Sec-
tion 1.1.2 and contains 4 GB of data. In order to perform comparable experiments, we
extracted a NACHOS sub-corpus (NACHOSsmall) of the same size as the private data. Fi-
nally, Section 1.1.3 describes the pre-processing applied to both datasets.

1https://huggingface.co/Dr-BERT/DrBERT-7GB
2https://huggingface.co/datasets/Dr-BERT/NACHOS
3https://github.com/qanastek/DrBERT
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Corpus Size #words #sentences

NACHOSlarge (public) 7.4 GB 1.1 B 54.2 M
NACHOSsmall (public) 4 GB 646 M 25.3 M

NBDWsmall (private) 4 GB 655 M 43.1 M
NBDWmixed (both) 4+4 GB 1.3 B 68.4 M

Table 1.1: Overview of the public (NACHOS) and private (NBDW) collected datasets.

1.1.1 Public corpus - NACHOS

We collected the opeN crAwled frenCh Healthcare cOrpuS (NACHOS), a French medical
open-source dataset compiled by crawling a variety of textual sources around the medical
topic. It consists of more than one billion words, drawn from 24 French-speaking high-
quality websites. The corpus includes a wide range of medical information: descriptions of
diseases and conditions, information on treatments and medications, general health-related
advice, o#cial scienti!c meeting reports, anonymized clinical cases, scienti!c literature,
thesis, French translation pairs, university health courses and a large range of data ob-
tained from raw textual sources, web scrapping, and optical character recognition (OCR).
Table 1.2 summarizes the di"erent data sources of NACHOS.

We use heuristics to split the texts into sentences and aggressively !lter out short or low-
quality sentences like those obtained from OCR. Finally, we classi!ed them into languages
by using our own classi!er trained on themultilingual Opus EMEA [263] andMASSIVE [91]
corpora to keep only the sentences in French.

For the 4 GB version of NACHOS (NACHOSsmall), we shu&ed the whole corpus and se-
lected randomly 25.3M sentences to maximize data source homogeneity. The full NACHOS
corpus is now freely available online4.

4https://drbert.univ-avignon.fr/
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Resource name # words

HAL 638,508,261
Haute Autorité de Santé (HAS) 113,394,539
Drug lea%ets 74,770,229
Medical Websites Scrapping 64,904,334
ANSES SAISINE 51,372,932
Public Drug Database (BDPM) 48,302,695
ISTEX 44,124,422
CRTT 26,210,756
WMT-16 10,282,494
EMEA-V3 6,601,617
Wikipedia Life Science French 4,671,944
ANSES RCP 2,953,045
Cerimes 1,717,552
LiSSa 235,838
DEFT-2020 231,396
CLEAR 225,898
CNEDiMTS 175,416
QUAERO French Medical Corpus 72,031
ANSM Clinical Study Registry 47,678
ECDC 44,482
QualiScope 12,718
WMT-18-Medline 7,673

Total 1,088,867,950

Table 1.2: Word-count distribution across the 22 sources of the NACHOS biomedical corpus.

1.1.2 Private corpus - NBDW

The private corpus, called Nantes Biomedical Data Warehouse (NBDW), was obtained us-
ing the data warehouse from Nantes University Hospital. This data warehouse includes
di"erent dimensions of patients’ related data: socio-demographic, drug prescriptions and
other information associated with consultation or hospital stays (diagnosis, biology, im-
agery, etc.). The authorization to implement and exploit the NBDW dataset was granted
in 2018 by the CNIL (Commission National de l’Informatique et des Libertés), the French in-
dependent supervisory authority in charge of application of national and European data
privacy protection laws; authorization N°2129203.

For this work, a sample of 1.7 million de-identi!ed hospital stays reports was randomly
selected and extracted from the data warehouse. As described in Table 1.3, the reports are
from various hospital departments, emergency medicine, gynecology and ambulatory care
being the most frequent.

Each of the reports was split into tokens sequence with an average of 15.26 words per
sequence. Then, all tokens sequences from all reports were shu&ed to build the corpus.
This corpus contains 655M words, from 43.1M sentences, for a total size of approximately
4 GB.
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Medical Specialty # documents # words

Other 474,588 192,832,792
Emergency Medicine 235,579 90,807,406
Ambulatory Care 119,149 50,975,472
Consultation 95,135 38,335,804
Gynecology 132,983 38,204,495
Cardiology 29,633 22,654,583
Medical Oncology 45,603 22,587,869
Gastroenterology 46,600 21,340,794
Orthopaedic Surgery 82,084 18,983,791
Hematology 41,776 18,285,983
Critical Care Medicine 20,819 16,472,785
Otolaryngology 69,343 16,131,214
Dermatology 51,804 15,035,412
Rheumatology 31,527 14,647,543
Urology 51,535 14,272,231
Colon and Rectal Surgery 45,987 13,334,550
Internal Medicine 23,904 13,282,253
Psychiatry 26,628 12,496,503
Neurosurgery 34,481 10,360,533
Nephrology 19,171 9,548,533
Ophthalmology 19,700 4,464,515

Total 1,698,029 655,055,061

Table 1.3: Number of documents and total word counts by medical specialty in the NBDW
corpus.

1.1.3 Pre-processing steps

The supplied text data has been split into subword units using SentencePiece [159], a
language-independent subword tokenizer that does not require pre-tokenization, thereby
avoiding the requirement for language-speci!c tokenizers. Unlike traditional approaches
likeMoses that rely on hand-crafted language-dependent rules, SentencePiece enables purely
end-to-end text processing. We employ a vocabulary size of 32k subword tokens. For each
model pre-trained from scratch (see Section 1.2.2), tokenizers were built using all the sen-
tences from the pre-training dataset.

SentencePiece supports two distinctmodes: BPE [249] and unigram languagemodel [157].
Algorithm 1 outlines the core tokenization process, which begins with text normalization
and treats the input as a sequence of Unicode characters, replacing whitespace with a spe-
cial meta symbol "\" (U+2581).
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Algorithm 1 SentencePiece Tokenization

1: Input: Text T , Vocabulary V , Model typeM → {BPE,Unigram}

2: Output: Tokenized sequence S
3: procedure P$/4$,&/""(T )
4: Normalize Unicode characters with NFKC
5: Replace whitespace with special token _ (U+2581)
6: Treat input as sequence of Unicode characters
7: return Preprocessed text T ↔

8: end procedure

9: if M = BPE then

10: S ⇐ BPET,*/+27/(T ↔, V )

11: else if M = Unigram then

12: S ⇐ U+21$%)T,*/+27/(T ↔, V )

13: end if

14: return S

The BPE variant (described in Algorithm 2) operates by iteratively merging the most
frequent adjacent character pairs. SentencePiece implements an optimizedO(N logN) al-
gorithm using binary heaps to manage merged symbols e#ciently, compared to theO(N2)
complexity of naive implementations.

Algorithm 2 BPE Tokenization in SentencePiece

1: procedure BPET,*/+27/(T ↔, V )
2: Initialize S as character sequence of T ↔

3: while possible merges exist do
4: Find most frequent adjacent token pair (a, b) in S using priority queue
5: Replace all occurrences of (a, b) with merged token ab

6: Add ab to vocabulary if not present
7: if vocabulary size = |V | then

8: break

9: end if

10: end while

11: return S

12: end procedure

The unigram language model (described in Algorithm 3) employs a probabilistic ap-
proach, !nding the most likely segmentation using the Viterbi algorithm. This method
enables multiple segmentation candidates during training, making it suitable for subword
regularization.
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Algorithm 3 Unigram Tokenization in SentencePiece

1: procedure U+21$%)T,*/+27/(T ↔, V )
2: Initialize language model P with probabilities for tokens in V

3: S ⇐ ⇒

4: x ⇐ T ↔

5: while x ⇑= ⇒ do

6: (s,x↔) ⇐ argmax (s, x↔) : x = s+ x↔P (s) ϖ Find best token using Viterbi
7: S ⇐ S ↑ {s}

8: x ⇐ x↔

9: end while

10: return S

11: end procedure

For training the unigram model, SentencePiece employs a normalized likelihood-based
pruningmethod (described in Algorithm 4) to iteratively reduce the vocabulary to the target
size, typically removing tokens with lowest loss at each iteration.

Algorithm 4 Normalized Likelihood Pruning for Unigram Model

1: Input: Vocabulary V , CorpusC , Current model parameters ϱ, Pruning rate p (typically
20%)

2: Output: Reduced vocabulary
3: for each token t → V do

4: Compute loss if token t is removed:
5: loss(t) =

∑
x↓C (logP (x|ϱ)↗ logP (x|ϱ \ t))

6: Normalize loss: lossnorm(t) =
loss(t)
freq(t)

7: end for

8: Sort tokens by lossnorm(t) in ascending order
9: Remove bottom p% of tokens from V

10: Re-estimate probabilities for remaining tokens
11: return Updated vocabulary V

A key advantage of SentencePiece is its lossless tokenization design, which preserves all
information needed to perfectly reconstruct the original text. This is achieved by treating
whitespace as a normal symbol (escaped with \) rather than as a boundary marker. The
model is self-contained, with all normalization rules and parameters embedded in themodel
!le, ensuring perfect reproducibility across environments.

In our implementation, we used the unigram model which has been shown to achieve
superior performance for morphologically rich languages while maintaining competitive
results across other language families. Experimental results reported by Kudo and Richard-
son demonstrate that SentencePiece can achieve comparable or better BLEU scores even
without pre-tokenization, while providing signi!cantly faster processing, especially for
non-segmented languages.
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1.2 Models Pre-Training

In this section, we describe the pre-training modalities of our studied models from two
points of view: 1) the in%uence of the data used (size and nature), and 2) the pre-training
strategies of themodels. These two levels are respectively detailed in Sections 1.2.1 and 1.2.2.
Section 1.2.3 !nally presents the existing state-of-the-art pre-trained models that will be
used for comparison purposes.

1.2.1 In"uence of data

One issue is to identify the amount of data required to create a model that performs well
and can compete with models trained on general domains. Recent studies, such as those by
[314] and [200], discuss the impact of the size of pre-training data on model performance.
According to these studies, some tasks are performing better with fewer data while others,
such as commonsense knowledge and reasoning tasks, keep improving performance when
pre-training data is added.

In the medical !eld, no study has been conducted to compare the impact of varying the
amount of domain-speci!c data during pre-training, or to assess the impact of the suppos-
edly variable quality of the data depending on their source of collection.

We thus propose to evaluate the pre-training of several language models on either
NACHOSsmall or NBDWsmall corpus, as described in Section 1.1. Additionally, we pro-
pose a model pre-trained on NACHOSlarge to investigate if having almost twice as much
data improves model performance. Finally, a combination of both public NACHOSsmall and
NBDWsmall sources for a total of 8 GB (NBDWmixed) is explored to demonstrate if combin-
ing private and public data is a viable approach in low-resource domains.

1.2.2 Pre-training strategies

In addition to the analysis on the size and the sources of data, we also seek to evaluate three
training strategies of PLMs for the medical domain:

• Training a full model from scratch, including the subword tokenizer.

• Continuing the pre-training of the state-of-the-art language model for French, called
CamemBERT, on our medical-speci!c data while keeping the initial tokenizer.

• Continuing the pre-training of a state-of-the-art domain speci!c language model for
medical but here in English, called PubMedBERT, on our French data while keeping
the initial tokenizer.

Regarding the last strategy, our objective is to compare the performance of an English
medical model further pre-trained on our Frenchmedical data, against another one based on
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a generic French model. Indeed, the medical domains shares many terms across languages
that make relevant the mixture of resources from two languages.

Table 1.4 summarizes all the con!gurations evaluated in this chapter, integrating both
the study of data size and pre-training strategies.

Model name Strategy Corpus

DrBERT From scratch NACHOSlarge
DrBERT From scratch NACHOSsmall

ChuBERT From scratch NBDWsmall

ChuBERT From scratch NBDWmixed

CamemBERT continual pre-training NACHOSsmall

PubMedBERT continual pre-training NACHOSsmall

CamemBERT continual pre-training NBDWsmall

Table 1.4: List of studied pre-trained model con!gurations.

Model architecture All models pre-trained from scratch use the CamemBERT base con-
!guration, which is the same as RoBERTa base architecture (12 layers, 768 hidden dimen-
sions, 12 attention heads, 110M parameters). We did not train the large version of our
models due to resource limitations.

Language modeling We train the models on the Masked Language Modeling (MLM)
task using HuggingFace library [291]. It consists of randomly replacing a subset of tokens
from the sequence with a special token and asking the model to predict them using cross-
entropy loss. In BERT and RoBERTa models (including CamemBERT), 15% of the tokens
are randomly selected. Of those selected tokens, 80% are replaced with the <mask> token,
10% remain unchanged, and 10% are randomly replaced by a token from the vocabulary.
We keep this masking probability of 15% for the training of our models.

Optimization & Pre-training We optimize the models for 80k steps with batch sizes of
4,096 sequences, each sequence !lled with 512 tokens, allowing us to process 2.1M tokens
per step. The learning rate is warmed up linearly for 10k steps, going up from zero to the
initial 5↓10-5 learning rate. Models are trained on 128 Nvidia V100 32 GB GPUs for 20
hours on Jean Zay supercomputer. We use mixed precision training (FP16) [203] to reduce
the memory footprint, allowing us to enlarge the batch size to 32 sequences on each GPU.

1.2.3 Baseline models

We describe some existing pre-trained models used as baselines in our comparative study.
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CamemBERT [200] is a RoBERTa-based model pre-trained totally from scratch on the
French subset of the OSCAR corpus (138 GB). In our case, this model is our main baseline
to compare our results on, since it is the state-of-the-art model for French. We also use the
4 GB model’s variants of CamemBERT to compare the impact of the nature and quantity of
the data.

PubMedBERT [109] is a BERT-based biomedical-speci!c model pre-trained totally
from scratch on the 3.1 billion words of PubMed corpus (21 GB).

ClinicalBERT [130] is a clinical-speci!c model based on BERT tokenizer and weights,
which has been further pre-trained on the 0.5 billion words of MIMIC corpus (3.7 GB).

BioBERTv1.1 [176] is a biomedical-speci!cmodel based on BERT tokenizer andweights
which has been further pre-trained using the 4.5 billion words of PubMed corpus.

1.3 Downstream Evaluation Tasks

Thematic / Corpus name Task Metric Train Dev Test

Public Corpus

ESSAIS [73] POS Tagging Macro F1 9,693 2,077 2,078
CAS: French Corpus with Clinical Cases [105] POS Tagging Macro F1 5,306 1,137 1,137

MUSCA-DET - Social Determinants of Health extraction (Task 1) Nested NER Macro F1 19,861 2,207 5,518
MUSCA-DET - Social Determinants of Health extraction (Task 2) Multi-label Classi!cation Macro F1 19,861 2,207 5,518

QUAERO French Medical Corpus - EMEA [211] Nested NER Weighted F1 11 12 15
QUAERO French Medical Corpus - MEDLINE [211] Nested NER Weighted F1 833 832 833

FrenchMedMCQA [164] MCQA EMR / Hamming Score 2,171 312 622

Private Corpus

Medical report acute heart failure structuration Named Entity Recognition Macro F1 2,527 281 703
Acute heart failure (aHF) classi!cation Binary Classi!cation Macro F1 1,179 132 328

Technical Specialties Sorting Classi!cation Multi-class Macro F1 4,413 1,470 1,473
Medical report structuration prescriptions Named Entity Recognition Macro F1 61 15 26

Table 1.5: Corpus, tasks and metrics synthesis for evaluating medical-speci!c models.

To evaluate the di"erent pre-training con!gurations of our models, a set of tasks in the
medical domain is necessary. While this NLP domain-speci!c benchmark exists in English
(BLURB [109]), none existed for French at the time we started working on this project. In
this section, we describe an original benchmark, summarized in Table 1.5, integrating vari-
ous NLP medical tasks for French. Among them, some are from publicly-available datasets
(Section 1.3.1), allowing the replication of our experiments. Other tasks come from private
datasets (Section 1.3.2) and cannot be shared. However, they are useful to evaluate our
models more accurately.

1.3.1 Publicly-available tasks

The publicly available tasks used in these experiments are presented below.
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ESSAIS / CAS: French Corpus with Clinical Cases The ESSAIS [73] and CAS [105]
corpora respectively contain 13,848 and 7,580 clinical cases in French. Some clinical cases
are associated with discussions. A subset of the whole set of cases is enriched with morpho-
syntactic (POS tagging, lemmatization) and semantic (UMLS concepts, negation, uncer-
tainty) annotations. In our case, we focus only on the POS tagging task.

FrenchMedMCQA The FrenchMedMCQA corpus [164] is a publicly available Multiple-
Choice Question Answering (MCQA) dataset in French for the medical domain. It contains
3,105 questions coming from real exams of the French medical specialization diploma in
pharmacy, integrating single and multiple answers.

QUAERO French Medical Corpus The QUAERO French Medical Corpus [211] intro-
duces an extensive corpus of biomedical documents annotated at the entity and concept
levels to provide NER and classi!cation tasks. Three text genres are covered, comprising a
total of 103,056words obtained either fromEMEAorMEDLINE. Ten entity categories corre-
sponding to UMLS [32] Semantic Groups were annotated, using automatic pre-annotations
validated by trained human annotators. Overall, a total of 26,409 entity annotations were
mapped to 5,797 unique UMLS concepts. To simplify the evaluation process, we sort the
nested labels in alphabetical order and concatenate them together into a single one to trans-
form the task into a usable format for token classi!cation with BERT based architectures.

MUSCA-DET MUSCA-DET is a French corpus of sentences extracted from the "Lifestyle"
section in clinical notes from Nantes University Hospital biomedical data warehouse. The
corpus contains 27,000 pseudonymized sentences annotated with 26 entities related to So-
cial Determinants of Health (living, marital status, housing, descendants, employment, al-
cohol, smoking, drug abuse, physical activity). The corpus includes two tasks: nested NER
and multi-label classi!cation.

1.3.2 Private tasks

MUSCA-DET MUSCA-DET is a French corpus of sentences extracted from the "Lifestyle"
section in clinical notes from Nantes University Hospital biomedical data warehouse. The
corpus contains 27,000 pseudonymized sentences annotated with 26 entities related to So-
cial Determinants of Health (living, marital status, housing, descendants, employment, al-
cohol, smoking, drug abuse, physical activity). The corpus includes two tasks: nested NER
and multi-label classi!cation.

Technical Specialties Sorting This classi!cation task has to assign the specialty of a
medical report based on its transcription. The dataset consists of 7,356 French medical
reports that have been manually annotated and equally sampled across 6 specialties: Psy-
chiatry, Urology, Endocrinology, Cardiology, Diabetology, and Infectiology.
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Medical report structuration prescriptions (NER) The task seeks to identify named
entities in a gold sample of 100 longmedical reports obtained from French speech transcrip-
tions. The named entities are annotated using the BIO format and fall into 12 classes: O,
AGE, CITY, DATE, EMAIL, HOSPITAL, PHONE, DOSAGE, DURATION, FORM,MEDICATION
and POSOLOGY.

Medical report acute heart failure structuration (NER) This corpus contains 350
hospital stay reports (divided into 3,511 sentences) from Nantes University Hospital. The
reports are annotated with 46 entity types related to the following clinical information:
cause of chronic heart failure, triggering factor for acute heart failure, diabetes, smoking
status, heart rate, blood pressure, weight, height, medical treatment, hypertension and left
ventricular ejection fraction. Overall, the corpus contains 6,116 clinical entities.

Acute heart failure (aHF) classi!cation This task consists of the classi!cation of hos-
pital stays reports according to the presence or absence of a diagnostic of acute heart failure.
This corpus consists of 1,639 hospital stays reports from Nantes university hospital, which
are labeled as positive or negative to acute heart failure.

1.4 Results and Discussions

As previously described, we evaluate the performance of our pre-trained language models
proposed for the biomedical domain on a set of public and private NLP downstream tasks
related to the medical domain. We !rst propose to analyze the results according to the
di"erent pre-training strategies used (Section 1.4.1) then to focus on the impact of the pre-
training data, whether in terms of size or nature (Section 1.4.2). Finally, we are interested
in the generalization capacities of our domain-speci!c models by applying and comparing
them on general domain NLP tasks (Section 1.4.3).

Note that all the PLMs have been !ne-tuned in the same way for all downstream tasks
and all the reported results are obtained by averaging the scores from four runs. Perfor-
mance on biomedical downstream tasks is reported in Tables 1.7 and 1.6 for respectively
private and public tasks. For readability reasons, the !rst part of each table presents the ex-
isting baseline model results, the second part our specialized models trained from scratch,
and the last part our models using continual pre-training.
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MUSCA-DET T1 MUSCA-DET T2 ESSAI POS CAS POS FrenchMedMCQA QUAERO-EMEA QUAERO-MEDLINE

P R F1 P R F1 P R F1 P R F1 Hamming EMR P R F1 P R F1

CamemBERT OSCAR 138 GB 89.04 88.59 88.54 89.87 87.12 88.20 81.57 81.01 81.10 96.37 94.53 95.22 36.24 16.55 90.57 91.06 90.71 76.58 78.67 77.41

CamemBERT OSCAR 4 GB 86.09 85.45 85.43 92.68 90.34 91.27 84.01 83.51 83.69 98.15 95.34 96.42 35.75 15.37 90.75 91.16 90.83 78.55 79.33 78.76

CamemBERT CCNET 4 GB 91.12 89.91 90.33 93.10 90.42 91.38 85.60 85.63 85.42 98.19 96.75 97.33 34.71 14.41 90.31 90.59 90.33 78.06 78.11 77.61

PubMedBERT 93.04 91.45 91.99 84.41 80.60 81.97 88.43 87.93 87.78 97.40 94.86 95.90 33.98 14.14 86.89 87.33 86.79 77.33 77.28 77.09

ClinicalBERT 91.79 89.44 90.36 85.43 81.23 82.95 89.09 88.78 88.24 97.94 95.88 96.73 32.78 14.19 84.91 85.47 84.79 75.56 74.85 75.05

BioBERT 1.1 91.82 89.82 90.46 85.52 80.14 81.91 86.76 84.90 85.18 98.10 96.39 97.12 36.19 15.43 84.55 85.03 84.29 72.62 73.30 72.68

DrBERT NACHOSlarge 92.10 90.27 91.04 94.97 90.41 92.24 90.96 89.19 89.75 97.37 94.49 95.65 36.66 15.32 91.93 92.52 92.09 77.85 78.54 77.88

DrBERT NACHOSsmall 93.35 90.62 91.77 91.31 86.60 88.57 90.12 88.37 88.76 97.04 94.88 95.70 37.37 13.34 91.54 92.00 91.66 77.91 79.34 78.18

ChuBERT NBDWsmall 94.88 90.79 92.23 94.77 90.27 92.17 88.53 87.73 87.71 97.00 94.65 95.61 35.16 14.79 88.11 88.78 88.15 75.05 76.57 74.94

ChuBERT NBDWmixed 94.39 91.93 92.73 94.22 90.02 91.71 86.36 85.50 85.73 97.77 95.30 96.35 34.58 12.21 90.36 90.94 90.52 78.61 79.32 78.63

CamemBERT NACHOSsmall 81.44 81.39 80.96 79.74 78.08 78.70 80.59 79.88 80.04 95.64 91.57 92.46 32.87 13.76 67.56 77.48 71.10 55.45 62.34 57.43

PubMedBERT NACHOSsmall 92.51 91.49 91.53 94.95 92.55 93.62 84.73 83.80 83.85 97.82 96.12 96.81 35.88 15.21 90.97 91.27 91.03 82.03 81.71 81.73

CamemBERT NBDWsmall 82.35 81.59 81.57 78.14 76.38 77.12 79.44 79.79 79.25 95.98 92.11 93.18 27.73 11.89 53.44 73.11 61.75 48.71 61.33 53.05

Table 1.6: Performance on public biomedical downstream tasks. Best model in bold and
second is underlined.

1.4.1 Impact of pre-training strategies

As observed both in Tables 1.7 and 1.6, models pre-trained completely from scratch (Dr-
BERT NACHOS and ChuBERT NBDW) tend to produce the best results for both types of
data sources and tasks (i.e. private and public). Indeed, considering the F1-score, they ob-
tain the best results on all private tasks and on almost all public ones (5 tasks out of 7).
The two public remaining tasks (MUSCA-DET T2 and QUAERO-MEDLINE) are then better
handled using PubMedBERT NACHOSsmall, a model that has already been pre-trained on
domain-speci!c data (biomedical English data) then further pre-trained with our French
medical data (NACHOSsmall).

We also observed that continual pre-training from domain generic models (Camem-
BERTNACHOSsmall or CamemBERTNBDWsmall) does not allow reaching the performance
of the other speci!c models, neither of these two models reaching the !rst or second place
(in terms of performance) on any task.

Finally, the baseline models trained on generic data (CamemBERT OSCAR) and those
trained on biomedical data in English (PubMedBERT, ClinicalBERT and BioBERT) remain
competitive in few biomedical public tasks (CAS POS, FrenchMCQA or MUSCA-DET T2),
while none of them are placed in !rst or second place on private tasks. This seems to
highlight the di#culty of private tasks when non-matching data are used.

1.4.2 E#ect of data

Regarding the amount of data used for pre-training models (small vs. large or mixed),
results show that, the larger the data are, the better the model performs, no matter the pre-
training strategy or the source of data (private or public). However, the di"erence is very
low for most tasks, with small systems often being ranked second behind large models,
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even though they contain half as much data.

aHF NER aHF classi!cation NER Medical Report Specialities Classi!cation

P R F1 P R F1 P R F1 P R F1

CamemBERT OSCAR 138 GB 40.89 35.22 35.13 81.90 79.12 80.13 87.98 91.66 89.35 99.32 99.09 99.20

CamemBERT OSCAR 4 GB 46.32 43.17 42.66 81.49 81.42 81.41 87.79 90.74 88.78 99.53 99.69 99.61

CamemBERT CCNET 4 GB 47.25 42.2 43.11 82.02 79.30 79.98 87.61 92.28 89.34 99.54 99.55 99.55

PubMedBERT 52.61 46.30 47.22 78.17 76.18 76.86 87.07 92.61 89.20 99.25 99.51 99.37

ClinicalBERT 50.11 44.15 44.70 80.13 75.92 77.12 87.04 92.14 88.77 98.58 98.62 98.58

BioBERT v1.1 49.37 47.25 46.01 79.69 78.51 79.00 88.17 91.80 89.38 98.59 99.03 98.80

DrBERT NACHOSlarge 55.29 46.66 48.22 81.33 81.25 81.25 87.99 92.80 89.83 99.82 99.90 99.86

DrBERT NACHOSsmall 54.55 43.39 45.93 79.85 80.10 79.87 87.57 92.76 89.44 99.85 99.85 99.85

ChuBERT NBDWsmall 56.92 47.46 49.01 81.03 82.67 81.56 87.76 92.63 89.58 99.76 99.90 99.83

ChuBERT NBDWmixed 54.62 47.81 49.14 82.23 81.71 81.98 87.42 92.36 89.30 99.81 99.82 99.81

CamemBERT NACHOSsmall 22.02 16.67 16.08 74.86 69.82 69.80 65.72 68.49 66.74 99.44 99.67 99.54

PubMedBERT NACHOSsmall 53.44 48.21 48.72 83.06 80.39 81.40 87.35 92.69 89.36 99.52 99.58 99.55

CamemBERT NBDWsmall 25.44 19.33 19.12 79.50 74.74 76.02 68.80 71.23 69.64 99.60 99.57 99.58

Table 1.7: Performance on our private biomedical downstream tasks. Best model in bold
and second is underlined.

We notice a clear dominance of models that were pre-trained on web-based sources,
speci!cally OSCAR and NACHOS, when applied to public tasks. Indeed, models relying
on private NBDW data only achieve the best performance (in terms of F1-score) on the
MUSCA-DET T1 task. This trend is not quite observed on private tasks, where NBDW-
based models obtain more acceptable or even better performance when mixed with public
biomedical data (ChuBERT NBDWmixed), as seen in Table 1.7. We believe this discrepancy
is mainly due to the di"erent nature of processed data.

Finally, we observe that English-based models perform closely to the French-based
CamemBERT model. This shows the usefulness of pre-training on domain speci!c data.
For example, better results are obtained with continual pre-training of the PubMedBERT
model with our specialized data in French (PubMedBERTNACHOSsmall), corroborating our
hypothesis about the e"ectiveness of cross-language knowledge transfer.

1.4.3 Performance on general-domain tasks

Table 1.8 gives the results obtained by all PLMs on general domain downstream tasks. These
tasks come from [200] who used them to evaluate the CamemBERT model. The !rst four
are POS tagging tasks (GSD, SEQUOIA, SPOKEN and PARTUT), the last being a natural
language inference task (XNLI).
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GSD SEQUOIA SPOKEN PARTUT XNLI

CamemBERT OSCAR 138 GB 98.28 98.68 97.26 97.70 81.94

CamemBERT OSCAR 4 GB 98.14 99.18 97.57 97.86 81.76

CamemBERT CCNET 4 GB 98.18 98.92 97.20 97.92 81.26

PubMedBERT 96.48 96.49 90.00 93.97 73.79

ClinicalBERT 96.49 96.31 89.60 93.17 70.57

BioBERT v1.1 97.32 96.54 91.81 94.52 71.54

DrBERT NACHOSlarge 96.94 98.05 95.92 96.54 72.18

DrBERT NACHOSsmall 97.17 98.21 96.38 96.45 72.86

ChuBERT NBDWsmall 96.45 97.38 94.90 95.83 69.00

ChuBERT NBDWmixed 97.18 98.10 96.43 96.33 72.32

CamemBERT NACHOSsmall 97.63 96.90 91.12 94.00 71.26

PubMedBERT NACHOSsmall 97.41 98.71 95.54 97.01 77.35

CamemBERT NBDWsmall 97.55 96.26 89.17 91.34 72.73

Table 1.8: Performance on public domain-general downstream tasks. Best model in bold
and second is underlined.

All results of our models decrease in performance on all tasks. The most important drop
is for the natural language inference task, with a performance of ChuBERT NBDWsmall

almost 13% lower than CamemBERT 138 GB. We also observe that the specialized models
in English are as e#cient as our biomedical models in French. It seems quite clear from the
previous observations that specialized models are di#cult to generalize to other tasks, but
that specialized information captured in one language could transfer to another language.

1.4.4 Vocabularies Inter-coverage

Figure 1.1: Vocabularies inter-coverage matrix for MLMmodels, showing pairwise percent-
age overlap in token vocabularies. Darker cells indicate higher shared coverage.
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As we can see in Figure 1.1, the vocabulary inter-coverage matrix reveals interesting pat-
terns in the shared vocabulary between di"erent BERT-based models. CamemBERTmodels
(138 GB, 4 GB, and CCNET 4 GB) show strong mutual vocabulary coverage (74.9-100%), in-
dicating signi!cant overlap in their tokenization despite di"erent training data sizes. How-
ever, domain-speci!c models like BioBERT, PubMedBERT, and ClinicalBERT share rela-
tively low vocabulary coverage (around 32-38%) with general-domain models, highlighting
their specialized nature. DrBERT variants (7 GB and 4 GB) demonstrate moderate cover-
age (20-30%) with other models but maintain strong internal consistency (76.2-100%). No-
tably, theNACHOS variants of CamemBERT and PubMedBERT showdistinct patterns, with
CamemBERT NACHOS maintaining higher coverage with its parent model while PubMed-
BERT NACHOS shows more divergence. The MixedBERT 8 GB model exhibits particularly
low coverage (2-33%) with most other models except DrBERT variants (57.3-58.3%), sug-
gesting a unique vocabulary composition that re%ects its mixed-domain training approach.

1.4.5 Models Stability

We observe during the evaluation phase that most of the models based on continual pre-
training strategy from CamemBERT OSCAR 138 GB are su"ering from bad consistency and
stability during !ne-tuning, which translates into %uctuation in performance between runs
as shown in the Figure 1.2.

(1.a) aHF classi!cation (1.b) MUSCADET T1

(2.a) QUAERO MEDLINE (2.b) XNLI

Figure 1.2: Box plot of the F1 score for each of the tasks and models.

We also notice during PubMedBERTNACHOSsmall pre-training that themodel loss (Fig-
ure 1.3) is globally stable during almost all the duration of the pre-training, until reaching
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the step 71,000, where the loss fall down until touching down zero at step 72,500.

Figure 1.3: PubMedBERT NACHOSsmall loss.

While the DrBERT 4GB and 7GB variants trained from-scratch are showing a consistent
loss decrease without any abnormal phenomenon as shown in Figure 1.4:

Figure 1.4: On the left hand side DrBERT NACHOSsmall loss and on the right hand side
DrBERT NACHOSlarge loss.

1.5 Conclusion

In this work, we proposed the !rst biomedical and clinical Transformer-based language
models, based on RoBERTa architecture, for the French language. An extensive evaluation
study of these speci!c models has been performed on an aggregated collection of diverse
private and public medical tasks. Our open-source DrBERT models improved the state of
the art in all medical tasks against both the French general model (CamemBERT) and the
English medical ones (BioBERT, PubMedBERT and ClinicalBERT). In addition, we showed
that pre-training on constrained resources (4 GB) of web-crawled medical makes it possible
to compete with, and even frequently surpass, models trained with specialized data from
medical reports.

Results also highlighted that continual pre-training on an existing domain-speci!c En-
glishmodel, here PubMedBERT, is amore viable solution than on a French domain-generalist
model while targeting French biomedical downstream tasks. It needs to further investigate
the performance of this approach using more data, similar to what we have done with Dr-
BERT NACHOSlarge.
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The pre-trained models as well as the pre-training scripts5 have been publicly released
online under an MIT open-source license. The main purpose of the NACHOS dataset is to
promote the development of robust NLP tools by the community, so we have decided to
make the corpora available for academic research.

5https://drbert.univ-avignon.fr/
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As demonstrated in previous chapters, the evaluation of language models is crucial for
understanding their capabilities and limitations. While numerous benchmarks exist for
general domain evaluation [279, 278], specialized domains like healthcare require dedicated
evaluation frameworks that can assess both general language understanding and domain-
speci!c knowledge [109, 111]. This is particularly challenging for languages other than
English, where both the models and evaluation resources are scarce.

Several key research questions arisewhen considering the evaluation of domain-speci!c
language models:

• How can we e"ectively evaluate the domain adaptation capabilities of language mod-
els in specialized !elds?

• What metrics and tasks are most relevant for assessing medical language understand-
ing?

• How do we ensure a comprehensive evaluation across di"erent medical specialties
and task types?

• Can we establish standardized evaluation protocols that facilitate fair comparisons
between models?

This chapter presents DrBenchmark, the!rst large-scale evaluation framework for French
biomedical language models [166]. Our work provides a systematic approach to assessing
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the performance of language models in the French medical domain through a diverse set
of tasks and metrics. Our main contributions are:

• We introduce a comprehensive collection of 12 medical datasets on HuggingFace1

encompassing 20 diverse downstream tasks, including: POS tagging, NER, Multi-
class and Multi-label classi!cation, MCQA, Semantic Textual Similarity (STS)

• We conduct a comprehensive evaluation of 8 state-of-the-art masked language mod-
els:

– French generalist models: CamemBERT [199], CamemBERTa [6], FlauBERT
[174]

– French biomedical models: DrBERT [165], CamemBERT-bio [265]

– English biomedical model: PubMedBERT [108]

– Cross-lingual generalist model: XLM-RoBERTa [67]

• We develop standardized evaluation protocols and metrics speci!cally designed for
healthcare-related NLP tasks, ensuring reliable and reproducible model comparisons.

• We provide on GitHub an extensive evaluation framework with automated pipelines2

for large-scale experiments, including support for high-performance computing (HPC)
infrastructures.

Our benchmark incorporates datasets from various sources, including scienti!c liter-
ature, clinical trials, clinical cases, and speech transcriptions. These datasets represent a
wide range of medical specialties and task types, from clinical case analysis to prescription
understanding, providing a comprehensive assessment of medical language understanding
capabilities.

The evaluation framework has been designed to be easily extensible, allowing for the
integration of new datasets and metrics as they become available. This ensures that Dr-
Benchmark can evolve alongside advances in medical NLP and continue to serve as a valu-
able resource for the research community.

2.1 DrBenchmark Overview

Our proposed benchmark comprises 20 French biomedical language understanding tasks,
one of which is speci!cally created for this benchmark. The descriptions and statistics of
these tasks are presented in Table 2.1. DrBenchmark encompasses the following overall
aspects:

1. A diverse set of tasks evaluating distinct model capabilities: POS tagging as-
sesses grammatical understanding and syntactic structures, NER evaluates lexical

1https://huggingface.co/DrBenchmark/datasets
2https://github.com/DrBenchmark/DrBenchmark
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knowledge and domain-speci!c terminology comprehension, Multi-class and Multi-
label classi!cation test semantic categorization at di"erent granularity levels, Intent
classi!cation measures understanding of medical context, MCQA evaluates medical
reasoning capabilities, and STS assesses the model’s ability to capture nuanced rela-
tionships between medical texts.

2. A diverse range of data origins: Scienti!c literature, clinical trials, clinical cases,
speech transcriptions, and more as described in Table 2.2.

Dataset Task Metric Train Validation Test License

CAS POS tagging SeqEval F1 2,653 379 758 DUA

ESSAI POS tagging SeqEval F1 5,072 725 1,450 DUA

QUAERO
NER - EMEA SeqEval F1 429 389 348 GFDL 1.3

NER - MEDLINE SeqEval F1 833 832 833 GFDL 1.3

E3C
NER - Clinical SeqEval F1 969 140 293 CC BY-NC

NER - Temporal SeqEval F1 969 140 293 CC BY-NC

MorFITT Multi-label Classi!cation Weighted F1 1514 1,022 1,088 CC BY-SA 4.0

FrenchMedMCQA
Question-Answering Hamming / EMR 2,171 312 622 Apache 2.0

Multi-class Classi!cation Weighted F1 2,171 312 622 Apache 2.0

Mantra-GSC

NER - EMEA SeqEval F1 70 10 20 CC BY 4.0

NER - Medline SeqEval F1 70 10 20 CC BY 4.0

NER - Patents SeqEval F1 35 5 10 CC BY 4.0

CLISTER Semantic Textual Similarity EDRM / Spearman 499 101 400 DUA

DEFT-2020
Semantic Textual Similarity EDRM / Spearman 498 102 410 DUA

Multi-class Classi!cation Weighted F1 460 112 530 DUA

DEFT-2021
Multi-label Classi!cation Weighted F1 118 49 108 DUA

NER SeqEval F1 2,153 793 1,766 DUA

DiaMed Multi-class Classi!cation Weighted F1 509 76 154 CC BY-SA 4.0

PxCorpus
NER SeqEval F1 1,386 198 397 CC BY 4.0

Multi-class Classi!cation Weighted F1 1,386 198 397 CC BY 4.0

Table 2.1: Descriptions and statistics of the 20 tasks included in DrBenchmark.

Please note that within DrBenchmark, we include classical tasks like NER and POS
tagging, as well as more speci!c and challenging tasks like MCQA and multi-label classi!-
cation. In Section 2.1.1, we provide an overview of the di"erent French downstream tasks,
while in Section 2.1.2, we o"er insights into the pipeline and its reproducibility.

Dataset Sources

CAS Clinical cases
ESSAI Clinical trial protocols

QUAERO Drug lea%ets & Biomedical titles
E3C Clinical cases

MorFITT Biomedical abstracts
FrenchMedMCQA Pharmacy Exam
Mantra-GSC Biomedical abstract / titles, drug labels, & patent
CLISTER Clinical cases
DEFT-2020 Clinical cases, encyclopedia & drug labels
DEFT-2021 Clinical cases
DiaMed Clinical cases
PxCorpus Drug prescriptions transcripts

Table 2.2: Data sources covered by each dataset.
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2.1.1 Downstream tasks

DEFT-2020 [40] contains clinical cases, encyclopedia, and drug labels introduced in the
2020 edition of an annual French Text Mining Challenge, called DEFT, and annotated for
two tasks: (i) textual similarity and (ii) multi-class classi!cation. The !rst task aims at
identifying the degree of similarity within pairs of sentences, from 0 (the least similar) to 5
(the most similar). The second task consists of identifying, for a given sentence, the most
similar sentence among the three sentences provided.

DEFT-2021 [107] is a subset of 275 clinical cases taken from the 2019 edition of DEFT.
This dataset is manually annotated in two tasks: (i) multi-label classi!cation and (ii) NER.
The multi-label classi!cation task focuses on identifying the patient’s clinical pro!le based
on the diseases, signs, or symptoms mentioned in the clinical cases. The dataset is anno-
tated with 23 axes from Chapter C of the Medical Subject Headings (MeSH). The second
task involves !ne-grained information extraction for 13 types of entities (more details in
Appendix 9.4).

E3C [196] is a multilingual dataset of clinical cases annotated for the NER task. It con-
sists of two types of annotations (more details in Appendix 9.4): (i) clinical entities (e.g.,
pathologies), (ii) temporal information and factuality (e.g., events). While the dataset cov-
ers 5 languages, only the French portion is retained for the benchmark. Since the dataset
does not come with pre-de!ned subsets, we performed a 70 / 10 / 20 random split, as de-
scribed in Table 2.3.

Subset Train Validation Test

Clinical 87.38 % of layer 2 12.62 % of layer 2 100 % of layer 1

Temporal 70 % of layer 1 10 % of layer 1 20 % of layer 1

Table 2.3: Description of the sources for E3C.

The QUAERO French Medical Corpus [211], simply referred to as QUAERO in this
chapter, contains annotated entities and concepts in French for NER tasks. The dataset
covers two text genres (drug lea%ets and biomedical titles), consisting of a total of 103,056
words sourced from EMEA or MEDLINE. 10 entity categories corresponding to the UMLS
Semantic Groups [188] were annotated (more details in Appendix 9.4). In total, 26,409 entity
annotations were mapped to 5,797 unique UMLS concepts. Due to the presence of nested
entities in annotations, we simpli!ed the evaluation process by retaining only annotations
at the higher granularity level from the BigBio [94] implementation, following the approach
described in CamemBERT-bio [265], which translates into an average loss of 6.06% of the
annotations on EMEA and 8.90% on MEDLINE. Additionally, considering that some docu-
ments from EMEA exceed the maximum input sequence length that most current language
models can handle, we decided to split these documents into sentences.
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MorFITT [170] is a multi-label dataset annotated with medical specialties. It contains
3,624 biomedical abstracts from PMCOpen Access. It has been annotated across 12 medical
specialties (more details in Appendix 9.4), for a total of 5,116 annotations.

FrenchMedMCQA [164] is a Multiple-Choice Question-Answering (MCQA) dataset for
the biomedical domain. It contains 3,105 questions coming from real exams of the French
medical specialization diploma in pharmacy, integrating single and multiple answers. The
!rst task consists of automatically identifying the set of correct answers among the 5 pro-
posed for a given question. The second task consists of identifying the number of answers
(between 1 and 5) supposedly correct for a given question.

Mantra-GSC [155] is a multilingual dataset annotated for biomedical NER. From the 5
languages covered, we included only the French subset in this benchmark. The dataset is
obtained from 3 sources, which have been partitioned to be evaluated separately by 2 anno-
tation schemes (more details in Appendix 9.4): Medline (11 classes), and EMEA and Patents
(10 classes). The sources cover di"erent types of documents (biomedical abstracts/titles,
drug labels, and patents). To ensure evaluation consistency, we randomly split the dataset
into 3 subsets: 70% for training, 10% for validation, and 20% for testing.

CLISTER [122] is a French clinical cases STS dataset of 1,000 sentence pairs manually
annotated by several annotators, who assigned similarity scores ranging from 0 to 5 to
each pair. The scores were then averaged together to obtain a %oating-point number rep-
resenting the overall similarity. The objective of this dataset is to develop models that can
automatically predict a similarity score that closely aligns with the reference score based
solely on the two sentences provided.

CAS [105] comprises 3,790 clinical cases that have been annotated for POS tagging with
31 classes using automatic annotations through Tagex 3, with an evaluation conducted by
comparing the automatic outputs against manual annotations. This evaluation yielded 98%
precision. Since the dataset does not comewith prede!ned subsets, we decided to randomly
split it into 3 subsets of 70%, 10% and 20% of the total data for training, validation, and test,
respectively.

ESSAI [73] contains 7,247 clinical trial protocols annotated in 41 POS tags using Tree-
Tagger [247]. As the dataset was not originally divided into 3 subsets, we applied the same
procedure as on the CAS corpus.

PxCorpus [153] is a spoken language understanding dataset in the domain of medical
drug prescription transcripts. It includes 4 hours (1,981 recordings) of transcribed and anno-
tated dialogues focused on drug prescriptions. The recordings were manually transcribed

3https://allgo.inria.fr/app/tagex
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and semantically annotated. The !rst task involves classifying the textual utterances into
one of the 4 intent classes (prescribe, replace, negate, none). The second task is a NER task
where each word in a sequence is classi!ed into one of 38 classes, such as drug, dose, or
mode (more detail in Appendix 9.4).

DiaMed is an original dataset created speci!cally for DrBenchmark. It comprises 739
new French clinical cases collected from an open-source journal (The Pan African Medical
Journal). The cases have been manually annotated by several annotators, one of whom is
a medical expert, into 22 chapters of the International Classi!cation of Diseases, 10th Re-
vision (ICD-10) [1]. These chapters provide a general description of the type of injury or
disease. To ease the annotation process, only labels at the chapter level were used (more de-
tails in Appendix 9.4). The inter-annotator agreement between the 4 annotators has been
computed for two annotation sessions (see Table 2.4), with 15 di"erent clinical cases as-
sessed per session.

Session 1 - 0 to 15 docs Session 2 - 15 to 30 docs

Annotator ID ω G ω G

Annotator 1 & 2 0.538 0.566 0.697 0.705

Annotator 1 & 3 0.682 0.709 0.697 0.705

Annotator 1 & 4 0.397 0.429 0.548 0.558

Annotator 2 & 3 0.311 0.357 1.000 1.000

Annotator 2 & 4 0.472 0.497 0.672 0.707

Annotator 3 & 4 0.311 0.354 0.672 0.707

Average 0.452 0.485 0.714 0.730

Table 2.4: Inter-annotator agreement statistics. ς is referring to Kappa Cohen and G to
Gwet’s AC1.

2.1.2 Reproducibility and Usage

To facilitate the adoption of DrBenchmark and ensure consistency in implementations, we
have developed a practical toolkit based on the HuggingFace Datasets library [179]. This
toolkit includes data loaders that adhere to normalized schemes and prede!ned data splits.
It also provides pre-training and evaluation scripts for each of the tasks, utilizing the Hug-
gingFace Transformers [290] and PyTorch [227] libraries. For further guidance, we have
integrated all the training details, including hyperparameters, in Appendix 9.3. This in-
formation will help users to reproduce and customize the experiments conducted with Dr-
Benchmark4.

4https://github.com/DrBenchmark/DrBenchmark
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2.2 Language Models Studied

In this section, we outline the experimental protocol used to compare the performance of
existing language models within DrBenchmark. To guarantee a fair comparison, we focus
exclusively on pre-trained masked language models (MLMs) in this study. These MLMs are
based on BERT-like architectures [81].

We !rst provide a brief overview in Section 2.2.1 of the 8 pre-trained language models
that were studied: French generalist models (CamemBERT, CamemBERTa, and FlauBERT),
cross-lingual generalist model (XLM-RoBERTa), French biomedical models (DrBERT and
CamemBERT-bio), and English biomedical model (PubMedBERT). Subsequently, in Sec-
tion 2.2.2, we describe the evaluation protocol employed to assess the performance of these
models.

2.2.1 Pre-trained Masked Language Models

Table 2.5 summarizes the models and their parameters compared on DrBenchmark.

Model Tokenizer Vocabulary Pretraining Corpus Text Size

French Generalist

CamemBERTa SentencePiece 32K CCNET from-scratch CCNET 4 GB

CamemBERT SentencePiece 32K OSCAR from-scratch OSCAR 138 GB

FlauBERT BPE 50K Wiki + Web crawl from-scratch Wiki + Web crawl 71 GB

French Biomedical

DrBERT-FS SentencePiece 32K NACHOS from-scratch NACHOS 7.4 GB

DrBERT-CP WordPiece 30K PubMed continual pretraining PubMed + NACHOS 21 + 4 GB

CamemBERT-bio SentencePiece 32K OSCAR continual pretraining OSCAR + biomed-fr 138 + 2.7 GB

Cross-lingual Generalist XLM-RoBERTa WordPiece 30K CC-100 from-scratch CC-100 2.5 TB

English Biomedical PubMedBERT WordPiece 30K PubMed from-scratch PubMed 21 GB

Table 2.5: Summary of the pre-training speci!cations for the di"erent BERT-based models
compared.

CamemBERT [199] is a RoBERTa-based model for French, pre-trained from-scratch on
the generalist French 138 GB subset of OSCAR corpus [221].

CamemBERTa [6] is a DeBERTaV3 [118] basedmodel pre-trained from-scratch on around
30% of the French subset of CCNET corpus [289] used for CamemBERTCCNET , that had seen
approximately 133 billion tokens during its pre-training.

FlauBERT [174] is a BERT-based model pre-trained from scratch using a subsample of
71 GB of the French Common Crawl and Wikipedia corpora.
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XLM-RoBERTa [67] is a cross-lingual RoBERTa-based model trained on 116 languages,
including French, by using 2.5 TB of the CommonCrawl corpus.

PubMedBERT [109] is a BERT-based biomedical-speci!cmodel pre-trained from scratch
on the 3.1 billion words of the PubMed corpus (21 GB). This is the only model for English.

DrBERT-FS and DrBERT-CP [165] are French biomedical MLMs built using a from-
scratch pre-training of RoBERTa (DrBERT-FS) and continual pre-training of PubMedBERT
(DrBERT-CP) from the French public biomedical corpus NACHOS [165], integrating 1.08 bil-
lion words (7.4 GB) and 646 million words (4 GB) respectively.

CamemBERT-bio [265] is a French biomedical language model built using a continual
pre-training of the CamemBERTOSCAR→138GB model. It was trained on the French public
corpus biomed-fr [265] with 413 million words (2.7 GB) and a wide range of data collected
on the web.

2.2.2 Models evaluation

All the models are !ne-tuned according to a strict protocol using the same hyperparame-
ters for each downstream task. The reported results are obtained by averaging the scores
from four separate runs, thus ensuring robustness and reliability. We also report statistical
signi!cance computed using Student’s t-test.

To ensure a fair and consistent comparison among systems for sequence-to-sequence
tasks such as POS tagging and NER, we chose the SeqEval [208] metric in conjunction with
the IOB2 format and the training of all the models to predict only the label on the !rst
token of each word, as mentioned by [265]. It provides a tokenizer-agnostic evaluation and
mitigates any correlation between models’ performances and the tokenization process.

For STS tasks, the models’ performance was assessed using two metrics: (1) the Spear-
man correlation, and (2) the mean relative solution distance accuracy (EDRM), as de!ned
by the original authors of the DEFT-2020 dataset [40].

2.3 Experiments and Results

In Section 2.3.1, we compare the results obtained by each model within DrBenchmark,
which permits positioning a wide range of state-of-the-art models in the biomedical !eld
across various NLP tasks. Then, we propose to gain a comprehensive understanding of
the models’ behavior by examining areas such as low-resource !ne-tuning scenarios (Sec-
tion 2.3.2) and the analysis of word tokenization of the studied models (Section 2.3.3).
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2.3.1 Comparison of Models’ Performance

French Generalist French Biomedical English Biomedical Cross-lingual Generalist

Dataset Task Baseline CamemBERT CamemBERTa FlauBERT DrBERT-FS DrBERT-CP CamemBERT-bio PubMedBERT XLM-RoBERTa

CAS POS 23.50 95.53** 96.56** 95.22** 96.93 96.46** 95.22** 94.82** 96.91

ESSAI POS 26.31 97.38** 98.08** 97.05* 98.41 98.01** 97.39** 97.42** 98.34

QUAERO
NER EMEA 8.37 62.68** 64.86** 74.86 64.11** 67.05** 66.59** 53.19** 64.47**

NER MEDLINE 4.92 55.25** 55.60** 48.98 55.82** 60.10 58.94 53.26** 51.12**

E3C
NER Clinical 4.47 54.70** 55.53 47.61 54.45 56.55 56.96 38.34 52.87**

NER Temporal 21.74 83.45 83.22 61.64 81.48** 83.43 83.44 80.86** 82.6

MorFITT Multi-Label CLS 3.24 64.21** 66.28** 70.25 68.70** 70.99 67.53** 68.58** 67.28**

FrenchMedMCQA
MCQA 21.83 / 11.57 28.53 / 2.25** 29.77 / 2.57** 27.88 / 2.09** 31.07 / 3.22** 32.41 / 2.89** 35.3 / 1.45 32.90 / 1.61** 34.74 / 2.09**

CLS 8.37 66.21 64.44** 61.88 65.38 66.22 65.79 65.41* 64.69*

MantraGSC

NER FR EMEA 0.00 29.14** 40.84** 66.20 66.23 60.88 30.63** 40.14** 52.64*

NER FR Medline 7.78 23.20** 22.55** 20.69 42.38 35.52 23.66** 27.53* 18.73*

NER FR Patents 6.20 00.00** 44.16** 31.47** 57.34 39.68 00.00** 4.51** 8.58**

CLISTER STS 0.44 / 0.00 0.55 / 0.33** 0.56 / 0.47** 0.50 / 0.29** 0.62 / 0.57** 0.60 / 0.49* 0.54 / 0.26** 0.70 / 0.78 0.49 / 0.23**

DEFT-2020
STS 0.49 / 0.00 0.59 / 0.58** 0.59 / 0.43** 0.58 / 0.51** 0.72 / 0.81* 0.73 / 0.86 0.58 / 0.32** 0.78 / 0.86 0.60 / 0.26**

CLS 14.00 96.31 97.96 42.37** 82.38 95.71* 94.78* 95.33* 67.66**

DEFT-2021
Multi-Label CLS 24.49 18.04** 18.04** 39.21 34.15** 30.04** 17.82** 25.53** 24.46**

NER 0.00 62.76** 62.61** 33.51 60.44** 63.43* 64.36 60.27** 60.32**

DiaMED CLS 15.36 30.40** 24.05** 34.08** 60.45 54.43** 39.57** 54.96** 26.69**

PxCorpus
NER 10.00 92.89** 95.05** 47.57 95.88 71.38 93.08** 94.66** 95.80

CLS 84.78 94.41 93.95 93.45* 94.43 94.52 94.49 93.12 93.91

Table 2.6: Performance of the studied models over 4 runs. Best model in bold and second is
underlined. Statistical signi!cance is computed using Student’s t-test: * stands for p < 0.05,
** stands for p < 0.01.

The results of the 8 models are reported in Table 2.6 and compared to a baseline obtained
by considering the majority class for all predictions. Overall, although we might anticipate
certain models to excel in all tasks, we discovered that no single model outperforms the
rest in all application scenarios. Interestingly, most of the models examined manage to
secure the top position in at least one of the French biomedical downstream tasks studied.
The only exception pertains to the cross-lingual generalist model (XLM-RoBERTa), which
manages to reach the second-best position on several tasks.

Despite this unexpected outcome, we observe that French biomedical language models
(DrBERT-FS, DrBERT-CP, CamemBERT-bio), presumed to be the most aligned with the nature
of the data of the benchmark, exhibit indeed superior performance across many tasks. More
precisely, DrBERT-FS achieves the highest performance in 8 tasks, DrBERT-CP in 5 tasks, and
CamemBERT-bio in 2 tasks. This indicates that domain and language-specialized models
achieve the best performance in up to 75% of the DrBenchmark downstream tasks.
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(a) MorFITT CLS. (b) DEFT 2020 CLS (c) E3C NER Clini-
cal.

(d) MantraGSC NER
Medline.

(e) FrenchMedM-
CQA CLS

(f) MantraGSC NER
EMEA.

(g) QUAERO NER
EMEA.

(h) CLISTER STS.

Figure 2.1: Performance with varying training subset sizes (25%, 50%, 75% and 100%). Re-
sults are reported on the full test set.

Biomedical vs. Generalist. The nature of the data appears to have an in%uence. Gener-
alist models (CamemBERT, CamemBERTa, FlauBERT, and XLM-RoBERTa) are more suitable for
tasks that require extensive linguistic knowledge but may not perform as well as specialized
models nor even reach their level of performance. We observe that all generalist models
obtain better performance only on 4 out of the 20 tasks, but remain competitive on most
tasks. Furthermore, our experiments with DrBERT-FS indicate that biomedical models may
require less pre-training data compared to generalist ones. However, it is important to note
that this observation requires further con!rmation. In some tasks, biomedical models that
undergo continual pre-training from a generalist model, such as CamemBERT-bio, can prove
to be the most e"ective, underscoring the value of pre-training on generalist datasets.

From-scratch vs. Continual Pre-Training. DrBERT-CP and CamemBERT-bio, pre-trained
from PubMedBERT and CamemBERT respectively, demonstrate improved performance com-
pared to their initial models. Notably, DrBERT-CP outperforms CamemBERT-bio in 15 out of
20 tasks. These !ndings suggest that when it comes to continual pre-training, starting with
a specialized model in the speci!c domain (here, PubMedBERT) may be a better choice than
a generalist model (here, CamemBERT), even with di"erent languages. Additionally, we ob-
serve that DrBERT-FS achieves the highest performance in 8 tasks, suggesting that starting
from-scratch can be a competitive strategy compared to continual pre-training.

French vs. Other language. French models generally achieve better performance com-
pared to English or multilingual ones. When considering the English PubMedBERT model,
we observe that its performance in most tasks is comparable to that of the French models,
with the exception of NER tasks, where French models demonstrate superiority. Thus, we
observe that the language appears to be less prominent when utilized in domain-speci!c
tasks, such as those in the biomedical !eld.
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RoBERTa vs. DeBERTaV3 architectures. Despite being trained on only 30% of the
pre-training data used by CamemBERTCCNET , CamemBERTa achieves identical or better per-
formances in 68% of the tasks (12 out of 20), bene!ting from the DeBERTaV3 architecture
in domain-speci!c scenarios. However, all the models based on CamemBERT face di#cul-
ties in corpora with a limited amount of data, such as MantraGSC Patents, where they fail
to generate labels other than ’O’. On the other hand, in the same low-resource scenarios,
CamemBERTa models exhibit greater robustness and achieve superior performance. The ar-
chitecture on which the models are based therefore, seems to play a role in the performance
obtained.

French Generalist French Biomedical English Biomedical Cross-lingual Generalist

Dataset Task CamemBERT CamemBERTa FlauBERT DrBERT-FS DrBERT-CP CamemBERT-bio PubMedBERT XLM-RoBERTa

CAS POS 1.63 1.64 1.34 1.36 1.81 1.63 1.81 1.8

ESSAI POS 1.55 1.56 1.28 1.29 1.78 1.55 1.78 1.75

QUAERO
NER EMEA 1.66 1.67 1.37 1.37 1.73 1.66 1.73 1.77

NER Medline 2.01 2.01 1.58 1.64 1.97 2.01 1.97 2.18

E3C
NER FR Clinical 1.64 1.65 1.39 1.32 1.80 1.64 1.80 1.78

NER FR Temporal 1.63 1.63 1.38 1.31 1.80 1.63 1.80 1.76

MorFITT Multi-Label CLS 1.51 1.51 1.33 1.39 1.91 1.51 1.91 1.73

FrenchMedMCQA
MCQA 1.80 1.80 1.55 1.55 2.03 1.80 2.03 2.00

CLS 1.80 1.80 1.55 1.55 2.03 1.80 2.03 2.00

MantraGSC

NER FR EMEA 1.50 1.46 1.34 1.37 1.99 1.50 1.99 1.71

NER FR Medline 2.25 2.25 1.88 2.05 2.47 2.25 2.47 2.49

NER FR Patents 1.58 1.58 1.41 1.51 2.06 1.58 2.06 1.86

CLISTER STS 1.76 1.76 1.55 1.55 2.09 1.76 2.09 1.93

DEFT-2020
STS 1.43 1.43 1.31 1.45 1.92 1.43 1.92 1.64

CLS 1.31 1.32 1.20 1.23 1.75 1.31 1.75 1.51

DEFT-2021
CLS 1.70 1.71 1.48 1.51 2.05 1.70 2.05 1.90

NER 1.62 1.63 1.35 1.35 1.80 1.62 1.80 1.79

DiaMED CLS 1.66 1.67 1.45 1.46 1.99 1.66 1.99 1.88

PxCorpus
NER 1.71 1.76 1.63 1.66 2.13 1.71 2.13 1.83

CLS 1.71 1.76 1.63 1.66 2.13 1.71 2.13 1.83

Average 1.67 1.67 1.43 1.47 1.90 1.67 1.90 1.85

Table 2.7: Average sub-word units per word for each model and dataset. For each task, the
lowest sub-word value is shown in bold, and the highest value is underlined. Models are
grouped based on their tokenizer type. Cells in green indicate the best model in terms of
performance for the task, while cells in red indicate the worst model.

2.3.2 Impact of Fine-Tuning with Limited Data

Unlike the process of training language models, the !ne-tuning approach involves utiliz-
ing annotated data to adapt a pre-trained language model for solving speci!c downstream
tasks. In the previous section, we observed that language models pre-trained on medical
data generally achieved better performance on DrBenchmark compared to generalist mod-
els trained on much larger datasets. However, we now question the models’ ability to be
e"ectively applied to biomedical tasks when there is limited !ne-tuning training data avail-
able. For this purpose, we conducted experiments by varying the amount of training data
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during the !ne-tuning process by randomly choosing four percentages of the training data:
25%, 50%, 75% and 100%. To make the experiment as fair as possible, we did four runs for
each percentage, model and dataset combination. The validation and test sets have not been
changed for the sake of comparison.

We observe that on certain datasets, some models capture information more quickly
than others, like in Figures 2.1b, 2.1f and 2.1a. Unsurprisingly, in almost all scenarios, hav-
ing the complete training set yields better results than having only 25% of it. However,
we note a few exceptions in Figures 2.1a and 2.1h with FlauBERT, where we observe the
opposite trend. For intermediate percentages, 50% and 75%, we observe a decrease in per-
formance with certain models, such as FlauBERT in Figures 2.1a and 2.1g, and DrBERT-CP

in Figures 2.1d and 2.1h. In NER tasks (Figures 2.1a, 2.1d, 2.1f and 2.1g), DrBERT-FS achieves
the best performance in scenarios with very little data, indicating good model robustness.

2.3.3 Analysis of Word Tokenization

Tokenizers play a crucial role in MLMs by utilizing size-limited vocabularies to split texts
into sub-units, aiming to handle out-of-vocabulary (OOV) words. Due to variations in the
training data, vocabularies di"er across di"erent models, as illustrated in Figure 2.2. As a
result, tokenizers segment words in distinct ways, yet remarkably achieve similar perfor-
mance levels as previously noted in Table 2.6.

Figure 2.2: Vocabularies inter-coverage matrix.

So far, there has been a prevailing notion in the community that excessive segmentation
of words in tokenization leads to a loss of morphological form and semantic meaning, intro-
ducing noise and adversely a"ecting performance [63, 126, 35]. However, our experiments,
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as shown in Table 2.7, reveal that FlauBERT is the model with the least word segmentation
(1.43 on average), while DrBERT-CP tends to have the highest average segmentation (1.90
on average). Surprisingly, when comparing the performance of these two models on the
benchmark tasks, we observe that DrBERT-CP outperforms FlauBERT on 16 out of the 20
tasks, thus contradicting previous conclusions drawn by the community. Table 2.8 provides
some examples of the tokenization done by each analyzed model, showcasing a list of com-
monly used biomedical terms. Yet, tokenization, as it is currently done in MLMs, seems to
play a minor role in the performance of systems.

French Generalist French Biomedical English Biomedical Cross-lingual Generalist

Term CamemBERTa
CamemBERT

FlauBERT DrBERT-FS
PubMedBERT

XLM-RoBERTa
CamemBERT-bio DrBERT-CP

asymptomatique a-s-ym-pto-matique a-s-y-mp-to-matique as-ym-ptom-atique ↭ asympt-omat-ique as-y-mp-tomat-ique

blépharorraphie blé-phar-or-ra-phi-e blé-phar-or-ra-phi-e bl-é-phar-or-raph-ie blé-ph-ar-or-ra-ph-ie ble-pha-ror-ra-phi-e b-lép-har-orra-phi-e

bradycardie brad-y-cardi-e brad-y-cardi-e bra-dy-car-die ↭ brady-car-di-e bra-dy-card-ie

bronchographie bronch-ographie bron-ch-ographie bron-cho-graphie bronch-ographie bronch-ograph-ie bron-ch-ographie

bronchopneumopathie bronch-op-ne-um-opathie bron-cho-p-ne-um-opathie bron-chop-neu-mo-pathie bronchop-neumopathie bronch-op-neum-opath-ie bron-chop-ne-umo-pathi-e

dysménorrhée dys-mén-or-r-h-ée dys-mén-or-r-h-ée dys-mé-nor-rh-ée dys-m-énorrhée dysm-eno-rr-he-e dys-mén-or-r-hé-e

glaucome gla-uc-ome gla-uc-ome glau-come ↭ glauc-ome gla-u-come

IRM ↭ ↭ ↭ ↭ ir-m I-RM

kystectomie k-yst-ectomie ky-st-ectomie ky-st-ec-tomie kys-tectomie ky-st-ectom-ie ky-st-ecto-mie

neuroleptique neuro-le-p-tique neuro-le-p-tique neur-ol-ep-tique neur-oleptique neurol-ept-ique neuro-lep-tique

nicotine ↭ ↭ ↭ ↭ ↭ nico-tine

poliomyélite poli-om-y-élite poli-om-y-élite poli-omy-élite poli-omyélite poli-omyel-ite poli-om-y-é-lite

rhinopharyngite rh-ino-phar-y-ng-ite rhin-oph-ary-ng-ite rh-ino-phar-yn-gite rhin-opharyng-ite rhin-oph-aryng-ite r-hin-op-har-y-ng-ite

toxicomanie toxico-mani-e toxico-mani-e ↭ ↭ toxic-oman-ie toxic-om-anie

vasoconstricteur vas-oc-on-strict-eur vas-oc-on-strict-eur vas-o-cons-tri-cteur vasoconstric-teur vasoconstric-te-ur vaso-con-strict-eur

Table 2.8: Visual comparison of models’ tokenization on commonly used biomedical terms.
A checkmark indicates that theword is present as a complete token, while hyphens separate
subword units. ↭refers to the word being available as a unigram in the vocabulary of the
tokenizer.

Table 2.9 summarizes the results obtained on average by the considered MLMs when
aggregating the tasks into one of the !ve designated categories: POS, NER, MCQA, MCC
(Multi-class classi!cation), MLC (Multi-label classi!cation), or STS tasks. Upon analyz-
ing the average performance by task category, it becomes evident that the leading model,
DrBERT-FS, does not excel in tasks such as MLC or STS. For example, the multilingual
biomedical model PubMedBERT demonstrates a notable advantage, with nearly 18 EDRM
points ahead of CamemBERT-bio in the STS tasks.
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Tasks

Models POS NER MCQA MCC* MLC* STS

CamemBERT 96.45 51.52 28.53 / 2.25 71.83 41.12 0.57 / 0.45

CamemBERTa 97.32 58.16 29.77 / 2.57 70.10 42.16 0.57 / 0.45

FlauBERT 96.13 51.85 27.88 / 2.09 57.94 54.73 0.54 / 0.40

DrBERT-FS 97.67 64.23 31.07 / 3.22 75.66 51.42 0.67 / 0.69

DrBERT-CP 97.23 59.84 32.41 / 2.89 77.72 50.51 0.66 / 0.67

CamemBERT-bio 96.30 53.06 35.30 / 1.45 73.65 42.67 0.56 / 0.29

PubMedBERT 96.12 46.93 32.90 / 1.61 77.20 47.05 0.74 / 0.82

XLM-RoBERTa 97.62 54.21 34.74 / 2.09 63.23 45.87 0.54 / 0.24

Table 2.9: Average results obtained by the di"erent MLMs for each type of task. MLC stands
for Multi-label classi!cation and MCC for Multi-class classi!cation.

2.4 Conclusion

In this chapter, we introduced DrBenchmark, the !rst large language understanding bench-
mark tailored for the French biomedical domain. We conducted a qualitative evaluation of
8 state-of-the-art masked language models (MLMs) on this comprehensive benchmark, en-
compassing 20 diverse downstream tasks. Our !ndings illuminate the limitations of gener-
alist models in tackling complex biomedical tasks, emphasizing the importance of employ-
ing domain-speci!c models to achieve peak performance. While the French biomedical
models excel in most tasks, no single model emerges as universally superior. Remarkably,
certain out-of-domain models or models trained in di"erent languages exhibit superior per-
formance in speci!c tasks and maintain competitiveness in others.

In conclusion, we have observed that several biomedical tasks in DrBenchmark exhibit
relatively poor performance, even when utilizing specialized biomedical models. We pos-
tulate that the models examined in this study, here state-of-the-art MLMs, may not be the
most e"ective choices for speci!c tasks such as question-answering or multi-label classi!-
cation. In our future research, we intend to shift our focus towards generative approaches,
such as LLaMA [267], OPT [312], or GPT-NeoX-20B [31], as well as their instruction-tuned
counterparts [133]. These alternatives may o"er more suitable solutions for addressing
these types of tasks.
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In recent years, the success of language models in NLP has been intrinsically linked to their
tokenization strategies, the process of converting raw text into meaningful subword units
formodel processing. While these strategies have proven e"ective for general domain tasks,
their application to specialized domains like medical text, particularly in languages other
than English, presents unique challenges. Medical terminology often follows distinct mor-
phological patterns and contains specialized vocabulary that may not be optimally captured
by conventional tokenization approaches.

Several key research questions arise when considering the importance of tokenization
for domain-speci!c language models:

• Since morphemic decomposition is fundamental to human understanding, can it also
enhance language modeling and understanding tasks for machines?

• How do di"erent tokenization strategies, from purely statistical to linguistically-
informed, impact model performance in a specialized domain?

• Is there an optimal level of tokenization granularity for complex medical terminol-
ogy?

• To what extent does the source and size of the tokenizer’s training data in%uence the
!nal model’s e"ectiveness?

• Can a morpheme-enriched tokenization approach outperform standard methods on
French biomedical tasks?
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This chapter, based on our work accepted at LREC-COLING 2024 [162], investigates
these questions. Since medical terms are often complex compositions of meaningful sub-
units (morphemes), purely statistical tokenizers like BPE and SentencePiece risk segment-
ing them into semantically irrelevant pieces. To address this, we compare these traditional
methods with a novel morpheme-enriched approach designed to preserve the linguistic
building blocks of medical vocabulary. We evaluate the impact of these strategies by as-
sessing model performance across the 23 biomedical NLP tasks from our DrBenchmark
framework (Chapter 2). Our main contributions are:

• We introduce a novel morpheme-enriched tokenization strategy designed to produce
more semantically coherent subword units by integrating domain-speci!c linguistic
knowledge.

• We perform a large-scale comparative study of 7 di"erent tokenization approaches,
training 7 new French medical MLMs from scratch and evaluating them on the 23
biomedical NLP tasks from the DrBenchmark framework.

• We release a comprehensive suite of 17 tokenizers1 on the Hugging Face Hub, encom-
passing various algorithms, data sources, and our novel morpheme-enriched variants.

• To ensure full reproducibility, we provide our complete experimental framework on
GitHub2, including code for tokenizer training, model pre-training, downstream eval-
uation, and result analysis.

Our !ndings reveal that while no single tokenization strategy is universally optimal,
our morpheme-enriched approach often leads to more linguistically coherent tokenization
of specialized medical terms. This work contributes to a deeper understanding of how tok-
enization choices in%uence model performance in specialized domains and o"ers practical
insights for developing robust medical language models for French and other morphologi-
cally rich languages.

3.1 Tokenization Strategies

In the following section, we provide a brief overview of the two studied classical statistical-
based tokenization approaches (Section 3.1.1), followed by the description of our original
approach that integrates linguistic knowledge throughmorphemes into existing tokenizers’
algorithms (Section 3.1.2).

3.1.1 Statistical Tokenization Algorithms

In this chapter, we compare two statistically based tokenization methods, BPE and Senten-
cePiece (see Section 0.4.4). BPE begins with individual characters and progressively com-
bines them into subword pairs based on their frequency in the training data. In contrast,

1https://huggingface.co/BioMedTok/models?sort=downloads
2https://github.com/BioMedTok/BioMedTok
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SentencePiece employs two subword segmentation algorithms, Unigrams and BPE, o"er-
ing %exibility in terms of segmentation granularity. While SentencePiece is widely used in
French biomedical models [265, 165, 68, 29], its appropriateness for a speci!c language and
domain may vary, potentially leading to suboptimal subword segmentation.

3.1.2 Morpheme-enriched Tokenization

In this chapter, focusing on improving the modeling of specialized medical terminology in
the medical !eld and reducing the impact of unseen words during model pre-training, our
primary emphasis is on lexical morphemes [266]. To achieve this, we created a manual list
of around 600 frequently used lexical morphemes in the French medical domain, sourced
from the book in [69]. Examples of thesemorphemes include terms like céphal-, clinico-,
-thérapie, thoraco-, -ome and -gène.

We trained our morpheme-enriched tokenizers by modifying both the BPE and Senten-
cePiece algorithms. During training, we introduced a prede!ned list of language-speci!c
morphemes as tokens. These morphemes were enforced selections by the tokenizer when
encountered, while the remaining text underwent the standard tokenization process of the
chosen algorithm. This approach enabled us to combine traditional BPE and SentencePiece
tokenizations with morpheme tokens, mitigating issues related to unseen words during
training.

3.2 Experimental Protocol

In this section, we outline the experimental approach used to evaluate the impact of tok-
enization strategies on French biomedical PLMs. Firstly, in Section 3.2.1, we present the
set of 23 selected biomedical NLP downstream tasks used in our study and taken from our
previous work DrBenchmark [167]. Next, we describe the di"erent training data sources
employed to train the statistical tokenizers in Section 3.2.2. Following this, in Section 3.2.3,
we explain the training procedure for the chosen BERT-based model architecture. Finally,
in Section 3.2.4, we provide a comprehensive description of the evaluation methodology
used to assess the performance of these models.

3.2.1 Downstream Tasks

We summarize the datasets of the 23 NLP biomedical downstream tasks from DrBench-
mark [167], including NER, part-of-speech (POS) tagging, STS, and classi!cation.

3.2.2 Tokenizers Data Sources

To ensure a fair and comprehensive comparison of training data sources used by the sta-
tistical tokenizers, we carefully curated a 1GB subset of raw, lowercase text data from a
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variety of sources, including NACHOS [165], PubMed Central, CC100 [289], and the French
Wikipedia. We then constructed tokenizers using both tokenization algorithms, resulting
in a total of 16 tokenizers: 8 with the integration of morphemes and 8 without. These spe-
ci!c data sources were chosen for their diversity: NACHOS focuses on French biomedical
content, PubMed Central on English biomedical content, Wikipedia on general French lan-
guage, and CC100 on general multilingual content. Each tokenizer was con!gured with a
vocabulary size of 32k tokens, consistent with the original hyperparameters used in other
French biomedical models such as CamemBERT-BIO [265] and DrBERT [165].

3.2.3 Language Model Pre-Training

To assess the impact of introducing morphemes into tokenizers on the pre-training pro-
cess of biomedical language models, we conducted pre-training from scratch using the 16
tokenizer combinations (see Section 3.2.2). Our choice of architecture was RoBERTa [193],
which is based on the masked language modeling objective and con!gured with standard
token masking percentages as introduced by the authors.

For the PLMs training data, we utilized the NACHOS corpus created by [165]. This cor-
pus, already pre-processed and converted to lowercase, is consistent with the data sources
used for training the tokenizers. It comprises 1.1 billion words, equivalent to 7.4GB of raw
text data, sourced from a wide range of online resources focusing on the French biomedical
and clinical domains.

The pre-training process was conducted uniformly across all models, employing the
same hyperparameters and executed over a 20-hour period. We harnessed the compu-
tational power of 32 V100 32GB GPUs available on the Jean-Zay supercomputer for this
purpose. By maintaining consistent procedures and employing a !xed seed to mitigate
randomness during training, we ensured the reliability and reproducibility of our experi-
ments.

3.2.4 Evaluation

All models undergo !ne-tuning following a standardized protocol with identical hyperpa-
rameters for each downstream task, enabling a focused evaluation of tokenizers. We ensure
robustness and reliability by averaging the results across four independent runs and per-
forming statistical signi!cance assessments using Student’s t-test.

For consistent comparisons, especially in sequence-to-sequence tasks like POS tagging
and NER, we employ the SeqEval [208] metric in conjunction with the IOB2 format. To
align with established practices [265], our models are trained to predict only the label for
the initial token of each word.
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3.3 Results and Discussions

BPE SentencePiece

NACHOS PubMed CC100 Wiki NACHOS PubMed CC100 Wiki

Dataset Task Metric w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

CAS

CLS F1 94.2* 94.9 94.7 94.2* 95.2 95.3 94.8 94.8 94.8 94.7* 93.4** 93.6** 94.4 94.1 95.3* 95.1**

NER Neg SeqEval 87.0 83.3* 82.4** 81.3** 84.9 84.2 84.7 84.5* 86.1 86.4 83.6* 83.9 85.4 84.2** 85.6 83.2

NER Spec SeqEval 30.3* 30.6 35.0 28.2* 34.6 32.0 34.4 34.0 36.1 29.8 28.4* 22.2** 31.9 28.7* 32.1 27.0*

POS SeqEval 97.0** 96.9** 97.1 96.9** 97.1* 97.0** 97.2 96.9** 97.1* 97.0* 96.9** 96.9** 97.1 97.1 97.1 97.1

PxCorpus
CLS F1 94.8 94.2 93.6 93.9 94.2 94.6 93.4 93.7 94.9 94.1 94.8 94.1 94.8 93.7 93.7 94.5

NER SeqEval 95.9 95.9 95.9 95.9 96.1 96.0 96.2 95.9 96.1 96.1 96.0 96.1 95.9 96.1 96.2 96.1

DEFT2020
STS MSE 0.71 0.71 0.64* 0.75 0.70 0.67 0.71 0.69 0.72 0.71 0.63** 0.63 0.70 0.67* 0.70 0.67*

CLS F1 91.0 85.9 57.6** 73.7 79.5 76.3 77.1 66.0 83.0 85.3 80.9 66.7** 61.1* 66.3* 75.0* 77.4*

MORFITT CLS F1 68.6** 68.0** 66.5** 65.9** 68.4** 67.0** 68.7 67.3** 69.6 68.8* 66.8** 66.2** 68.2 67.5** 69.1** 67.7**

E3C
NER Clinical SeqEval 54.2 53.1 52.4 48.6** 52.7 51.3** 51.1* 52.0* 54.2 52.4 52.1 51.1** 53.8 52.5* 53.2 51.7

NER Temporal SeqEval 82.0 81.2 80.9** 80.0** 81.8 81.2 82.3 80.6** 82.1 81.6 80.3** 79.8** 80.6** 81.1** 81.6* 81.73*

CLISTER STS MSE 0.63* 0.63 0.63 0.60** 0.65 0.63 0.62** 0.66 0.61* 0.64 0.61** 0.62** 0.62 0.60* 0.64** 0.63**

DEFT2021
NER SeqEval 60.3 59.0** 58.1** 56.2** 59.4** 59.2** 60.1** 59.1** 61.3 60.1* 57.0** 56.6** 59.2** 59.9** 59.3** 58.9**

CLS F1 32.9 34.5* 33.4 32.3 34.5* 33.9 34.2 32.9 34.3 33.1 34.3 33.1 31.0 31.9* 34.2 34.9

ESSAI

NER Spec SeqEval 60.5 60.9 56.4* 59.2 57.9 61.5 63.6 57.4 63.9 62.8 57.6 55.7* 64.6 62.0 61.4 63.1

POS SeqEval 98.4* 98.3 98.3 98.2** 98.4 98.4 98.3 98.3 98.4 98.4 98.3 98.2* 98.4 98.3 98.3* 98.3

NER Neg SeqEval 83.0 83.4 79.3 76.4 82.2 83.2 81.8 84.2* 81.3 84.0* 80.2 81.1 83.2 84.2 82.1 79.6*

CLS F1 97.3 97.1* 97.4 96.6** 97.4 96.7** 97.4 97.0** 97.3 97.3 97.5 97.2* 97.0 97.0 97.5* 97.0*

QUAERO
NER Medline SeqEval 57.7 56.2** 55.4** 53.6** 57.9 55.0** 57.3 56.4** 58.2 55.5** 54.8** 52.9** 57.5* 55.8** 56.9 54.9**

NER EMEA SeqEval 65.6 65.1 63.9 63.1** 62.1** 62.7* 63.1** 62.6* 65.5 65.9 62.6** 63.8* 62.8** 63.1* 62.7* 62.0**

MantraGSC

NER EMEA SeqEval 60.9 63.9 58.2* 60.6* 69.3 63.0 61.9* 62.3** 66.9 62.5* 56.8** 60.3 60.8* 59.5 64.0* 63.9**

NER Medline SeqEval 41.4* 42.9 39.3 36.2** 44.3 41.2 43.8 40.8* 41.9 39.5* 36.4** 37.8 46.4* 39.9 47.1 36.1*

NER Patents SeqEval 52.1* 53.3* 57.0 50.2* 57.0 53.9 53.6 52.3* 52.0 49.6* 50.7** 49.4 52.8* 48.0 50.6* 47.8*

Average performances per tasks

CLS F1 79.80 79.10 73.87 76.10 78.20 77.30 77.60 75.28 78.98 78.88 77.95 75.15 74.42 75.08 77.47 77.77

NER SeqEval 63.92 63.75 62.63 60.73 64.63 63.42 64.15 63.24 65.05 63.55 61.27 60.82 64.22 62.69 64.06 62.00

POS SeqEval 97.70 97.60 97.70 97.55 97.75 97.70 97.75 97.60 97.75 97.70 97.60 97.55 97.75 97.70 97.70 97.70

STS MSE 0,67 0,67 0,64 0,68 0,68 0,65 0,67 0,68 0,67 0,68 0,62 0,63 0,66 0,64 0,67 0,65

Table 3.1: Performance of the tokenization algorithms and di"erent data sources used to
train tokenizers (top). Average performance per type of task is also reported (bottom). w/o
and w/ denote models without and with morphemes. Best models are in bold, and the
second-best are underlined. Statistical signi!cance is determined using Student’s t-test,
where * indicates p < 0.05, and ** p < 0.01.

In this section, we present the results of our tokenization strategies on various biomed-
ical NLP tasks, with a focus on key aspects. We investigate the impact of tokenization
granularity (Section 3.3.1), the introduction of morphological information during tokenizer
construction (Section 3.3.2), and the in%uence of data sources on tokenizers, including to-
ken sparsity, morpheme coverage, and the overall performance of di"erent tokenization
algorithms (Section 3.3.3).

Table 3.1 summarizes the performance of the BPE and SentencePiece strategies, both
with (w/) andwithout ourmorpheme-enriched approach (w/o), across various French biomed-
ical downstream tasks. Average performance per task type is also provided for clarity. It’s
worth noting that, before delving into detailed analysis, there is no consistent tokenization
strategy that consistently yields the best results in all tasks, whether it employs a purely
statistical algorithm or a statistical approach coupled with morpheme enrichment.
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3.3.1 Impact of tokenization granularity

BPE SentencePiece

NACHOS PubMed CC100 Wikipedia NACHOS PubMed CC100 Wikipedia

Corpus Task w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ ε

CAS

CLS 1.32 1.38 2.20 2.13 1.49 1.49 1.51 1.50 1.32 1.45 2.18 2.15 1.49 1.56 1.51 1.57 -0.62

NER Neg 1.32 1.38 2.20 2.13 1.49 1.49 1.51 1.50 1.32 1.45 2.18 2.15 1.49 1.56 1.51 1.57 -0.70

NER Spec 1.32 1.38 2.20 2.13 1.49 1.49 1.51 1.50 1.32 1.45 2.18 2.15 1.49 1.56 1.51 1.57 -0.42

POS 1.32 1.38 2.20 2.13 1.49 1.49 1.51 1.50 1.32 1.45 2.18 2.15 1.49 1.56 1.51 1.57 -0.36

PxCorpus
CLS 1.54 1.62 2.26 2.27 1.76 1.72 1.73 1.72 1.54 1.67 2.24 2.30 1.72 1.77 1.77 1.82 -0.22

NER 1.54 1.62 2.26 2.27 1.76 1.72 1.73 1.72 1.54 1.67 2.24 2.30 1.72 1.77 1.77 1.82 -0.22

DEFT2020
STS 1.41 1.45 2.27 2.24 1.42 1.45 1.43 1.45 1.41 1.49 2.24 2.23 1.41 1.48 1.42 1.49 -0.47

CLS 1.21 1.26 2.13 2.09 1.31 1.34 1.33 1.36 1.20 1.32 2.05 2.04 1.25 1.34 1.29 1.37 -0.41

MorFITT CLS 1.38 1.44 2.45 2.40 1.48 1.50 1.49 1.51 1.37 1.50 2.35 2.33 1.46 1.55 1.48 1.57 -0.82

E3C
NER Clinical 1.30 1.35 2.23 2.17 1.48 1.48 1.50 1.49 1.29 1.43 2.22 2.18 1.48 1.55 1.49 1.56 -0.59

NER Temporal 1.29 1.35 2.22 2.16 1.48 1.48 1.48 1.49 1.29 1.43 2.22 2.18 1.47 1.54 1.48 1.55 -0.75

CLISTER STS 1.52 1.59 2.65 2.57 1.73 1.72 1.74 1.72 1.51 1.65 2.56 2.49 1.71 1.77 1.71 1.77 →0.33

DEFT2021
NER 1.31 1.37 2.26 2.19 1.48 1.49 1.50 1.50 1.31 1.44 2.19 2.15 1.48 1.55 1.49 1.56 -0.88

CLS 1.50 1.57 2.63 2.56 1.69 1.70 1.71 1.71 1.46 1.61 2.50 2.46 1.64 1.72 1.66 1.74 -0.11

ESSAI

NER Spec 1.29 1.34 2.20 2.14 1.42 1.43 1.45 1.45 1.29 1.41 2.21 2.16 1.41 1.49 1.46 1.52 -0.68

POS 1.28 1.33 2.19 2.13 1.41 1.42 1.44 1.44 1.28 1.41 2.19 2.15 1.40 1.48 1.44 1.51 -0.61

NER Neg 1.28 1.33 2.19 2.13 1.41 1.42 1.44 1.44 1.28 1.41 2.19 2.15 1.40 1.48 1.44 1.51 -0.69

CLS 1.28 1.34 2.20 2.14 1.42 1.43 1.45 1.46 1.28 1.41 2.20 2.16 1.41 1.49 1.45 1.52 -0.02

QUAERO
NER Medline 1.53 1.63 2.35 2.26 1.78 1.78 1.77 1.78 1.52 1.76 2.36 2.35 1.77 1.89 1.76 1.89 -0.77

NER EMEA 1.30 1.34 2.14 2.12 1.44 1.46 1.49 1.51 1.30 1.39 2.06 2.04 1.45 1.51 1.50 1.56 -0.28

MANTRAGSC

NER EMEA 1.33 1.40 2.47 2.41 1.49 1.51 1.50 1.52 1.32 1.43 2.33 2.30 1.46 1.53 1.49 1.55 -0.63

NER Medline 1.89 2.01 2.84 2.70 2.06 2.13 2.14 2.14 1.89 2.09 2.84 2.78 2.06 2.22 2.10 2.22 -0.64

NER Patents 1.54 1.59 2.34 2.30 1.61 1.63 1.59 1.62 1.43 1.52 2.20 2.20 1.50 1.58 1.51 1.60 0.06

Average per model 1.39 1.45 2.30 2.25 1.54 1.55 1.56 1.56 1.38 1.51 2.26 2.24 1.52 1.60 1.55 1.62 -0.48

Relative Di#erence (%) 0.0 4.5 65.9 61.8 11.2 11.8 12.3 12.6 →0.7 8.9 62.8 61.1 9.9 15.5 11.7 16.9

Table 3.2: Average number of sub-word units per word for each tokenization strategy and
data source training. Their Pearson correlation (ϑ) with each task performance is reported
(last column). Cells colored in red correspond to lower-performing models, while those in
green represent higher-performing ones. The last row represents the relative di"erence in
terms of average subwords per word compared to the NACHOS BPE without a morpheme
baseline. w/o and w/ denote models without and with morphemes.

To assess the impact of tokenization granularity, Table 3.2 presents the average number of
sub-word units per word for each tokenization strategy and data source used in the studied
tasks. While deriving overarching conclusions from these results can be challenging, we
calculated Pearson correlation (ϑ) between models’ performances on the downstream tasks
from Table 3.1 and the corresponding average number of sub-word units per word. These
correlation scores range from ↗1 to +1, where ↗1 indicates a complete negative linear
correlation, 0 represents no correlation, and +1 signi!es a strong positive correlation. In
the context of tokenization, a negative correlation implies that fewer subword units are
associatedwith higher scores, while a positive correlation suggests thatmore subword units
are linked to higher scores.

Overall, we observe in Table 3.2 an average ϑ correlation of ↗0.48 between tasks and
models, indicating that, in general, higher performance scores tend to be associated with
fewer subword units. To our knowledge, this is the !rst time such a correlation has been
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experimentally demonstrated. However, it’s important to note that this correlation varies
across the targeted tasks. Tasks like CLS show correlation close to zero, suggesting that
they are less a"ected by the granularity of tokenization. In contrast, STS and sequence-to-
sequence tasks, particularly NER, appear to be more in%uenced by tokenization granularity,
likely due to their heavy reliance on immediate context for making predictions.

While the RoBERTa model’s embeddings capture semantic meaning and the encoder
module captures contextual information [243], we aimed to determine whether the ob-
served correlations are attributed to a speci!c part of this architecture. To investigate this,
we isolated and froze the embeddings and/or encoder of our BERT-based model, based on
the NACHOS SentencePiece, during !ne-tuning for various tasks. The experimental ap-
proach, as detailed in Table 3.3, involved several stages. Initially, we established a baseline
for each task with no frozen components. Subsequently, we conducted experiments by
freezing only the embedding layer, only the encoder, and both the embeddings and en-
coders. Our !ndings indicate a stronger dependence on RoBERTa’s encoder for tasks such
as POS tagging and STS, in contrast to other tasks, which corroborate the context depen-
dency as an explanation for the correlation scores between segmentation granularity and
models’ performances for these tasks, but not for NER.

CAS

POS

PxCorpus

NER

PxCorpus

CLS

CLISTER

STS

Full Fine-tuning 97.10 96.10 94.82 0.61

Embedding 97.03 ↗ 0.07 96.10 ↘ 0.00 94.73 ↗ 0.09 0.62 ↘ 1.63

Encoder 65.97 ↗ 32.05 83.95 ↗ 12.64 84.78 ↗ 10.58 0.45 ↗ 26.22

Embedding + Encoder 60.04 ↗ 38.16 79.62 ↗ 17.14 84.78 ↗ 10.58 0.44 ↗ 27.86

Table 3.3: Performance and relative loss (in %) of the PLMs based on SentencePiece NA-
CHOS without morpheme with parts of the models being frozen.

As shown in Table 3.2, higher performance scores are associated with fewer subword
units. To gain a linguistic perspective on how tokenization strategies behave, we analyzed
the segmentation of 150 biomedical terms equally distributed across cardiology, derma-
tology, obstetric-gynecology, and ophthalmology, as presented in Table 3.4. Most models,
except for those using SentencePiece NACHOS, struggle to precisely align with the o#-
cial morphological segmentation established by the Académie Française (French Academy).
However, upon closer examination, it is evident that these models often come very close
to the desired segmentation. While the segmentations may exhibit slight variations, such
as the relocation of a letter from one token to another, they maintain the same number of
tokens as the o#cial morphological segmentation. This observation is further supported
whenwe analyze actual tokenizer outputs (see Table 3.5) and assess the segmentation statis-
tics in Table 3.4. For example, BPE NACHOS tokenizes the term "ophtalmoscope" into
the units "ophtalm oscope," whereas the morphological segmentation should be "ophtalmo
scope," a segmentation achieved by its morpheme-enriched counterpart.
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Type of errors

EM* Exact # Tok. Under Seg. Over Seg.

BPE

NACHOS
w/o 21.3 41.3 9.3 49.3

w/ 34.6 50.0 6.0 44.0

PubMed
w/o 2.6 12.0 2.6 85.3

w/ 17.3 28.6 2.6 68.6

CC100
w/o 8.0 28.0 2.6 69.3

w/ 23.3 38.6 2.6 58.6

Wikipedia
w/o 8.6 24.6 3.3 72.0

w/ 22.0 36.6 4.6 58.6

SP

NACHOS
w/o 56.6 74.6 7.3 18.0

w/ 61.3 70.6 2.6 26.6

PubMed
w/o 14.6 26.6 2.6 70.6

w/ 32.0 42.0 2.6 55.3

CC100
w/o 24.0 42.0 4.0 54.0

w/ 36.6 49.3 2.6 48.0

Wikipedia
w/o 18.0 42.0 3.3 54.6

w/ 34.0 54.0 4.6 41.3

Table 3.4: The average Exact Match (EM*) and portion of terms aligned with the o#cial
segmentation length (Exact # Tok.), both in %, are based on the gold segmentation from 150
biomedical terms. Both last columns are referring to the portion of terms su"ering from
under- and over-segmentation. w/o and w/ denote without and with morphemes respec-
tively. SP stands for SentencePiece.

In Table 3.4, we observed various types of errors in segmentation, with the most com-
mon issue being over-segmentation of units that are not present in our biomedical lexical
morphemes list. This over-segmentation results in smaller, more numerous, and sparser
tokens, which can impact the e#ciency of pre-training. The reduced frequency of tokens
and the faster !lling of RoBERTa’s 512-token context window with less meaningful tokens
can be problematic.

Finally, Table 3.4 reveals an interesting distinction between BPE and SentencePiece us-
ing NACHOS training data. SentencePiece outperforms BPE in achieving segmentations
that closely resemble correct ones, both in terms of the number of tokens and their se-
mantic accuracy. SentencePiece excels at matching correct segmentations, particularly for
medical terminology, in 56.6% of cases without morphemes and 61.3% when morphemes
are used, while BPE NACHOS achieves only 34.6% accuracy.

Base cancérigène ophtalmoscope angiographie

Correct cancér i gène ophtalmo scope angio graphie

BPE Wiki c anc éri gène oph tal mos cope ang i ographie

BPE PubMed can c é rig è ne o ph tal m oscope angi ograph ie

BPE NACHOS cancé rig ène ophtalm oscope angiographie

SentencePiece NACHOS cancérigène ophtalm oscope angiographie

BPE NACHOS +Morpheme cancér i gène ophtalmo scope angio graphie

SentencePiece NACHOS +Morpheme cancér i gène ophtalmo scope angio graphie

Table 3.5: Instances of tokenization juxtaposed with their correct segmentation.
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3.3.2 Impact of morphemes

One of our primary objectives was to approximate the correct morphological segmentation
of words in the French biomedical language. Our analysis reveals that tokenizers, such as
BPE and SentencePiece trained on NACHOS, enriched with morphemes, can often achieve
this goal. Notably, SentencePiece NACHOS enriched with morphemes achieved the best
performance, with a 61.3% exact match. Our morpheme-enriched approach o"ers the ad-
vantage of obtaining a tokenization that closely resembles what could be achieved through
a complex rule-based method. This approach is easily adaptable to other languages with a
list of lexical morphemes and similar principles.

As shown in Table 3.1, the introduction of morphemes (w/) may lead to performance en-
hancements in approximately 25% of the studied downstream tasks. However, it is notewor-
thy that the best results are primarily achieved by classical statistical tokenizers, BPE and
SentencePiece, when not using morphemes, and when trained on our biomedical-speci!c
data, NACHOS. This observation is intriguing because NACHOS-based tokenizers inher-
ently contain a higher proportion of morphemes, as shown in Table 3.6, which presents
the portion of correct morphemes already present in the tokenizers without introducing
additional morphological information based on their length ranges. This suggests that in-
troducing morphemes and other forms of morphological knowledge, such as grammatical
endings, may have a more substantial impact in contexts that do not align directly with the
target domains and languages. However, we can note that the results of this method are
inconsistent and do not ensure an overall performance boost across all models or tasks.

Furthermore, it is worth noting that morphemes are often already present in the tok-
enizers in their complete form, as illustrated in Table 3.6, or with minor modi!cations based
on token probabilities, as shown in Table 3.5. Notably, tokenizers based on NACHOS con-
tain a signi!cantly higher percentage of morphemes, with 47.23% for BPE and 43.59% for
SentencePiece. Conversely, the source with the fewest morphemes is CC100, with percent-
ages of 34.77% for BPE and 35.64% for SentencePiece. This observation aligns with the fact
that CC100 has fewer connections to both the target language and domain.

Coverage of the morphemes (%)

Tokenizer Source 1 - 3 4 - 6 7 - 10 Global

BPE

NACHOS 83.33 45.38 31.00 47.23

PubMed 65.15 39.32 15.00 38.06

CC100 78.78 34.46 7.00 34.77

Wikipedia 87.87 34.95 10.00 36.67

SP

NACHOS 83.33 41.01 28.00 43.59

PubMed 60.60 37.13 14.00 35.81

CC100 83.33 34.70 8.00 35.64

Wikipedia 93.93 37.37 12.0 39.44

Table 3.6: Percentage of the morphemes already present in the tokenizers’ vocabularies per
range of morpheme lengths. SP stands for SentencePiece.

In general, we observe that despite the signi!cant improvement in segmentation qual-
ity (as shown in Table 3.4), tokenizers enriched with morphemes do not exhibit a strong
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correlation with the results achieved in downstream tasks, as evident in Table 3.1. The abil-
ity to deliver satisfactory results despite encountering suboptimal segmentations, as seen
in the case of PubMed, which frequently over-segments words, underscores the robust-
ness of RoBERTa’s architecture in handling noise and its capacity to compensate for such
challenges.

3.3.3 Impact of data sources

As indicated in Table 3.1, the average performance across tasks demonstrates a signi!cant
impact of the training data source on the results obtained by the models. It becomes appar-
ent that using data that is more suitable for the target language, even if it originates from
various domains such as Wikipedia and CC100, is more e"ective than utilizing data from
the target domains but from a di"erent language. This is particularly evident in the CLS,
NER, and STS tasks, where BPE PubMed achieves an average of 70.16% for classi!cation,
0.63 MSE for STS, and 62.62% for NER, whereas CC100 outperforms with 74.14%, 0.67 MSE,
and 64.62%, respectively.

The decrease in performance from PubMed can be attributed to over-segmentation, as
seen in Table 3.2. This over-segmentation is primarily due to the signi!cant di"erences
between the data used to build the tokenizer and the language of the model’s pre-training.
These di"erences stem from distinct lexicons, writing styles, and morphological structures
in French compared to English, particularly for specialized words like "Péricardite" (French)
and "Pericarditis" (English), or "Orthophoniste" (French) and "Speech Therapist" (English).
Furthermore, variations in alphabets, such as special French characters like "é" or "è," can
lead to token sparsity when encountered in positions not seen during tokenizer construc-
tion on PubMed. This results in a lack of both language and domain-speci!c information
for French, as only limited tokens can be used to form sentences.

Some data sources are surprisingly less a"ected by the introduction of morphemes. For
instance, the CC100 source is not positively impacted bymorphemes, despite having a lower
proportion of morphemes in its original version, as shown in Table 3.6. This behavior may
be explained by the increased granularity introduced by morphemes, which reduces the
probabilities of other tokens appearing. This can lead to a poorer representation of words.

3.3.4 Tokenization Statistics

Our analysis of di"erent tokenization approaches in the Table 3.7 reveals several key pat-
terns in tokenizer encoding capabilities. To quantify these patterns, we employ two key
metrics: Shannon entropy and fertility. The Shannon entropy H(X) measures the uncer-
tainty in token distribution, de!ned as H(X) = ↗

∑
i pi log2 pi where pi represents the

probability of token i in the vocabulary. We also compute a normalized version of the
entropy by dividing by log2(vocab_size), which gives a value between 0 and 1, where 1
indicates perfectly even token distribution. Meanwhile, fertility F is computed as F = |T |

|W | ,
where |T | is the total number of tokens and |W | is the total number of words in the corpus,
providing insight into tokenization e#ciency.
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BPE tokenizers without morphemes generally achieve slightly higher Shannon entropy
values (ranging from 0.5795 to 0.6514) compared to thosewithmorphemes (0.5543 to 0.6392),
indicating more uniform token distribution.

Tokenizer Shannon Entropy Fertility Token Ratio

BPE w/ Morphemes
Wikipedia 0.6331 1.8732 1.20x
PubMed 0.5741 2.6378 1.69x
CC100 0.6326 1.8618 1.19x
NACHOS 0.6263 1.7370 1.11x

SentencePiece w/ Morphemes
Wikipedia 0.6392 1.8671 1.20x
PubMed 0.5543 2.5886 1.66x
CC100 0.6369 1.8714 1.20x
NACHOS 0.6347 1.7389 1.11x

BPE w/o Morphemes
Wikipedia 0.6514 1.7944 1.15x
PubMed 0.5795 2.6474 1.70x
CC100 0.6499 1.7832 1.14x
NACHOS 0.6427 1.5879 1.02x

SentencePiece w/o Morphemes
Wikipedia 0.6422 1.7627 1.13x
PubMed 0.5542 2.5631 1.64x
CC100 0.6392 1.7552 1.12x
NACHOS 0.6304 1.5612 1.00x

Table 3.7: Comparison of Tokenizer Metrics based on a set of 509 french clinical cases
extracted from The PanAfrican Medical Journal.

The NACHOS-trained tokenizers consistently show the lowest fertility values (approxi-
mately 1.56-1.59 tokens per word), suggesting more e#cient tokenization for medical texts.
In contrast, PubMed-trained tokenizers exhibit signi!cantly higher fertility (around 2.56-
2.65 tokens per word), likely due to the specialized medical terminology in this dataset.

SentencePiece tokenizers perform similarly to their BPE counterparts, with only minor
di"erences in both entropy and fertility metrics.

Overall, the BPE-HF-NACHOS-FR tokenizer without morphemes achieves the best bal-
ance, with the highest Shannon entropy (0.6427) and lowest fertility (1.5879) among non-
morpheme tokenizers, making it particularly suitable for medical NLP tasks.

The token ratio analysis reveals signi!cant cost implications for real-world deploy-
ments. For instance, PubMed-trained tokenizers require approximately 1.64-1.70 times
more tokens compared to the most e#cient NACHOS tokenizer. This di"erence becomes
substantial when considering charging input tokens at a !xed cost by millions of tokens,
for a medical text of 1000 words, using a PubMed tokenizer would cost about 70% more
compared to using the NACHOS tokenizer. This cost di"erence becomes even more pro-
nounced in large-scale medical NLP applications where millions of tokens are processed
daily.

Furthermore, the higher token counts directly impact the context window utilization
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in transformer models like BERT or GPT. With the same context window size, PubMed to-
kenizers can !t approximately 40% fewer words compared to NACHOS tokenizers. This
limitation becomes particularly critical in medical applications where maintaining context
is essential for accurate diagnosis and treatment recommendations. The token e#ciency
also signi!cantly impacts inference time, as transformermodels process tokens sequentially
through their attention mechanisms. Using the more e#cient NACHOS tokenizer can re-
duce inference time by up to 40% compared to PubMed tokenizers, directly translating to
faster response times in clinical applications. This performance improvement becomes cru-
cial in real-time medical applications and can substantially reduce computational resource
requirements for batch processing of medical records. While, starting from English models
like PubMedBERT provides valuable bootstrap knowledge, our analysis suggests potential
long-term limitations

3.4 Conclusion

In this study, we conducted a comprehensive investigation into the in%uence of various
word tokenization strategies within a BERT-based masked language model across diverse
French biomedical NLP tasks. Notably, we observed that existing methods for tokenizing
biomedical text often fall short of aligning with morphological rules and how humans learn
these specialized terms. This suboptimal segmentation can impact the agglutinating nature
of biomedical terminology. To assess the e"ects of this segmentation on downstream ap-
plications, we developed a set of novel biomedical tokenizers that adhere more closely to
morphological rules. These tokenizers combine various automatic tokenization approaches
and vocabularies to enrich segmentation with morphemes. We employed these enhanced
tokenizers in the pre-training of multiple RoBERTa-based models, which we then evaluated
across a wide array of 23 French biomedical tasks, including POS, NER, STS, and CLS.

Our !ndings show that integrating morphemes into automatic tokenization approaches
can achieve parity or improve performance in certain tasks, such as NER and POS tagging.
However, this enhancement is not consistent across all tasks. While there is a correlation
between segmentation granularity and downstream task performance, we also observe that
pre-training processes exhibit robustness to suboptimal tokenization, yielding surprisingly
good results even with very short and sparse subword units. To conclude, our study reveals
that achieving optimal tokenization involves a combination of factors, including minimiz-
ing word segmentation and having access to domain-speci!c data in the target language.
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The emergence of Large Language Models (LLMs) represents a signi!cant paradigm shift in
Natural Language Processing. As detailed in previous chapters, achieving state-of-the-art
performance with specialized Masked Language Models (MLMs) like DrBERT (Chapter 1)
required not only extensive domain-speci!c pre-training but also !ne-tuning on relatively
large annotated datasets. This reliance on labeled data presents a signi!cant bottleneck
in healthcare, where annotations are notoriously expensive to produce, di#cult to obtain
due to privacy constraints, and consequently rarely open-sourced. The advent of power-
ful, general-purpose LLMs, capable of performing well with minimal adaptation, therefore
raised a crucial strategic question: Is it always necessary to build specialized models from
the ground up, or can existing, instruction-tuned LLMs perform su#ciently well in special-
ized domains with minimal adaptation ?

The emergence of LLM represents a signi!cant paradigm shift in NLP. These models
introduced a new paradigm called instruction-tuning, where the model is trained to follow
natural language instructions that specify the desired task and expected output format. As
detailed in previous chapters, achieving state-of-the-art performance with specializedMLM
like DrBERT (Chapter 1) required not only extensive domain-speci!c pre-training but also
!ne-tuning on relatively large annotated datasets. This reliance on labeled data presents a
signi!cant bottleneck in healthcare, where annotations are notoriously expensive to pro-
duce, di#cult to obtain due to privacy constraints, and consequently rarely open-sourced.
The advent of powerful, general-purpose instruction-tuned LLMs, capable of performing
well with minimal adaptation, therefore raised a crucial strategic question: Is it always nec-
essary to build specialized models from the ground up, or can existing, instruction-tuned
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LLMs perform su#ciently well in specialized domains with minimal adaptation ?

This chapter addresses this question by documenting one of the !rst comprehensive
studies into the capabilities of early instruction-tuned LLMs within the biomedical !eld, a
work that was subsequently published at LREC-COLING 2024 [172]. At the time of this re-
search, the potential of LLMs inmedicinewas still largely underexplored, and this studywas
essential to understand their strengths and limitations. The investigation was conducted on
English tasks, as suitable evaluation benchmarks for generative models in French were not
yet available. The !ndings from this exploratory work were foundational, directly motivat-
ing the development of BioMistral, which will be presented in the next chapter (Chapter
5).

The primary research objectives of this initial study were to:

• Assess the out-of-the-box performance of general-purpose LLMs on specialized biomed-
ical tasks compared to a !ne-tuned, domain-speci!c MLM (PubMedBERT).

• Determine which task types (e.g., Question Answering, NER, Classi!cation) are well-
suited for these models in zero-shot and few-shot scenarios.

• Evaluate whether a single LLM excels across all tasks or if performance is model-
dependent.

• Understand the limitations of generalist LLMs, thereby building the case for devel-
oping specialized generative models for the medical domain.

To answer these questions, this chapter presents a comprehensive evaluation of four
state-of-the-art instruction-tuned LLMs (ChatGPT, Flan-T5 UL2, Tk-Instruct, and Alpaca)
on a diverse benchmark of 13 English clinical and biomedical tasks. This evaluation suite
was designed to cover a wide spectrum of real-world NLP challenges, including classi!ca-
tion of medical texts (e.g., identifying smoker status in clinical notes or classifying public
health claims), extractive and abstractive question answering over biomedical literature
(e.g., BioASQ, MedMCQA), relation extraction to identify gene-disease associations, natu-
ral language inference to determine logical relationships between sentences (e.g., SciTail,
MedNLI), and !ne-grained named-entity recognition of chemicals, diseases, and other med-
ical concepts (e.g., BC5CDR, NCBI-disease). Our main contributions from this pivotal study
are:

• A rigorous zero-shot and few-shot evaluation of four prominent, early instruction-
tuned LLMs on this comprehensive benchmark of 13 biomedical tasks.

• A direct comparison against a powerful, fully !ne-tuned domain-speci!c baseline
(PubMedBERT), establishing a clear performance benchmark for current generative
models.

• A detailed analysis of model performance across di"erent task formats, identifying
their current strengths (e.g., QA) and areas requiring further improvement (e.g., RE).
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• The exploration of novel inference strategies, including a Recursive Chain-of-Thought
(RCoT) method, to adapt generative models for structured prediction tasks like NER.

Ultimately, this chapter chronicles the beginning of our journey into generative AI
for medicine. The results demonstrate that while general-purpose LLMs show remark-
able promise, their limitations in handling the nuances of biomedical text underscore the
need for specialized models. This conclusion serves as the direct motivation for the work
presented in the subsequent chapter: the creation of BioMistral, a healthcare LLM designed
to overcome these identi!ed shortcomings.

4.1 Experimental Protocol

In this section, we describe the models utilized and the datasets used to benchmark the
various models.

4.1.1 Studied Models

Our evaluation involves four distinct generic LLMs (ChatGPT, Flan-UL2, Tk-Instruct and
Alpaca) and a speci!c biomedical masked language model (PubMedBERT) for comparison
purposes.

Flan-T5 UL2 abbreviated to Flan-UL2, is an encoder-decoder model based on UL2 20B
parameters model [261] and was !ne-tuned using the Flan instruction tuning tasks collec-
tion [60].

Tk-Instruct is based on the T5 encoder-decoder model [240] and has been !ne-tuned on
the 1,600+ NLP tasks from the S(4/$5N%#($%.I+"#$(&#2,+" dataset [283]. In our study,
we chose the 3B parameter setting, since our preliminary comparison with Flan-T5-XL [58]
using the 3B parameter setting showed that Tk-Instruct performed better on QA tasks,
which is considered to be one of the most suited tasks for LLMs.

ChatGPT is built upon GPT-3.5 Turbo, !ne-tuned with a set of proprietary instructions,
and continuously re!ned through Reinforcement Learning from Human Feedback (RLHF)
techniques. Access to its weights is restricted, and the model can only be accessed via
a paid API. These restrictions raise privacy concerns regarding its application in medical
contexts, and it cannot ensure that the evaluated data has not been previously encountered.

Stanford Alpaca is built upon LLaMA with 7B parameters [267] and utilizes a dataset
of 52K instructions, which were automatically generated in the style of self-instruct us-
ing OpenAI’s text-davinci-003 model [282]. Due to its base model and data sources, it is
exclusively intended for academic research purposes and non-commercial use.
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PubMedBERT is a biomedical-speci!c BERT-based model with 110M parameters [110].
It was trained entirely from scratch on the 3.1 billion words of the PubMed corpus. We
chose it as our baseline for comparison with the zero-shot and few-shot performance of
generative models.

4.1.2 Downstream Evaluation Tasks

We conducted an evaluation of the models’ capabilities by encompassing the test set of the
13 diverse tasks listed in Table 4.1. These tasks were chosen to facilitate a comprehensive
assessment spanning both clinical and biomedical domains, including tasks suitable for both
generative and classical model evaluations.

Task Dataset Eval Metric Reference

CLS

HoC Test F1-measure [22]

LitCovid Test F1-measure [47]

PubHealth Test Accuracy [210]

N2C2 2006 Smokers Test Accuracy [272]

QA

BioASQ 7b Test Accuracy [268]

MedMCQA Dev Accuracy [222]

SciQ Test Accuracy [287]

Evidence Inference 2.0 Test Accuracy [82]

RE GAD Test Accuracy [36]

NLI
SciTail Test Accuracy [150]

MedNLI Test Accuracy [251]

NER
BC5CDR Test F1-measure [180]

NCBI-disease Test F1-measure [85]

Table 4.1: List of evaluation tasks and their metrics. CLS: Classi!cation, QA: Question
Answering, RE: Relation Extraction, NLI: Natural Language Inference, NER: Named-Entity
Recognition.

4.1.3 Evaluation of Generative Outputs

Evaluating the outputs of generative models presents a challenge due to their free-text
nature, which may not necessarily conform to a prede!ned set of classes. Instead, we are
confronted with noisy outputs that may contain correct answers. To address this challenge,
we manually developed parsing scripts tailored to each task and model, aligning them with
their respective output styles. This approach enables us to capture most of the answers and
compute metrics that can be compared with our baseline model (PubMedBERT).

98



A 7/$,5"3,# %+0 6/-5"3,# "#(09 ,6 2+"#$(&#2,+562+/#(+/0 .%$1/ .%+1(%1/
),0/." %44.2/0 #, &.2+2&%. %+0 !2,)/02&%. #%"*"

4.1.4 Instruction Format

Previous studies [284, 143, 206] have demonstrated the e"ectiveness of using task-speci!c
prompts for each model. Consequently, we chose to construct the input instruction prompt
by concatenating three elements: (1) an instruction that outlines the task, describes the
nature of the data, and speci!es our expectations from the model, (2) the input argument,
which provides essential information for the task, and (3) the constraints on the output
space, which guide the model during output generation. Lastly, the output serves as a
reference point during the few-shot strategy evaluation.

4.1.5 Few-shot Examples using Semantic Retriever

To enhance few-shot performance compared to randomly sampled examples, we introduced
an additional retrieval module based on Sentence-Transformers [242]. The objective is to
identify the kmost semantically similar examples from the training set. To accomplish this,
we !rst populate a vector spacewith sentence representations of each individual instruction
prompt from the training set, obtained using a pre-trained and !xed PubMedBERT [110]
model. Subsequently, we compute the cosine distance between the query of the current test
instance and all the elements within the vector space to retrieve the top k closest examples.
In our case, we set the value of k to 5.

4.1.6 Recursive Chain-of-Thought

We performed NER using two inference methods. The !rst one is based on the method
introduced by [304] and can only be applied using ChatGPT. It consists of giving themodel a
sequence of words separated by double vertical bars for word separation and single vertical
bars for the separation between words and labels. For the second method, we introduce a
method called RCoT. It is very close to human reasoning and works for all the generative
models we have tried. It is derived from the CoT concept [284] and the work of [283]. It
involves iterating over the sequence of tokens and giving the current state of the prediction
as input to the model, asking for the generation of the label of the N th token. This method
guarantees an entity for each token of the sequence and prevents forgotten tokens during
generation. However, the only drawback we have been able to identify with this method
is its very high computation cost due to its ON complexity, with N being the number of
tokens in the sequence, compared to the method used for ChatGPT, which performs at O1

complexity.
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4.2 Results and Discussions

Task Dataset
ChatGPT Flan-UL2 Tk-Instruct Alpaca

PubMedBERT
zero-shot 5-shot zero-shot 5-shot zero-shot 5-shot zero-shot 5-shot

CLS

HoC 62.24 38.34 56.36 54.86 50.77 25.48 1.21 38.78 82.75

LitCovid 67.20 72.77 51.48 46.95 36.42 57.49 1.58 64.09 90.60

PubHealth 63.20 66.29 72.46 50.53 53.70 66.04 52.80 55.64 75.39

N2C2 2006 Smokers NaN NaN 22.12 42.31 16.35 37.50 10.57 31.73 60.58

QA

BioASQ 7b 89.24 92.03 90.97 91.64 88.09 86.36 79.05 79.82 73.39

MedMCQA 48.91 56.37 41.05 43.34 33.85 33.18 24.91 29.50 38.15

SciQ 90.10 93.50 87.00 88.40 55.30 47.00 24.90 36.80 74.20

Evidence Inference 2.0 59.98 63.83 66.45 65.06 41.33 38.79 32.49 94.18 65.47

RE GAD 47.75 52.25 49.81 53.37 48.88 57.87 51.12 57.68 79.78

NLI
SciTail 73.57 65.62 93.51 92.66 57.53 71.31 39.60 40.26 93.51

MedNLI NaN NaN 77.00 79.18 33.19 34.81 33.47 34.45 83.76

NER
BC5CDR 92.12 93.12 68.26 83.32 84.54 83.23 82.11 84.07 97.65

NCBI-disease 90.97 92.27 90.75 87.65 87.91 87.50 11.58 92.27 98.72

Table 4.2: 0- and 5-shot versus !netuning evaluation on clinical and biomedical tasks. Bold
values are the highest scores obtained for the task and in underlined the seconds ones. Not
allowed experiments are replaced by NaN.

Table 4.2 reports performance obtained on each task by the studied LLMs in zero- and few-
shot scenarios, as well as PubMedBERT !ne-tuned. Results are reported by taking the best
run out of four.

Zero-Shot Scenario Compared to PubMedBERT, the zero-shot scenario results show a
clear de!cit for the generative models on all the tasks except for QA, in which LLMs obtain
better performance. ChatGPT and Flan-T5 UL2 particularly perform better than Tk-Instruct
and Alpaca on average, except for the GAD dataset (RE task) for which Alpaca reaches
the best performance. We can also observe extremely poor performance from Alpaca in
the zero-shot scenario on the two CLS tasks (HoC and LitCovid). These low scores are at-
tributed to the model generating hallucinated responses, including the label evading growth
suppressors across the entire test set of HoC. However, this behavior does not appear to oc-
cur in the few-shot scenario, where the model appears to comprehend our expectations.

Few-Shot Capabilities Unlike the zero-shot scenario, the few-shot inference (5-shots in
our experiments) shows impressive behavior. The biggest absolute gains are obtained using
Alpaca, which seems to perform much better in few-shot scenarios on all tasks. We suspect
this behavior to be correlated with Alpaca’s training data, which does not contain many
similar instructions for the tasks we are trying to tackle, allowing it to better understand
what we are asking when confronted with dissimilar examples. ChatGPT also bene!ts
from the additional knowledge to further improve the already good results, especially on
QA tasks. Flan-T5 UL2 appears to be less a"ected by the additional context overall, except
for the BC5CDR and N2C2 2006 Smokers tasks.
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4.3 Conclusion

In this study, we have demonstrated that generic LLMs are capable of capturing medi-
cal knowledge and performing exceptionally well in zero- and few-shot scenarios, despite
having no prior exposure to the tasks. Although open-source models such as Flan-T5 UL2
are gradually approaching their closed-source counterparts, such as ChatGPT, their perfor-
mance still lags behind. We suggest that developing domain-speci!c models, !ne-tuned on
a diverse set of tasks and specialized instruction prompts, could help bridge the gap with
more robust and performant proprietary models. We also note that domain-speci!c BERT
models remain a viable option, but require a signi!cant amount of data for !ne-tuning on
targeted languages and tasks. However, BERT-based models o"er much lower computa-
tional costs compared to LLMs, which could be a signi!cant obstacle to developing models
in the healthcare domain.
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As concluded in the previous chapter (Chapter 4), the advent of Large Language Mod-
els (LLMs) represents a paradigm shift. We veri!ed their remarkable capabilities in zero-
shot and few-shot learning scenarios, demonstrating that they could outperform traditional
MLMs on several complex tasks. However, that study also revealed a performance gap on
several key medical tasks, where powerful general-purpose LLMs were still outperformed
by older encoder-decoder or MLM models that had been speci!cally !ne-tuned on similar
tasks or domains speci!c data. This shown room for improvement for a new generation of
specialized LLMs models.

This chapter answers that call by introducing BioMistral. At the time of its development,
this work was the !rst to adapt the open-source Mistral model for the healthcare domain,
positioning it as a signi!cant step forward from existing models in the same parameters
range (MedAlpaca, PMC-LLaMa, MediTron and BioMedGPT-LM). The project was driven
by several key research questions:

• Can continual pre-training of a state-of-the-art base LLM on high-quality medical
corpora e"ectively infuse it with specialized knowledge and signi!cantly boost its
performance on domain-speci!c tasks as it does on French healthcare with DrBERT
in Chapter 1?

• How do advanced model merging techniques (e.g., TIES, DARE, SLERP) perform in a
medical context? Can these techniques combine the respective strengths of a gener-
alist base model and a domain-adapted one, and can the resulting model outperform
its individual constituents ?

• What is the practical impact of quantization methods (e.g., AWQ, BnB) on a special-
ized LLM ? Can we dramatically reduce the computational footprint of these models
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to make them accessible for a wider public without catastrophic forgetting and per-
formance loss ?

• How well does a healthcare adapted LLM on English data generalize to other lan-
guages, and what does this imply for developing multilingual medical models?

Our work, published at ACL 2024 [168], makes the following contributions:

• We develop and release BioMistral, a suite of 7B-parameter LLMs adapted for the
healthcare domain, on open-sourced data from PubMed Central Open-Access (PMC
OA) . The collection includes the base adapted model, along with several merged and
quantized variants, all of them publicly accessible in open-source.

• Weconduct a large-scale evaluation of BioMistral across 10 Englishmedical Question-
Answering benchmarks, demonstrating state-of-the-art performance among open-
source models. We further assess its generalization capabilities by evaluating it on
the same benchmarks translated automatically into 7 other di"erent languages.

• We present a systematic analysis of leading model merging and quantization tech-
niques, providing novel insights into their e"ectiveness for creating specialized LLMs
and o"ering a practical guide to performance-versus-e#ciency trade-o"s.

• We release all of our models, evaluation datasets, and quantized versions on the Hug-
ging Face Hub1. All code for data processing, pre-training, SFT, merging, quantiza-
tion, and evaluation is open-sourced on GitHub to ensure full reproducibility2.

• To further improve accessibility, we release Tchat on GitHub3, an open-source, multi-
turn conversational web interfacewith an integrated speech-to-textmodule for voice-
based interaction, allowing users to easily interact with textual and speech modalities
with BioMistral and other LLMs with minimal con!guration.

5.1 BioMistral

In this section, we present themodules that facilitated the construction of BioMistral 7B.We
!rst develop our training corpus (Section 5.1.1) used during further pre-training. We then
present the model adaptation method (Section 5.1.2). Finally, we discuss the approaches
for model merging (Section 5.1.3) and expose the employed quantization strategies (Sec-
tion 5.1.4).

1https://huggingface.co/BioMistral
2https://github.com/BioMistral/BioMistral
3https://github.com/BioMistral/Tchat

104

https://huggingface.co/BioMistral
https://github.com/BioMistral/BioMistral
https://github.com/BioMistral/Tchat


B2,)2"#$%.: A &,../&#2,+ ,6 ,4/+5",($&/ 4$/#$%2+/0 LLM 6,$ )/02&%. 0,)%2+"

5.1.1 Pre-training Dataset

For LLM adaptation to the medical domain, we selected the PMC Open Access Subset4 for
its comprehensive and freely accessible collection of medical research papers. This choice
is guided by the success demonstrated by PMC-LLaMA [294], PubMedBERT [108], and
SciFive [231], which have showcased signi!cant enhancements in language modeling for
medical applications. Our focus lies on the Commercial Use Allowed subset, encompassing
documents licensed under various Creative Commons licenses (CC0, CC BY, CC BY-SA, and
CC BY-ND). This subset ensures the reusability of our model’s outputs, even for commercial
purposes.

In the preprocessing phase, we aim to optimize the dataset for training e#ciency while
considering hardware limitations. Our pre-training objective involves further pre-training
Mistral on a subsample of this corpus, targeting 1.5 epochs within the 20-hour limit of
Jean Zay HPC. This decision aligns with insights from the Zephyr model [269], which sug-
gests that observing 1.5 times the corpus adequately enhances model performance, with
marginal bene!ts beyond this threshold. We then meticulously selected 3 billion tokens
from this pre-processed PubMed Central corpus, corresponding to roughly 1.47 million
documents. The dataset comprises primarily English documents (98.75% of the corpus),
with the remaining portion encompassing 9 languages, including Dutch, German, French,
and others. Our strategy emphasizes a multilingual dataset approach by prioritizing non-
English documents, supplemented with English texts, to ensure a diverse and representa-
tive training dataset to meet our 3 billion token target. The raw textual documents undergo
pre-processing using the Mistral tokenizer, which includes tokenization and normalization
processes.

5.1.2 Model Adaptation

Training details We leverage Mistral 7B Instruct v0.1 [138] as the base model for adap-
tation due to its design tailored for incorporating instructions in prompts and its capac-
ity for !ne-tuning across diverse tasks using limited datasets. Pre-training settings for
BioMistral 7B largely align with Mistral 7B Instruct v0.1. For optimization, we employ
the AdamW [195] optimizer alongside a cosine learning rate scheduler. Our model archi-
tecture inherits the standard transformer architecture fromMistral, including features such
as Grouped-Query Attention [2], Sliding Window Attention [27] and Rolling Bu"er Cache.

The model also incorporates Rotary Positional Embeddings (RoPE) [256], which encode
token positions through rotation transformations applied to the embedding space. RoPE
enables the model to e"ectively capture relative distances between tokens, which is partic-
ularly valuable for processing long texts with complex dependencies. Figure 5.1 visualizes
these embeddings acrossMistral’s 2,048-token context window, showing the sinusoidal pat-
terns that vary smoothly across positions:

4https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

105

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/


C3%4#/$ 5

Figure 5.1: BioMistral 7B and Mistral 7B Instruct v0.1 Rotary Positional Encodings (RoPE).

We maintain an input context length of 2,048 tokens across all models, including the
quantized versions (see Section 5.1.4), in conjunction with FlashAttention-2 [74]. For opti-
mization, we set the learning rate to 2 ↓ 10→5 with no warmup, a weight decay of 0.01, a
gradient accumulation of 2, and a batch size of 16 on the Jean-Zay HPC with 32 NVIDIA
A100 80GB GPUs. This con!guration allows for a total batch size of 1,024. Due to the model
and the AdamW optimizer’s inability to !t on a single GPUwith BF16 precision, we employ
the Fully Sharded Data Parallel distributed learning framework [315].

Improving batching To enhance pre-training e#ciency, we introduce a post-tokenization
grouping method. This method aggregates variable-sized sequences marked by an end-
of-sequence token (</s>) to !ll the model’s 2,048-token sequences without padding. This
reduces the sequence count by 87.88%, subsequently accelerating epoch times. Refer to
Appendix 9.5 for pseudo-code detailing the grouping method.

5.1.3 Model Merging

Pre-trainedmodelsmay lose e"ectivenesswhen applied beyond their speci!c domains [165].
Traditionally, separate models were used for each application [112], increasing complexity
and costs. Recent studies suggest merging pre-trained models to enhance performance and
out-of-domain generalization [43, 11, 293, 141, 131]. Merging involves combining multiple
model parameters without additional training. Methods include averaging model weights
or considering permutation invariance [132, 54, 253, 3].
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Among these methods, we can cite TIES [300], DARE [305], and SLERP [252]. SLERP
merges two models using Spherical Linear Interpolation to allow a smoother transition be-
tween model parameters while preventing the signi!cant information loss often encoun-
tered with direct averaging of model weights. TIES merges models by creating "task vec-
tors" from eachmodel, isolating unique contributions by subtracting an ancestor basemodel
(e.g., Mistral 7B Instruct). These vectors are then averaged with the base model. Its key
improvement over previous methods relies on reducing model interference using sparse
vectors and a sign consensus method. DARE enhances TIES by reducing delta parame-
ter redundancy, mainly setting them to zero through random pruning and rescaling while
maintaining or improving original model performance.

Exploring model merging in the biomedical domain is particularly interesting since
merging a general domain model with a domain-speci!c one could enhance specialized
model adaptability and accuracy across a broader range of applications. The objective of
this application in the medical domain is not only to improve general-domain capabilities
but also to explore the possibility of emergent reasoning and surpassing the performance
of baseline models used for merging.

5.1.4 Quantization

Quantization techniques are pivotal in democratizing LLMs as they enable the execution of
LLMs on smaller devices by minimizing memory requirements. In our study, we investigate
two core techniques: Activation-aware Weight Quantization (AWQ) and BitsandBytes (BnB).

AWQ [186] is an advanced quantization method that capitalizes on the insight that
weights vary signi!cantly in importance across di"erent channels and layers. Rather than
applying uniform quantization to all weights, AWQ identi!es and preserves the most crit-
ical weights (typically 1% of the total) in higher precision while quantizing the remaining
weights to 4 bits. This selective approach is guided by activation magnitudes during cali-
bration, where channels with larger activation values are considered more important. The
method employs a scaling technique that adjusts weight distributions to minimize quanti-
zation errors while maintaining the overall model structure.

Conversely, BnB quantization is a more straightforward approach that assigns a !xed
precision of 4 or 8 bits to the entiremodel uniformly. BnB implements dynamic quantization
with custom CUDA kernels optimized for inference speed, supporting both linear quantiza-
tion and more sophisticated techniques like blockwise quantization. The 8-bit version uses
a two-stage quantization process with outlier detection, while the 4-bit version employs
NormalFloat4 (NF4) data type speci!cally designed for normally distributed weights. Both
methods signi!cantly reduce memory footprint (up to 75% for 4-bit) while maintaining rea-
sonable performance degradation.
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5.2 Evaluation Protocol

To assess the performance of BioMistral 7B models, we !rst describe our benchmark of En-
glishmedical reasoning tasks (Section 5.2.1) and theirmultilingual translation (Section 5.2.2),
before presenting the instruction prompting (Section 5.2.3) and the supervised !ne-tuning
strategy (Section 5.2.4) employed for the models’ evaluation.

5.2.1 Downstream Tasks

To evaluate the performance of the BioMistral 7B model, we selected 10 QA tasks in English
from 4 prominent medical corpora (MedQA, MedMCQA, PubMedQA, andMMLU) covering
various specialties, including genetics, anatomy, and clinical cases. These datasets encap-
sulate real-world scenarios encountered by medical professionals, medical school entrance
examination formats, and comprehension tests based on PubMed content. The datasets’
characteristics are provided in Table 5.1 and 5.2.

MMLU

Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

Answer options A / B / C / D A / B / C / D A / B / C / D A / B / C / D A / B / C / D A / B / C / D

Train / Valid. / Test 0 / 0 / 265 0 / 0 / 100 0 / 0 / 135 0 / 0 / 272 0 / 0 / 144 0 / 0 / 173

Words / Questions 11.09 12.34 13.65 105.46 22.40 48.84

Context ✁ ✁ ✁ ✁ ✁ ✁

Table 5.1: Description of the MMLU question-answering tasks. The reference to "Clinical
KG" denotes "Clinical Knowledge".

MedQA PubMedQA MedMCQA

Answer options A / B / C / D / (E) Yes / No / Maybe A / B / C / D

Train / Valid. / Test 10178 / 1272 / 1273 211269 / 500 / 500 146257 / 36565 / 4183

Words / Questions 118.16 13.08 14.05

Context ✁ ✂ ✁

Table 5.2: Description of additional medical question-answering tasks. Only PubMedQA
incorporates context information within the prompt (see Section 5.3.7).

5.2.2 Multilingual Evaluation

While the biomedical language models have been extensively evaluated in languages such
as English [177, 49], Chinese [39, 303], French [264, 165] or Spanish [42], their performance
in languages beyond their own remains relatively understudied. This limited multilingual
evaluation can be attributed to the scarcity of biomedical tasks available in languages other
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than English. To address this gap, we conducted a multilingual evaluation using GPT-3.5
Turbo (version 1106) automatic translation via the OpenAI API. We translated our bench-
mark into 7 languages: Spanish, German, Portuguese, Russian, French, Arabic, and Chinese.
Despite the challenges posed by automatic translation, these tools have shown remarkable
improvement in recent years [212], enabling cost-e"ective multilingual evaluation. The
methodology for multilingual evaluation and the prompt template are the same as those
used in the 3-shot scenario for English. The only di"erences lie in the translation of the
questions, options, and context, while the examples used for few-shot learning remain un-
changed.

5.2.3 Instruction Prompting

All of our instructions adhere to the guidelines outlined for GPT-4’s medical evaluation,
as detailed in [218]. Each task is presented as an MCQA, with answer options associated
with letters (A to D or A to E). For a comprehensive list of the instruction prompts, please
refer to Figure 5.2. During inference, the model predicts the next token based on the input
prompt, generating probabilities for each token in the vocabulary. To ensure relevance,
the vocabulary is !ltered to include only tokens (here, choice letters) corresponding to the
expected answer options. This approach prevents the model from generating irrelevant
tokens or hallucinations [184, 24, 49].

5.2.4 Supervised Fine-Tuning (SFT)

Supervised Fine-Tuning (SFT) is a crucial step involving !ne-tuning the model on annotated
data to adapt it to speci!c tasks. To optimize BioMistral’s performance beyond what is
achievable with few-shot learning, we conducted SFT on both BioMistral 7Bmodels and the
baseline open-sourcemodels, using the training sets speci!ed in Table 5.1 and 5.2. However,
traditional SFT methods can be resource-intensive. To address this challenge, we adopted
the QLoRa !ne-tuning method [80] and an 8-bit quantization technique [79] as more cost-
e"ective alternatives.

Quantized Low-Rank Adaptation (QLoRa) combines the e#ciency of LoRA, which in-
troduces low-rank adaptations to speci!c layers of the model, with 4/8-bit quantization
of the backbone model. This approach signi!cantly reduces memory requirements dur-
ing !ne-tuning while maintaining performance comparable to full !ne-tuning. The 8-bit
quantization technique further reduces computational costs by representing model weights
with reduced precision, decreasing memory usage by approximately 50% compared to full
precision (FP16) training without substantial performance degradation on Nvidia A100 and
H100 GPUs. These techniques enable !ne-tuning of large language models on GPU with
limited memory.

Additionally, we implemented the improved batching method discussed in Section 5.1.2
to reduce !ne-tuning time. For detailed hyperparameters used during SFT, please refer to
Table 5.3:
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Parameter Value

Rank 16
LoRA Alpha 16
LoRA Dropout 0.05
Learning rate 2e-05
Train batch size 4

Evaluation batch size 8
Seed 42

Number of GPU 8
Gradient accumulation steps 2

Batch size 64
Optimizer ϑ 0.9 / ϖ 1e-08
Scheduler Cosine

Number of epochs 3
Target Modules QKVOGUD

Table 5.3: Hyperparameters for the Supervised Fine-Tuning (SFT) experiments.

5.3 Results and Discussions

In this section, we report, analyze, and discuss the performance of BioMistral 7B models
across various dimensions. We begin by examining its performance in a few-shot learn-
ing scenario (Section 5.3.1), followed by an evaluation of the !ne-tuning performances
(Section 5.3.2) of BioMistral 7B compared to several baseline models. The e"ectiveness
of BioMistral 7B model merging strategies is then reported (Section 5.3.3) before exploring
its generalization capabilities across several languages (Section 5.3.4). Additionally, we ana-
lyze the performance of BioMistral quantized versions in a few-shot scenario (Section 5.3.5).
Finally, we delve into its reliability by examining its calibration (Section 5.3.6) and truth-
fulness (Section 5.3.7).

5.3.1 Few-shot Learning

The few-shot learning evaluation involved applying 3-shot in-context learning based on 3
di"erent sets of randomly selected samples from each dataset’s training set. We limited our
samples to 3 due to the model’s 2,048-token context window size. None of the models were
!ne-tuned on the datasets.

In Table 5.4 and 5.5, we observe that BioMistral 7B outperforms Mistral 7B Instruct on
8 of the 10 tasks, demonstrating the e"ectiveness of domain adaptation [49, 177]. Addi-
tionally, BioMistral 7B surpasses all other open-source biomedical baselines on all tasks in
this 3-shot scenario. The observed performances may vary depending on the dataset. For
example, on MedQA 4 and 5 options, BioMistral 7B shows a 9.6% and 11.1% increase over
MediTron-7B and a 9.0% and 7.0% increase over MedAlpaca 7B, respectively. On MMLU,
BioMistral 7B improves performance over previous biomedical LLMs at the 7B scale, with
an overall average gain of 6.45% over MedAlpaca 7B, 18.05% over MediTron-7B, and 31.12%
over PMC-LLaMA 7B. Similarly, on MedMCQA, BioMistral 7B shows a 10.3% increase over
MediTron-7B, 12.7% over MedAlpaca 7B, and 20.4% over PMC-LLaMA 7B. However, in the
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PubMedQA evaluation, BioMistral’s performance experienced a decline, showing at least
a 15.7% lower accuracy compared to other models, likely due to hallucinations caused by
imbalanced classes. Overall, GPT-3.5 Turbo remains the best model in this 3-shot scenario.

MMLU

Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

BioMistral 7B 60.9 ±1.5 61.7 ±2.1 49.6 ±1.2 55.1 ±1.3 56.9 ±1.0 55.5 ±1.7

Mistral 7B Instruct 57.0 ±0.8 56.7 ±0.5 46.9 ±0.3 51.0 ±1.1 58.6 ±0.9 50.1 ±1.0

BioMistral 7B Ensemble 62.8 ±0.5 62.7 ±1.7 46.9 ±0.3 57.0 ±0.6 60.6 ±0.9 56.3 ±0.3

BioMistral 7B DARE 61.3 ±0.4 61.0 ±2.8 49.9 ±0.9 55.3 ±0.7 64.4 ±0.9 53.9 ±1.4

BioMistral 7B TIES 62.3 ±0.5 61.3 ±1.9 48.1 ±2.2 55.8 ±0.8 57.2 ±0.7 56.5 ±1.5

BioMistral 7B SLERP 63.1 ±1.6 63.3 ±0.9 49.9 ±1.9 57.4 ±0.3 63.4 ±0.9 57.8 ±0.9

MedAlpaca 7B 49.1 ±1.3 49.0 ±5.7 48.4 ±1.9 63.8 ±0.8 47.2 ±0.6 43.5 ±1.8

PMC-LLaMA 7B 25.3 ±1.5 26.0 ±3.7 31.9 ±1.8 16.9 ±0.5 28.0 ±2.4 24.9 ±1.2

MediTron-7B 37.9 ±1.5 47.0 ±3.7 39.3 ±1.6 34.2 ±1.0 42.6 ±1.4 30.4 ±0.7

BioMedGPT-LM-7B 50.1 ±1.0 52.0 ±0.8 46.2 ±1.8 47.3 ±1.7 47.9 ±2.5 45.5 ±0.7

GPT-3.5 Turbo 1106 74.71 ±0.3 74.00 ±2.2 65.92 ±0.6 72.79 ±1.6 72.91 ±1.7 64.73 ±2.9

Table 5.4: Performance onMMLU benchmarks using 3-shot in-context learning. The scores
represent accuracy (⇓) and are averaged across 3 random seeds. Best model in bold, and
second-best underlined.

MedQA MedQA 5 opts PubMedQA MedMCQA Avg.

BioMistral 7B 44.4 ±0.2 37.4 ±0.4 37.6 ±1.5 43.9 ±0.3 50.3

Mistral 7B Instruct 42.3 ±0.3 34.5 ±0.5 72.2 ±0.5 42.8 ±0.5 51.2

BioMistral 7B Ensemble 44.7 ±0.4 37.1 ±0.6 68.0 ±0.4 44.8 ±0.3 54.1

BioMistral 7B DARE 47.0 ±0.5 38.8 ±0.7 70.0 ±0.7 44.9 ±0.2 54.6

BioMistral 7B TIES 44.0 ±0.4 37.7 ±0.4 44.3 ±0.8 44.0 ±0.3 51.1

BioMistral 7B SLERP 46.6 ±0.2 38.9 ±0.4 68.1 ±1.4 45.7 ±0.7 55.4

MedAlpaca 7B 35.4 ±0.3 30.4 ±0.6 56.0 ±0.9 31.2 ±0.2 45.4

PMC-LLaMA 7B 27.6 ±0.8 21.1 ±0.8 53.3 ±0.6 23.5 ±0.3 27.8

MediTron-7B 34.8 ±0.6 26.3 ±0.5 55.9 ±1.0 33.6 ±0.2 38.2

BioMedGPT-LM-7B 39.3 ±1.2 34.9 ±0.4 58.6 ±0.3 34.9 ±0.5 45.7

GPT-3.5 Turbo 1106 57.71 ±0.3 50.82 ±0.7 72.66 ±1.0 53.79 ±0.2 66.0

Table 5.5: Performance on additional medical benchmarks using 3-shot in-context learning.
The scores represent accuracy (⇓) and are averaged across 3 random seeds. BioMistral 7B
Ensemble, DARE, TIES, and SLERP are model merging strategies that combine BioMistral
7B and Mistral 7B Instruct. Best model in bold, and second-best underlined.
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5.3.2 Supervised Fine-Tuning (SFT)

We present the performance of BioMistral models and related baselines in Table 5.6 and 5.7,
measured in terms of accuracy. Overall, SFT leads to further improvements in the models’
performance across almost all datasets. Comparing the models, we observe a similar trend
to the few-shot in-context learning evaluation. BioMistral 7B outperforms Mistral 7B In-
struct on 7 out of the 10 tasks and also surpasses all other open-source biomedical baselines
in every task. We can also see a signi!cant improvement in PubMedQA for BioMistral 7B,
which has !nally surpassed its predecessor.

MMLU

Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine Avg.

BioMistral 7B 59.9 ±1.2 64.0 ±1.6 56.5 ±1.8 60.4 ±0.5 59.0 ±1.5 54.7 ±1.0 59.1

Mistral 7B Instruct 62.9 ±0.2 57.0 ±0.8 55.6 ±1.0 59.4 ±0.6 62.5 ±1.0 57.2 ±2.1 59.1

BioMistral 7B Ensemble 62.8 ±0.5 62.7 ±0.5 57.5 ±0.3 63.5 ±0.8 64.3 ±1.6 55.7 ±1.5 61.1

BioMistral 7B DARE 62.3 ±1.3 67.0 ±1.6 55.8 ±0.9 61.4 ±0.3 66.9 ±2.3 58.0 ±0.5 61.9

BioMistral 7B TIES 60.1 ±0.9 65.0 ±2.4 58.5 ±1.0 60.5 ±1.1 60.4 ±1.5 56.5 ±1.9 60.2

BioMistral 7B SLERP 62.5 ±0.6 64.7 ±1.7 55.8 ±0.3 62.7 ±0.3 64.8 ±0.9 56.3 ±1.0 61.1

MedAlpaca 7B 53.1 ±0.9 58.0 ±2.2 54.1 ±1.6 58.8 ±0.3 58.1 ±1.3 48.6 ±0.5 55.1

PMC-LLaMA 7B 24.5 ±1.7 27.7 ±1.7 35.3 ±0.7 17.4 ±1.7 30.3 ±0.9 23.3 ±1.7 26.4

MediTron-7B 41.6 ±1.2 50.3 ±2.1 46.4 ±0.9 27.9 ±0.3 44.4 ±2.6 30.8 ±0.7 40.2

BioMedGPT-LM-7B 51.4 ±0.4 52.0 ±1.4 49.4 ±2.7 53.3 ±0.6 50.7 ±0.0 49.1 ±0.8 51.0

GPT-3.5 Turbo 1106* 74.71 ±0.3 74.00 ±2.2 65.92 ±0.6 72.79 ±1.6 72.91 ±1.7 64.73 ±2.9 70.7

Table 5.6: Supervised Fine-Tuning (SFT) performance on MMLU tasks of BioMistral 7B
models compared to baselines, measured by accuracy (⇓) and averaged across 3 random
seeds of 3-shot. DARE, TIES, and SLERP aremodel merging strategies that combine BioMis-
tral 7B and Mistral 7B Instruct. Best model in bold, and second-best underlined. *GPT-3.5
Turbo performances are reported from the few-shot results in Table 5.4.
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MedQA MedQA 5 opts PubMedQA MedMCQA Avg.

BioMistral 7B 50.6 ±0.3 42.8 ±0.3 77.5 ±0.1 48.1 ±0.2 54.8

Mistral 7B Instruct 42.0 ±0.2 40.9 ±0.4 75.7 ±0.4 46.1 ±0.1 51.2

BioMistral 7B Ensemble 50.6 ±0.3 43.6 ±0.5 77.5 ±0.2 48.8 ±0.0 55.1

BioMistral 7B DARE 51.1 ±0.3 45.2 ±0.3 77.7 ±0.1 48.7 ±0.1 55.7

BioMistral 7B TIES 49.5 ±0.1 43.2 ±0.1 77.5 ±0.2 48.1 ±0.1 54.6

BioMistral 7B SLERP 50.8 ±0.6 44.3 ±0.4 77.8 ±0.0 48.6 ±0.1 55.4

MedAlpaca 7B 40.1 ±0.4 33.7 ±0.7 73.6 ±0.3 37.0 ±0.3 46.1

PMC-LLaMA 7B 25.5 ±0.9 20.2 ±0.1 72.9 ±1.2 26.6 ±0.1 36.3

MediTron-7B 41.6 ±0.5 28.1 ±0.5 74.9 ±0.1 41.3 ±0.2 46.5

BioMedGPT-LM-7B 42.5 ±0.3 33.9 ±0.5 76.8 ±0.3 37.6 ±0.4 47.7

GPT-3.5 Turbo 1106* 57.71 ±0.3 50.82 ±0.7 72.66 ±1.0 53.79 ±0.2 58.7

Table 5.7: Supervised Fine-Tuning (SFT) performance on other medical tasks of BioMistral
7B models compared to baselines, measured by accuracy (⇓) and averaged across 3 random
seeds of 3-shot. DARE, TIES, and SLERP aremodel merging strategies that combine BioMis-
tral 7B and Mistral 7B Instruct. Best model in bold, and second-best underlined. *GPT-3.5
Turbo performances are reported from the few-shot results in Table 5.5.

5.3.3 Model Merging

As detailed in Section 5.1.3, we evaluated 3 model merging methods (SLERP, TIES, and
DARE) to assess their bene!ts. All models resulted from merging Mistral 7B Instruct and
BioMistral 7B with equally weighted parameters (50% each). Two scenarios are studied:
(1) few-shot learning (Table 5.4 and 5.5), and (2) supervised !ne-tuning (Table 5.6 and 5.7).
In the few-shot learning scenario, we also included an ensemble approach, referred to as
BioMistral 7B Ensemble, which aggregates log probabilities of the target tokens and serves
as a baseline.

Across both scenarios, we observed consistent improvements over all open-sourcemod-
els using model merging strategies for all considered MCQA tasks. However, no merging
strategy outperformed the others universally, with each demonstrating the highest perfor-
mance on speci!c tasks.

In the few-shot learning scenario (Table 5.4 and 5.5), BioMistral 7B Ensemble exhib-
ited a notable increase in accuracy, by 3.7% on College Biology and 30.4% on PubMedQA
compared to the standalone BioMistral 7Bmodel. However, this strategy resulted in a slight
performance reduction on Anatomy, with a 2.7% drop compared to BioMistral 7B. Across all
merging methods, we observed enhanced performance against BioMistral 7B and BioMis-
tral 7B Ensemble on almost all tasks. Among the merging methods, SLERP emerged as the
most e"ective, showcasing an overall average accuracy gain of 5.11% over BioMistral 7B. In
contrast, DARE and TIES methods yielded average gains of 4.35% and 0.82%, respectively.

In the context of SFT (Table 5.6 and 5.7), similar observationsweremade: modelmerging
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methods further enhanced BioMistral’s performance, widening the gap with other open-
source biomedical baselines. On average, we observed a gain of 2.06% between the best
merged model and BioMistral 7B, and 3.48% compared to Mistral 7B Instruct. Baseline
models lagged behind, with a 7.9% overall loss for the best model, MedAlpaca 7B. Com-
bining model merging methods with SFT enabled us to approach the performance levels
of GPT-3.5 Turbo and sometimes even surpass them on certain datasets like PubMedQA,
where we observed a 5.14% gain with BioMistral 7B SLERP.

5.3.4 Multilingual Generalization

We report in Table 5.8 the detailed few-shot learning performance of all models across the
7 targeted languages. Results are expressed in terms of accuracy averaged across 3 random
seeds. Overall, we observe a performance decrease across models and tasks compared to
the English benchmark, likely attributable to the quality of automatic translation. Despite
this, GPT-3.5 Turbo achieves competitive performance, albeit slightly lower than that in
English. We observe that the performance di"erence between GPT-3.5 Turbo and open-
source medical models is similar across languages, which could suggest a lack of training
data in the targeted language in open-source models and better multilingual capabilities
from GPT-3.5 Turbo.
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MMLU

Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine MedQA MedQA 5 opts PubMedQA MedMCQA Avg.

Arabic

BioMistral 7B 33.8 ±2.8 27.0 ±2.2 28.6 ±0.9 29.9 ±0.8 24.8 ±0.9 27.0 ±2.3 26.3 ±0.3 20.4 ±0.1 54.5 ±0.4 27.1 ±0.3 29.9

Mistral 7B Instruct 32.6 ±0.8 31.3 ±1.7 27.2 ±0.7 24.8 ±1.2 26.2 ±3.6 27.0 ±1.2 26.5 ±1.4 21.9 ±0.6 53.6 ±0.5 30.1 ±0.4 30.1

BioMistral 7B DARE 33.7 ±1.0 29.3 ±2.6 27.9 ±1.9 24.1 ±0.5 25.2 ±1.2 22.9 ±0.7 27.1 ±0.2 21.7 ±0.5 54.3 ±1.6 29.4 ±0.2 29.6

BioMistral 7B TIES 33.1 ±0.7 28.0 ±2.9 29.9 ±1.3 28.8 ±1.4 24.1 ±1.8 27.7 ±1.2 26.6 ±0.2 22.1 ±0.5 55.0 ±0.3 27.5 ±0.3 30.3

BioMistral 7B SLERP 31.7 ±1.1 31.7 ±1.2 27.7 ±1.9 27.9 ±1.4 23.8 ±1.2 24.3 ±1.7 27.5 ±0.6 20.7 ±0.5 55.4 ±0.7 29.5 ±0.2 30.0

MedAlpaca 7B 27.3 ±3.3 31.0 ±3.7 28.1 ±0.6 29.5 ±2.6 24.5 ±0.9 24.1 ±1.5 24.5 ±0.7 20.3 ±0.7 16.3 ±1.8 27.1 ±0.3 25.3

PMC-LLaMA 7B 24.3 ±1.7 29.3 ±0.9 27.9 ±3.0 19.6 ±0.5 27.3 ±1.4 23.3 ±0.5 25.7 ±0.4 20.9 ±0.8 15.5 ±1.2 25.4 ±0.4 23.9

MediTron-7B 24.8 ±0.2 27.3 ±1.2 29.1 ±1.8 15.8 ±2.7 26.2 ±1.8 21.6 ±1.0 27.5 ±0.9 21.4 ±1.1 51.9 ±0.8 28.4 ±0.4 27.4

BioMedGPT-LM-7B 25.4 ±2.1 25.7 ±2.5 26.9 ±2.1 24.4 ±2.4 26.6 ±0.3 27.4 ±0.3 26.0 ±0.4 23.3 ±1.4 54.9 ±0.6 27.5 ±0.4 28.8

GPT-3.5 Turbo 1106 54.3 ±0.4 53.3 ±2.7 50.0 ±0.8 48.3 ±1.4 47.7 ±0.3 47.1 ±1.9 40.8 ±0.6 34.5 ±0.8 59.5 ±0.7 39.3 ±0.6 47.5

Chinese

BioMistral 7B 38.9 ±5.5 32.2 ±5.5 30.6 ±2.2 31.9 ±2.1 30.1 ±5.4 29.3 ±3.2 27.8 ±1.6 22.8 ±2.4 57.5 ±3.0 29.7 ±2.6 33.1

Mistral 7B Instruct 37.0 ±4.7 34.3 ±3.3 30.7 ±3.9 27.7 ±3.1 30.8 ±5.4 29.9 ±3.1 28.5 ±2.3 23.4 ±1.6 58.1 ±4.6 31.5 ±1.5 33.2

BioMistral 7B DARE 38.6 ±5.0 35.3 ±6.3 29.8 ±2.5 26.8 ±2.8 32.3 ±7.2 28.2 ±5.4 29.3 ±2.2 24.3 ±2.7 59.2 ±5.1 31.6 ±2.2 33.6

BioMistral 7B TIES 38.6 ±5.6 32.7 ±5.1 30.7 ±1.3 30.1 ±1.7 30.3 ±6.5 28.8 ±1.5 28.4 ±1.8 24.0 ±2.0 59.4 ±4.5 30.1 ±2.6 33.3

BioMistral 7B SLERP 37.5 ±5.8 35.5 ±4.3 31.9 ±4.5 30.0 ±2.3 31.1 ±7.6 30.0 ±5.9 29.2 ±1.9 24.1 ±3.4 60.0 ±4.7 31.5 ±2.0 34.1

MedAlpaca 7B 29.2 ±3.4 30.2 ±4.0 29.8 ±1.8 33.7 ±4.6 25.1 ±1.2 24.5 ±2.3 25.0 ±0.8 21.4 ±1.2 31.4 ±15.2 27.2 ±0.3 27.7

PMC-LLaMA 7B 24.2 ±1.3 27.3 ±3.9 30.2 ±3.9 18.6 ±1.1 26.0 ±2.7 24.0 ±1.1 26.3 ±0.9 20.6 ±0.7 32.3 ±16.8 24.8 ±0.7 25.4

MediTron-7B 25.8 ±1.2 30.2 ±3.2 29.0 ±1.4 17.8 ±3.0 26.7 ±1.9 24.1 ±2.6 27.4 ±0.9 21.3 ±1.0 52.1 ±1.0 29.0 ±0.7 28.3

BioMedGPT-LM-7B 30.3 ±5.2 28.0 ±2.9 29.4 ±3.1 24.1 ±1.9 29.3 ±2.7 28.8 ±1.7 27.0 ±1.0 22.9 ±1.3 56.5 ±1.6 27.7 ±0.4 30.4

GPT-3.5 Turbo 1106 55.2 ±3.6 44.0 ±2.2 47.2 ±0.3 47.2 ±0.8 48.4 ±2.0 43.4 ±2.9 40.0 ±1.3 32.2 ±1.0 58.9 ±0.1 35.5 ±0.3 45.2

French

BioMistral 7B 42.5 ±6.9 38.2 ±9.7 35.6 ±7.3 36.2 ±6.2 33.1 ±6.1 35.5 ±9.2 30.7 ±4.4 25.2 ±3.9 61.5 ±6.1 32.5 ±4.5 37.1

Mistral 7B Instruct 39.7 ±5.4 38.1 ±6.1 35.6 ±7.7 32.5 ±7.2 32.7 ±5.2 33.8 ±6.3 30.4 ±3.3 25.2 ±2.9 62.0 ±6.7 33.5 ±3.1 36.3

BioMistral 7B DARE 42.9 ±7.3 39.8 ±8.1 34.6 ±7.1 31.8 ±7.4 35.3 ±7.2 33.9 ±9.2 31.8 ±4.0 26.5 ±3.8 63.8 ±7.6 34.3 ±4.1 37.5

BioMistral 7B TIES 42.9 ±7.6 37.9 ±8.6 35.3 ±6.6 33.9 ±5.5 32.9 ±6.5 35.2 ±9.1 31.2 ±4.3 26.2 ±3.5 63.0 ±6.3 33.0 ±4.7 37.2

BioMistral 7B SLERP 42.6 ±8.7 40.2 ±7.6 37.0 ±8.1 35.3 ±7.7 34.6 ±7.9 34.7 ±8.3 32.1 ±4.3 26.6 ±4.5 64.2 ±7.0 34.4 ±4.4 38.2

MedAlpaca 7B 31.8 ±4.7 31.2 ±3.9 33.4 ±5.5 37.7 ±6.8 28.3 ±4.6 25.5 ±2.5 27.0 ±3.1 22.9 ±2.3 39.1 ±16.5 28.1 ±1.3 30.5

PMC-LLaMA 7B 23.4 ±1.9 25.8 ±4.0 30.9 ±3.5 18.0 ±1.4 26.7 ±2.6 24.2 ±1.0 26.6 ±0.9 20.8 ±0.6 38.8 ±16.5 24.3 ±0.9 26.0

MediTron-7B 26.8 ±1.9 31.1 ±3.3 31.0 ±3.3 19.4 ±3.4 27.4 ±1.9 23.6 ±2.4 28.6 ±1.9 21.6 ±1.0 52.4 ±1.0 29.6 ±1.0 29.1

BioMedGPT-LM-7B 32.8 ±5.6 31.7 ±5.9 32.2 ±4.7 26.5 ±3.8 32.5 ±5.4 31.1 ±3.6 28.8 ±2.7 24.2 ±2.2 57.1 ±1.6 28.5 ±1.2 32.5

GPT-3.5 Turbo 1106 63.4 ±0.3 65.3 ±2.9 58.8 ±0.7 63.4 ±2.4 59.0 ±1.0 54.5 ±3.3 49.0 ±0.2 42.3 ±0.5 63.3 ±0.7 46.2 ±0.8 56.5

German

BioMistral 7B 45.1 ±7.6 39.5 ±8.8 36.8 ±6.9 38.5 ±6.7 35.3 ±6.5 37.3 ±8.6 32.4 ±4.8 26.5 ±4.1 61.6 ±5.3 33.6 ±4.3 38.7

Mistral 7B Instruct 41.5 ±5.7 39.7 ±6.0 37.2 ±7.2 34.3 ±7.0 34.4 ±5.4 34.4 ±5.6 31.6 ±3.5 26.0 ±2.9 63.2 ±6.2 34.3 ±3.0 37.6

BioMistral 7B DARE 45.1 ±7.4 42.5 ±8.6 37.4 ±7.9 34.6 ±8.1 37.1 ±7.0 35.2 ±8.2 33.7 ±4.7 28.0 ±4.2 64.4 ±6.7 35.3 ±4.0 39.3

BioMistral 7B TIES 45.5 ±8.2 39.6 ±8.1 36.8 ±6.3 36.4 ±6.5 35.1 ±6.9 36.6 ±8.3 32.8 ±4.6 27.3 ±3.6 62.3 ±5.6 34.1 ±4.5 38.7

BioMistral 7B SLERP 45.8 ±9.4 42.4 ±7.6 39.1 ±8.0 37.5 ±7.7 36.6 ±7.7 36.3 ±7.7 33.7 ±4.7 27.8 ±4.5 65.1 ±6.3 35.4 ±4.2 40.0

MedAlpaca 7B 33.2 ±4.8 32.4 ±4.6 34.4 ±5.1 39.6 ±6.8 31.0 ±6.4 27.8 ±4.6 27.6 ±2.9 23.4 ±2.3 42.5 ±15.5 28.4 ±1.2 32.0

PMC-LLaMA 7B 23.7 ±1.9 25.3 ±3.7 30.7 ±3.9 17.8 ±1.5 27.7 ±2.9 24.8 ±1.4 26.9 ±1.0 20.8 ±0.7 42.2 ±15.5 24.2 ±0.8 26.4

MediTron-7B 27.5 ±2.2 31.3 ±3.0 31.7 ±3.3 19.7 ±3.0 27.1 ±1.9 23.2 ±2.3 28.8 ±1.7 21.8 ±1.0 52.5 ±0.9 29.8 ±1.0 29.3

BioMedGPT-LM-7B 35.1 ±6.3 33.0 ±5.6 34.1 ±5.4 28.8 ±5.2 33.3 ±5.0 31.8 ±3.4 29.4 ±2.6 24.7 ±2.1 57.4 ±1.5 28.8 ±1.1 33.6

GPT-3.5 Turbo 1106 59.9 ±1.6 54.7 ±2.4 50.9 ±0.3 56.3 ±0.8 54.6 ±1.0 47.5 ±2.1 45.2 ±0.7 38.2 ±0.6 60.4 ±0.3 40.8 ±0.2 50.8

Portuguese

BioMistral 7B 44.9 ±6.8 41.3 ±8.7 37.2 ±6.2 40.1 ±6.9 35.7 ±5.9 38.2 ±7.9 33.3 ±4.6 27.2 ±3.9 62.3 ±4.9 34.2 ±4.1 39.4

Mistral 7B Instruct 42.2 ±5.3 40.9 ±5.9 37.7 ±6.7 35.4 ±6.7 34.4 ±4.9 35.6 ±5.7 31.9 ±3.2 26.5 ±2.8 64.1 ±5.9 34.7 ±2.8 38.3

BioMistral 7B DARE 45.2 ±6.6 43.1 ±7.9 38.0 ±7.2 36.4 ±8.0 37.7 ±6.4 36.9 ±8.1 34.3 ±4.4 28.6 ±4.0 65.6 ±6.5 35.7 ±3.7 40.1

BioMistral 7B TIES 45.2 ±7.4 41.3 ±8.0 37.5 ±5.9 38.2 ±6.8 35.2 ±6.2 37.3 ±7.6 33.8 ±4.6 27.9 ±3.5 63.3 ±5.4 34.6 ±4.1 39.4

BioMistral 7B SLERP 46.6 ±8.6 43.1 ±7.0 39.4 ±7.2 39.5 ±8.0 37.5 ±7.2 38.1 ±7.8 34.4 ±4.4 28.4 ±4.2 66.1 ±5.9 36.0 ±4.0 40.9

MedAlpaca 7B 33.8 ±4.5 32.7 ±4.3 35.1 ±4.8 40.6 ±6.4 30.9 ±5.7 29.1 ±5.0 28.0 ±2.7 24.0 ±2.5 45.0 ±14.7 28.6 ±1.1 32.8

PMC-LLaMA 7B 23.9 ±1.7 25.2 ±3.4 30.3 ±3.7 17.7 ±1.8 28.0 ±2.7 24.7 ±1.5 26.9 ±0.9 20.9 ±0.8 44.2 ±14.4 24.1 ±0.8 26.6

MediTron-7B 27.8 ±2.1 31.7 ±2.9 31.4 ±3.1 20.4 ±3.1 27.7 ±2.2 23.0 ±2.1 29.0 ±1.6 21.8 ±1.0 52.7 ±0.9 30.0 ±1.0 29.6

BioMedGPT-LM-7B 35.1 ±5.6 33.3 ±5.1 34.8 ±5.0 30.0 ±5.2 33.6 ±4.6 32.2 ±3.3 29.8 ±2.5 24.8 ±1.9 58.0 ±1.8 28.7 ±1.0 34.0

GPT-3.5 Turbo 1106 60.8 ±1.5 60.8 ±1.5 53.8 ±2.4 58.1 ±1.4 56.2 ±0.8 57.3 ±1.8 45.6 ±0.4 39.1 ±0.9 61.5 ±0.5 43.6 ±0.3 53.7

Russian

BioMistral 7B 45.5 ±6.4 42.4 ±8.3 37.8 ±5.9 39.1 ±6.7 37.2 ±6.4 39.0 ±7.4 33.1 ±4.3 27.0 ±3.6 62.9 ±4.7 34.2 ±3.7 39.8

Mistral 7B Instruct 43.0 ±5.1 40.9 ±5.5 38.3 ±6.2 34.8 ±6.3 34.9 ±4.6 36.1 ±5.3 32.0 ±2.9 26.4 ±2.5 63.9 ±5.4 34.6 ±2.6 38.5

BioMistral 7B DARE 45.7 ±6.1 43.7 ±7.3 38.4 ±6.7 35.7 ±7.5 39.2 ±6.8 37.7 ±7.6 34.1 ±4.1 28.4 ±3.6 65.8 ±6.0 35.8 ±3.4 40.5

BioMistral 7B TIES 46.0 ±7.0 42.3 ±7.7 38.2 ±5.7 37.2 ±6.6 36.8 ±6.7 38.4 ±7.4 33.5 ±4.2 27.7 ±3.2 64.0 ±5.2 34.6 ±3.8 39.9

BioMistral 7B SLERP 47.0 ±7.9 44.3 ±6.9 39.5 ±6.6 38.6 ±7.6 38.6 ±7.0 38.9 ±7.4 34.3 ±4.1 28.2 ±3.9 66.0 ±5.4 35.9 ±3.6 41.1

MedAlpaca 7B 34.3 ±4.3 32.2 ±4.2 35.0 ±4.4 40.7 ±5.9 30.4 ±5.4 29.2 ±4.6 27.7 ±2.5 23.8 ±2.3 46.1 ±13.7 28.4 ±1.2 32.8

PMC-LLaMA 7B 23.9 ±1.6 24.8 ±3.3 30.7 ±3.5 17.7 ±1.8 27.8 ±2.6 24.9 ±1.4 27.0 ±0.9 20.9 ±0.8 45.2 ±13.3 23.9 ±0.8 26.7

MediTron-7B 28.0 ±2.0 31.9 ±3.0 31.6 ±3.1 20.1 ±2.9 27.3 ±2.3 23.1 ±2.0 29.1 ±1.6 21.5 ±1.1 52.8 ±0.9 29.7 ±1.1 29.5

BioMedGPT-LM-7B 35.3 ±5.2 34.5 ±5.7 34.7 ±4.7 30.4 ±4.9 34.1 ±4.5 32.4 ±3.0 29.7 ±2.3 24.7 ±1.8 57.7 ±1.8 28.6 ±1.0 34.2

GPT-3.5 Turbo 1106 56.9 ±0.9 53.3 ±2.9 51.1 ±3.1 52.7 ±2.4 49.8 ±1.2 55.5 ±2.4 41.0 ±0.7 34.6 ±0.7 59.1 ±0.9 40.2 ±0.4 49.4

Spanish

BioMistral 7B 45.9 ±6.0 42.6 ±7.7 38.2 ±5.6 40.2 ±6.9 37.7 ±6.0 39.5 ±7.0 33.7 ±4.2 27.4 ±3.5 63.7 ±4.8 34.6 ±3.6 40.4

Mistral 7B Instruct 43.6 ±5.0 41.5 ±5.3 39.0 ±6.0 36.2 ±6.8 35.8 ±4.9 36.4 ±5.0 32.3 ±2.8 26.6 ±2.4 64.7 ±5.4 35.0 ±2.6 39.1

BioMistral 7B DARE 46.2 ±5.9 44.6 ±7.1 39.4 ±6.7 37.3 ±8.0 40.0 ±6.7 38.4 ±7.3 34.5 ±3.9 28.7 ±3.5 66.8 ±6.1 36.2 ±3.2 41.2

BioMistral 7B TIES 46.5 ±6.5 42.9 ±7.3 38.6 ±5.3 38.5 ±7.0 37.4 ±6.3 39.0 ±7.0 34.1 ±4.1 28.1 ±3.1 64.8 ±5.2 35.1 ±3.7 40.5

BioMistral 7B SLERP 47.5 ±7.5 44.5 ±6.5 39.9 ±6.2 39.8 ±7.6 39.6 ±7.0 39.6 ±7.1 34.6 ±3.9 28.6 ±3.7 66.8 ±5.4 36.3 ±3.6 41.7

MedAlpaca 7B 34.8 ±4.3 31.9 ±4.1 35.6 ±4.4 41.5 ±5.8 30.4 ±5.0 30.1 ±4.8 28.1 ±2.5 24.0 ±2.2 47.4 ±13.0 28.5 ±1.1 33.2

PMC-LLaMA 7B 24.0 ±1.7 24.2 ±3.4 30.6 ±3.3 17.5 ±1.8 27.7 ±2.5 25.0 ±1.5 27.0 ±0.9 21.0 ±0.8 46.3 ±12.6 23.8 ±0.8 26.7

MediTron-7B 28.4 ±2.2 31.9 ±2.9 31.9 ±3.0 21.1 ±3.6 28.1 ±3.0 23.3 ±1.9 29.2 ±1.6 21.6 ±1.1 53.0 ±1.0 29.8 ±1.1 29.8

BioMedGPT-LM-7B 35.5 ±4.9 34.8 ±5.5 35.0 ±4.4 31.7 ±5.6 34.2 ±4.2 32.7 ±3.0 30.0 ±2.3 24.7 ±1.8 58.1 ±2.0 28.6 ±1.0 34.5

GPT-3.5 Turbo 1106 58.6 ±0.2 57.0 ±1.4 52.9 ±0.3 53.6 ±0.9 52.8 ±0.3 50.0 ±1.4 43.8 ±0.2 37.5 ±0.5 60.6 ±0.5 41.9 ±0.2 50.9

Table 5.8: Models results using few-shot training on evaluation tasks translated into mul-
tiple languages. Scores are expressed in terms of accuracy (⇓).
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For a given model and task, the performance may vary between languages. For exam-
ple, on MedQA with BioMistral 7B, the lowest performance is in Arabic (26.3%), while the
best is in Spanish (33.7%), representing a delta of 7.4%. Similarly, this trend is observed for
GPT-3.5 Turbo with 40.0% accuracy in Chinese and 49.0% in Spanish. Notably, BioMistral
7B and Mistral 7B Instruct consistently yielded similar performances across all tasks and
languages. Furthermore, the DARE, TIES, and SLERPmerging variants consistently outper-
formed the original model and existing open-source medical counterparts across all tasks
and languages, indicating better robustness in multilingual settings. Overall, despite the
dominance of BioMistral 7B models, additional pre-training has limited e"ects on medical
domains and underperforms compared to English, likely due to training dataset diversity
issues, raising interest in language-speci!c models.

5.3.5 Quantization Techniques

Tables 5.9 and 5.10 provide an overview of the impact of di"erent quantization techniques
on BioMistral performance. Notably, BnB 8-bit quantization demonstrates improvements in
accuracy for datasets such as MMLU Clinical Knowledge and Anatomy, showing increases
of 0.65% and 1.00%, respectively. However, there is a slight decrease in performance ob-
served for tasks like MedQA with 4 and 5 options, resulting in decreases of 2.61% and 1.06%
across all models. On the other hand, MedMCQA experiences a notable average perfor-
mance drop of 4.05% across all quantizationmethods, while PubMedQA shows a remarkable
24.1% increase in accuracy when employing the AWQ method.

MMLU

Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

BioMistral 7B* 60.9 ±1.5 61.7 ±2.1 49.6 ±1.2 55.1 ±1.3 56.9 ±1.0 55.5 ±1.7

AWQ 4bit + GEMV 59.5 ±1.2 61.3 ±1.7 50.6 ±2.5 53.9 ±0.7 56.2 ±1.5 52.6 ±1.7

AWQ 4bit + GEMM 59.5 ±1.2 61.3 ±1.2 50.6 ±2.5 53.6 ±0.8 56.2 ±1.5 52.4 ±1.5

DARE AWQ GEMM 58.2 ±0.2 60.0 ±1.4 50.4 ±0.6 52.7 ±0.6 60.9 ±2.3 53.4 ±0.3

TIES AWQ GEMM 58.5 ±0.6 63.7 ±1.2 46.7 ±1.2 54.3 ±1.5 57.6 ±1.1 52.4 ±1.0

SLERP AWQ GEMM 61.8 ±1.3 61.0 ±1.6 50.1 ±3.1 54.8 ±0.9 62.0 ±1.7 58.0 ±1.2

BnB 4bit 57.6 ±1.1 58.7 ±0.9 47.2 ±0.9 52.9 ±1.3 53.7 ±0.9 54.3 ±1.2

BnB 8bit 61.3 ±0.9 59.0 ±1.4 50.1 ±1.9 54.3 ±0.5 56.9 ±1.1 56.1 ±0.5

Table 5.9: Performance of quantized BioMistral 7B on MMLU benchmarks in a 3-shot sce-
nario, measured by accuracy (⇓) and averaged across 3 random seeds. *Original model
performance for reference.
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MedQA MedQA 5 opts PubMedQA MedMCQA Avg.

BioMistral 7B* 44.4 ±0.2 37.4 ±0.4 37.6 ±1.5 43.9 ±0.3 50.3

AWQ 4bit + GEMV 43.2 ±0.8 36.8 ±0.5 61.7 ±0.9 41.8 ±0.2 51.8 +1.5

AWQ 4bit + GEMM 43.2 ±0.8 37.0 ±0.5 61.4 ±0.9 41.8 ±0.2 51.7 +1.4

DARE AWQ GEMM 45.8 ±0.5 39.0 ±0.2 68.3 ±0.2 44.1 ±0.2 53.28

TIES AWQ GEMM 42.6 ±0.0 36.8 ±0.4 48.1 ±0.9 43.2 ±0.5 50.39

SLERP AWQ GEMM 45.8 ±0.4 39.0 ±0.6 69.2 ±1.6 45.1 ±0.8 54.68

BnB 4bit 43.1 ±0.2 36.8 ±0.9 22.4 ±0.4 42.0 ±0.1 46.9 -3.4

BnB 8bit 43.5 ±0.1 37.4 ±0.5 37.9 ±1.3 43.2 ±0.3 50.0 -0.3

Table 5.10: Performance of quantized BioMistral 7B on other medical benchmarks in a 3-
shot scenario, measured by accuracy (⇓) and averaged across 3 random seeds. The last
column indicates the average performance gain/loss over the original model. *Original
model performance for reference.

Nonetheless, it is essential to consider the trade-o" between the e#ciency and accuracy
of each method. Despite its high compression rate (see Table 5.11) and competitive perfor-
mance, the AWQ + GEMV model exhibits the slowest inference time, taking 421 seconds to
process the MMLU professional medicine test set on an RTX 3090. In contrast, the AWQ +
GEMM model achieves an 86.23% faster inference time, completing the same task in 57.96
seconds, albeit with a slight performance loss. Additionally, the 4-bit and 8-bit BnB meth-
ods exhibit slower inference times, taking 133 and 177 seconds, respectively, while taking
less memory and producing performance trade-o"s, making the AWQ +GEMMmethod the
most attractive one.

Method VRAM (GB) Inference (s)

FP16/BF16 15.02 40.94

BnB.8 8.04 177.75

BnB.4 5.03 133.06

AWQ + GEMV 4.68 421.78

AWQ + GEMM 4.68 57.96

Table 5.11: Memory footprint and inference time on MMLU professional medicine test set
of the base BioMistral 7B model using di"erent quantization approaches. All the values
have been computed on an RTX 3090 GPU.
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5.3.6 Calibration

Expected Calibration Error (↘)

Arabic Chinese French German Portuguese Russian Spanish

BioMistral 7B 13.9 2.7% 19.7 -1.6% 13.5 3.3% 15.2 2.8% 15.2 1.4% 15.2 2.4% 14.0 2.7%

Mistral 7B Instruct 16.6 18.1 16.8 18.0 16.6 17.6 16.7

BioMistral 7B DARE 16.9 -0.3% 18.4 -0.3% 16.3 0.5% 16.6 1.4% 17.2 -0.6% 17.5 0.1% 16.5 0.2%

BioMistral 7B TIES 15.7 0.9% 21.8 -3.7% 16.4 0.4% 16.9 1.1% 17.8 -1.2% 16.6 1.0% 16.7 -0.0%

BioMistral 7B SLERP 14.8 1.8% 16.8 1.3% 14.5 2.3% 15.8 2.2% 15.3 1.3% 16.1 1.5% 15.4 1.3%

MedAlpaca 7B 7.8 8.8% 5.4 12.7% 5.2 11.6% 4.8 13.2% 4.3 12.3% 5.5 12.1% 4.7 12.0%

PMC-LLaMA 7B 15.1 1.5% 13.9 4.2% 12.8 4.0% 12.3 5.7% 12.2 4.4% 14.8 2.8% 12.9 3.8%

MediTron-7B 10.5 6.1% 10.0 8.1% 8.2 8.6% 9.7 8.3% 7.2 9.4% 9.1 8.5% 8.2 8.5%

BioMedGPT-LM-7B 5.1 11.5% 4.3 13.8% 4.8 12.0% 4.8 13.2% 5.3 11.3% 4.6 13.0% 4.4 12.3%

Table 5.12: Average Expected Calibration Error (ECE) across all tasks for each language-
model pair, indicating the model’s calibration quality. Lower ECE values indicate better
calibration. The di"erence in ECE compared to Mistral 7B Instruct is provided alongside
each ECE score.

Ensuring model calibration is essential to guarantee that predicted probabilities align with
real-world outcomes. A well-calibrated model accurately re%ects the con!dence levels as-
sociated with its predictions. To evaluate calibration, we employ the Expected Calibration
Error (ECE) metric, which quanti!es the disparity between predicted probabilities and ac-
tual outcomes across con!dence levels. A lower ECE value indicates better calibration,
signifying that the model’s con!dence estimates are more reliable.

ECE =
M∑

m=1

|Bm|

n
|acc(Bm)↗ conf(Bm)|

Table 5.12 presents the calibration and con!dence scores for BioMistral 7B and its base
model across various languages compared to other open-source medical models. Interest-
ingly, we observe that BioMistral 7B and its base model exhibit worse calibration and con-
!dence scores compared to other models, potentially due to di"erences in calibration base-
lines with LLaMa foundation models. Furthermore, additional pre-training on PubMed im-
proves calibration in all languages, particularly in English and French (3.3% ECE gain), with
some degradation observed in Chinese (loss of 1.6%). This suggests the need for speci!c
calibration adjustments for di"erent languages, highlighting the importance of language-
speci!c considerations. It is noteworthy that language-speci!c variations in average con!-
dence levels exist across di"erent models. For instance, Chinese models demonstrate lower
con!dence levels compared to other languages in the Mistral 7B series, while Arabic mod-
els lag in the LLaMa-based models. Interestingly, our analysis reveals that model merging
methods tend to decrease calibration, indicating potential trade-o"s between model perfor-
mance and calibration.
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5.3.7 Truthfulness

Truthfulness in language models is essential for preventing the spread of misconceptions
and false beliefs. We employ the TruthfulQA benchmark [187] to assess truthfulness, which
evaluates LLMs’ factual and sensible output across 817 questions and 38 categories, such
as !nance and politics. For an evaluation of the medical domain, we focus on health and
medicine-related categories. The evaluation consists of two zero-shot prompts: a general
assessment prompt and one derived from the MediTron-7B article (see Figure 5.2).

(a) Prompt 1 - Multiple choice question
answering prompt.

(b) Prompt 2 - TruthfulQA answer prompt.

Figure 5.2: The blue letter represents the reference answer. Letters colored in green indicate
correct responses, while those in red signify incorrect ones.

Table 5.13 shows that BioMistral 7B outperforms other models across both prompts and
demonstrates a 4.0% improvement over GPT-3.5 Turbo.
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Acurracy (↘)

Model Health Nutrition Psychology Science Avg

Prompt 1 - QA prompt
BioMistral 7B 72.7 68.8 31.6 33.3 51.6
Mistral 7B Instruct 60.0 43.8 42.1 44.4 47.5
BioMistral 7B Ensemble 69.1 59.5 52.0 50.1 57.6

BioMistral 7B DARE 67.3 50.0 36.8 44.4 49.6
BioMistral 7B SLERP 63.6 68.8 36.8 44.4 53.4
BioMistral 7B TIES 69.1 68.8 36.8 33.3 52.0
MedAlpaca 7B 34.5 12.5 15.8 33.3 24.0
PMC-LLaMa 7B 9.1 25.0 10.5 0.0 11.1
MediTron-7B 16.4 18.8 5.3 0.0 10.1
BioMedGPT-LM-7B 40.0 18.8 26.3 44.4 32.37
GPT-3.5 Turbo 1106 65.5 62.5 42.1 44.4 53.6

Prompt 2 - Truthful answer prompt
BioMistral 7B 78.2 75.0 36.8 55.6 61.4
Mistral 7B Instruct 61.8 56.2 31.6 44.4 48.5
BioMistral 7B Ensemble 74.5 71.6 60.0 56.1 65.6

BioMistral 7B DARE 70.9 75.0 36.8 33.3 54.0
BioMistral 7B SLERP 69.1 81.2 36.8 33.3 55.1
BioMistral 7B TIES 83.6 75.0 42.1 44.4 61.3
MedAlpaca 7B 41.8 18.8 26.3 22.2 27.3
PMC-LLaMA 7B 10.9 25.0 10.5 0.0 11.6
MediTron-7B 14.5 25.0 0.0 0.0 9.8
BioMedGPT-LM-7B 36.4 25.0 15.8 33.3 27.62
GPT-3.5 Turbo 1106 80.0 68.8 42.1 44.4 58.8

Table 5.13: Evaluation of truthfulness using the medical subset of TruthfulQA, employing
two prompts: (1) Question answering prompt (Figure 5.2), and (2) Truthful answer prompt
(Figure 5.2) taken from [49]. The scores, obtained in zero-shot, are measured in terms of
accuracy (⇓).

However, it is important to note that no single model consistently outperforms oth-
ers across all tasks, indicating speci!c strengths and weaknesses in each model. Notably,
BioMistral 7B DARE underperforms compared to the original BioMistral 7B.

Interestingly, informing models that they are being tested for truthfulness signi!cantly
enhances their performance. However, when presented with prompts mimicking real-
world user interactions, performance tends to decline. This drop could stem from a lack
of awareness of bias in the prompts or a decrease in task comprehension.

Finally, zero-shot prompting poses challenges, particularly for PMC-LLaMA 7B and
MediTron-7B models, which struggled to provide correct answers in the Science and Psy-
chology categories.

5.4 Training Loss

As described in section 5.1.1, one of our pretraining strategies was to achieve the 1.5-epoch
milestone, similar to the Zephyr model. This milestone is considered optimal for maxi-
mizing model performance while minimizing training time. To accomplish this within the
20-hour limitation set by the Jean-Zay computing resources, we estimated our capability to
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process 3 billion tokens per epoch.

Figure 5.3: On the left-hand side, we can observe BioMistral’s 7B loss during model adap-
tation on PMC Open Access. While on the right-hand side, we can observe Zephyr 7B
accuracy on train and test sets during dDPO (chart taken from the original Zephyr paper
[269]).

Figure 5.3 shows our training loss during the further pre-training of Mistral 7B Instruct
v0.1 on PubMed Central. This data validates our estimations and demonstrates behavior
similar to that of Zephyr [269], thereby supporting our hypothesis.

5.5 Model’s Variation

The parameter distance heatmap (Figure 5.4) reveals distinct patterns of divergence be-
tween BioMistral and the original Mistral model across di"erent architectural components
and layers. Themost pronounced di"erences are observed in theMLP gate projections, with
normalized Euclidean distances reaching peaks of 6.3 in the middle layers (15-17), suggest-
ing signi!cant adaptation in the gating mechanisms. The self-attention components show
a more moderate level of modi!cation, with distances ranging from 2.2-3.2 for query and
key projections, indicating selective re!nement of the attention mechanisms. Notably, the
input and post-attention layer normalizations (shown in the rightmost columns) maintain
complete consistency (distance of 0.0) across all layers, suggesting that BioMistral preserved
these normalization parameters while focusing adaptations on the transformative compo-
nents. The pattern of changes appears to be strategically concentrated in the middle layers
of the network (layers 12-20), with relatively smaller modi!cations in the input and out-
put layers, which aligns with common !ndings in domain adaptation where intermediate
representations undergo the most signi!cant adjustments to accommodate domain-speci!c
features while preserving general language understanding capabilities.

The analysis (Figure 5.5) presents a comprehensive examination of token embedding
changes between the original Mistral 7B Instruct model and our biomedical domain adap-
tation, BioMistral-7B. We computed and visualized the geometric distances between cor-
responding parameters across model layers. The heatmap visualization reveals distinctive
patterns of embedding modi!cations across the full vocabulary space, where the y-axis rep-
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resents token ranges from 0 to approximately 32,000 tokens, and the x-axis indicates the
token position within each range. The color gradient, ranging from dark purple (minimal
changes around 0.00) to bright yellow (maximum changes up to 0.06), e"ectively illustrates
themagnitude of embedding transformations. Notably, the visualization exposes signi!cant
modi!cations in the top portion of the heatmap (tokens 0-999), characterized by prominent
dark purple regions, suggesting substantial adjustments to the special tokens during do-
main adaptation. The middle sections exhibit a more uniform pattern of moderate changes,
displayed in green, indicating consistent but less dramatic modi!cations across the general
vocabulary. The bottom portion (tokens 30,000-32,000) demonstrates a similar pattern to
the !rst thousand tokens, with more substantial changes.

Figure 5.4: BioMistral 7B model.
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Figure 5.5: BioMistral 7B embedding layer.

5.6 Conclusion

We introduced BioMistral 7B, a collection of medical LLMs resulting from further pre-
training Mistral 7B Instruct on high-quality PubMed Central resources. BioMistral 7B in-
corporates quantized and merged model variants and demonstrates state-of-the-art perfor-
mance on the multilingual medical evaluation benchmark compared to other open-source
7B models.

Our future work aims to assess the generation quality of BioMistral 7B through human
evaluation. Additionally, we plan to enhance its multilingual and multimodal capabilities
using supervised !ne-tuning and direct preference optimization techniques, building on top
of experiments conducted by [238] and [182]. Finally, we intend to improve the calibration
and reliability of our model by integrating techniques such as Je"rey’s divergence [135] or
Platt scaling [232] during the further pre-training process.
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The previous chapters established the value of domain-speci!c adaptation for text-based
healthcare languagemodels, progressing from an evaluation of general-purpose LLMs (Chap-
ter 4) to the development of a specialized model, BioMistral (Chapter 5). This work so-
lidi!ed the state-of-the-art for textual healthcare LLM. This !nal research chapter pivots
from the written word to the spoken, addressing a critical, yet far more challenging modal-
ity. While text remains the primary medium for healthcare literature, clinical interactions,
from patient consultations to physician dictations, the process are fundamentally voice-
driven. This reality necessitates the development of e"ective Spoken Language Under-
standing (SLU) systems including Spoken Question Answering (SQA).

However, developing healthcare SLU systems faces two severe obstacles. First, the ex-
treme scarcity of public healthcare speech corpora, constrained by patient privacy and
regulatory constraints, makes supervised training on speech SLU and SQA downstream
tasks nearly impossible. Second, existing state-of-the-art encoder-decoder architectures
like Whisper are suboptimal for the task, since primarily designed for transcription, not
knowledge-intensive reasoning. Consequently, the go-to approach to solve such tasks from
speech signal is a cascade system, of an ASR model that transcribes speech to text, which is
then passed to a separate LLM to be processed. This approach is prone to error propagation
and high computational overhead.

This chapter confronts these limitations by exploring the viability of end-to-end SQA
in a zero-shot, resource-constrained setting. Our research is guided by the following key
questions:

• How e"ective are standard cascade systems (ASR + LLM) for medical SQA, and what
are their practical limitations in a zero-shot setting?
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• To overcome the lack of real-world data, can a high-quality synthetic benchmark be
created to enable standardized and reproducible SQA evaluation?

• Can an end-to-end methodology, which bypasses the need for explicit transcription,
o"er a more resource-e#cient and performant alternative to cascade systems?

• Is it possible to adapt existing, large-scale pre-trained speech models to perform com-
plex SQA tasks through zero-shot entailment, without any task-speci!c !ne-tuning?

Our work, published at InterSpeech 2024 [169], makes the following contributions to
address these questions:

• We introduce SpokenMedicalQA, the !rst open benchmark for medical Spoken Ques-
tionAnswering, featuring over 48 hours of synthetic audio across 8 distinct tasks. The
benchmark is publicly available on the Hugging Face Hub1.

• We propose and evaluate a novel, zero-shot audio-text entailment method that en-
ables end-to-end SQA using pre-trained speech models.

• We demonstrate that our prompting method with Whisper achieves performance
comparable to a cascade system using an LLM of an equivalent size ( 1.5B param-
eters), raising important questions about the role and required scale of the decoder
in end-to-end SQA models.

• Weconduct a comprehensive comparative analysis of our end-to-end approach against
twelve di"erent cascade system con!gurations, providing insights into performance-
e#ciency trade-o"s for this task.

• We perform a !ne-grained analysis of encoder layer contributions across multiple
architectures, revealing how di"erent models process speech for reasoning tasks and
providing insights for designing more e"ective SQA models.

• We release all code for data synthesis, model evaluation, and analysis on GitHub to
ensure full reproducibility and facilitate future research2.

6.1 Medical Spoken Question Answering

In this section, we de!ne the SQA task (Section 6.1.1) and present the open benchmark
constructed from established medical datasets initially in textual format (Section 6.1.2).
Additionally, we describe the audio prompt format (Section 6.1.3) and the SQA evaluation
protocol (Section 6.1.4).

1https://huggingface.co/datasets/SpokenMedicalQA/SpokenMedicalQA
2https://github.com/qanastek/E2E-SQA-Medical-ZeroShot
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6.1.1 De!nition

We focus on multiple-choice SQA within the medical domain. As shown in the Figure 6.1,
each instance comprises an audio question followed by four possible spoken responses,
denoted as (q, o, c, a). Here, q represents the question, o denotes the options (labeled A to
D), c indicates the correct answer, and a encapsulates the audio containing both the question
and options. Questions are structured as single-turn interactions, devoid of dialogue. This
evaluation relies solely on the model’s internal knowledge without external information
or span extraction. The primary objective is to assess end-to-end model performance in
understanding and accurately choosing the correct answer from spoken input.

Spoken Question Answering

Transcript : A mother brings her 3-week-old infant to the
pediatrician's office because she is concerned about his
feeding habits. He was born without complications and has
not had any medical problems up until this time. However,
for the past 4 days, he has been fussy, is regurgitating all of
his feeds, and his vomit is yellow in color. On physical
exam, the child's abdomen is minimally distended but no
other abnormalities are appreciated. Which of the following
embryologic errors could account for this presentation?
A) Abnormal migration of ventral pancreatic bud
B) Complete failure of proximal duodenum to recanalize
C) Abnormal hypertrophy of the pylorus
D) Failure of lateral body folds to move ventrally and fuse in
the midline

Audio : 

Textual answer :  A) Abnormal migration of ventral
pancreatic bud

U
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d 
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Figure 6.1: Spoken Question Answering Data Format.

6.1.2 Tasks Collection and Description

Recent years have seen signi!cant progress in SQA datasets, such as Clotho-AQA [189],
Spoken-SQuAD [175], and LibriSQA [316]. However, these datasets do not speci!cally tar-
get the healthcare domain or rely solely on audio inputs. The absence of SQA datasets in
the medical domain hampers the development of question answering systems tailored to
healthcare contexts. To address this gap, we propose synthesizing an audio dataset from ex-
isting textual multiple-choice question answering (MCQA) corpora. Our approach involves
using Text-To-Speech (TTS) technology on these MCQA textual datasets to generate syn-
thetic audios, leveraging advancements in TTS models that increasingly resemble human
speech quality [151, 154]. We utilized the OpenAI TTS API (tts-1) to synthesize speech
based on the questions and available options. The speakers were alternated through the
6 available voices to introduce diversity and realism into the dataset. The resulting audio
!les were sampled at 16,000 Hz and converted to WAV mono channel format.

Our reference texts were sourced from three open-source textual MCQA corpora in

129



C3%4#/$ 6

English and already used in the chapter 5, namedly MMLU, MedQA and MedMCQA, all
relevant to healthcare, featuring single possible answers and a four-option format. Note
that only the test data are detailed here, as the proposed approaches operate under zero-
shot conditions.

Our !nal benchmark encompasses 8 SQA tasks (including 6 from MMLU) derived from
these 3 synthesized datasets. Table 6.1 summarizes the audio duration distribution accord-
ing to the di"erent labels available in the test set.

MMLU MedQA MedMCQA Total # Doc.

A 1h50 5h55 5h41 13h28 1,936
B 1h54 5h08 4h31 11h33 1,648
C 1h50 5h49 3h57 11h37 1,519
D 3h03 4h28 3h30 11h03 1,442

Total 8h39 21h22 17h40 47h41 6,545

Table 6.1: Audio duration distribution according to the labels.

6.1.3 Audio Prompt Format

We standardized all textual MCQA datasets and synthesized them into audio format. These
audio MCQAs serve as prompts for the studied and proposed SQA systems. Following
experimentation with various formats and careful listening to the resulting audio outputs,
we identi!ed an e"ective format exempli!ed below in the Figure 6.2:

Figure 6.2: Audio prompt format.

6.1.4 Evaluation Metric

The evaluation of multi-choice SQA with a single correct answer resembles a multi-class
classi!cation task. The performance is here assessed for each task using Accuracy, which
measures the proportion of correctly predicted answers compared to the total number of
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questions. A prediction is considered accurate if it exactly matches the ground-truth an-
swer, otherwise, it is classi!ed as incorrect. Choosing the accuracy enables direct compar-
ison with previous works on textual datasets [218, 168].

6.2 Studied and Proposed Methods

This section outlines the zero-shot approaches studied for SQA. Firstly, we introduce base-
line models with cascade systems (Section 6.2.1). Then, we present models integrating our
end-to-end audio-text entailment approach (Section 6.2.2).

6.2.1 Baseline Cascade Approaches

Our baseline models involve a two-stage process: transcription of audio inputs into text us-
ing an ASR module, followed by their processing with an LLM to select the correct answer
to posed questions. We conducted experiments with various models to assess the impact
of di"erent ASR and LLM con!gurations on SQA performance. In the ASR stage, we com-
pared the performance using the reference transcription (Oracle) against Whisper Small,
Medium, and Large V2 ASR models to identify potential transcription error propagation
issues. Subsequently, in the LLM stage, we compared the performance of an LLM similar
in size to Whisper Large V2 (1.5 billion parameters), named Phi 1.5, against larger mod-
els based on the LLaMa 2 architecture, con!gured with 7B and 13B parameters, to assess
the scalability of performance with model size. In total, we investigated 12 cascade system
combinations.

During the second step of inference, the LLM predicts the next token based on the
input prompt, generating probabilities for each token in the vocabulary. To ensure rele-
vance, the vocabulary is !ltered to include only relevant tokens (in this case, choice letters)
corresponding to the expected answer options. This approach prevents the model from
generating irrelevant tokens or hallucinations [184].

6.2.2 Zero-Shot End-To-End Entailment-Based Approaches

Numerous studies [113, 244] have underscored the advantages of leveraging Natural Lan-
guage Inference (NLI) for textual zero-shot entailment and classi!cation tasks. However,
except for CLAP [296] and Pengi [78], based on contrastive learning and pre!x-tuning
respectively, a limited adaptation of such methodologies has been observed in speech-
related literature, particularly with large-scale pre-trained audio models like Whisper and
SpeechGPT. Our proposed zero-shot audio-text entailment method is integrated into the
four previously mentioned models, aiming to assess the likelihood of a textual sequence
matching an audio recording. In our setup, the audio contains the question and options,
while the text represents classes A to D.

For Whisper [235], we utilize audio features and request individual log probabilities for
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each letter using the format: <|startoftranscript|> [A] <|endoftext|>. The predicted class is
determined by the highest average log probability. To comply with Whisper’s 30-second
limit for audio segments, we truncate segments beyond this duration to capture only the
question and options. For SpeechGPT [310], we populate the model’s context in a prompt
!lled with speech units obtained from HuBERT [128] representations discretized using k-
means clustering on 1,000 clusters.

We then request the generation of one additional token for the model. Subsequently,
we !lter the vocabulary to retain only the log probabilities corresponding to letters A to D,
as described earlier in Section 6.2.1. Pengi [78] undergoes minimal changes in the model,
audio representation, and prompt format, maintaining a similar procedure. The approach
is slightly adapted for the CLAP model [296], a dual encoder architecture trained with
contrastive language-audio pre-training. Here, individual encoders process both speech
and text. Given an audio sample (a) and a list of classes (o), we identify the best match
among all pairs by calculating the cosine distance between their vector representations.
The pair with the closest distance is considered the predicted match.

6.3 Results

In this section, we examine the zero-shot condition performance on our SQA tasks using
!rst the baseline cascade models (Section 6.3.1), and then our entailment approach across
various end-to-end models (Section 6.3.2).

6.3.1 Zero-Shot Cascade Approaches

Table 6.2 outlines the transcription performance, measured in Word Error Rate (WER), of
Whisper ASR versions (Small, Medium, and Large V2) across various SQA tasks. Generally,
Whisper Large V2 shows improved WER performance, except in MMLU Anatomy, where
Whisper Medium performs better.
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Tasks
Whisper

S M L-V2

MMLU

Clinical KG 5.45 4.21 3.30

Medical Genetics 6.19 4.59 4.31

Anatomy 4.90 2.68 3.50
Pro Medicine 5.66 4.68 4.54

College Biology 4.54 2.91 2.66

College Medicine 26.02 25.54 24.74

MedQA 7.50 6.21 5.84

MedMCQA 7.99 6.33 6.10

Average 8.53 7.14 6.87

Table 6.2: Transcription performance (in WER) on each SQA task. Best result in bold and
second best is underlined.

Tables 6.3 and 6.4 display the accuracy performance of the studied LLM-based zero-shot
cascade methods using Whisper automatic transcriptions on multiple SQA tasks. Interest-
ingly, the Whisper model with the lowest WER might not always be the optimal choice in a
cascade approach, indicating a lack of direct correlation between WER and SQA accuracy.
Conversely, SQA performance appears to depend on LLM size, with larger models yielding
higher accuracy. Notably, there is an 11.67% di"erence between Phi 1.5 and LLaMa 2 13B in
WhisperMedium results, highlighting the signi!cant advantage of scaling up LLMs. Except
for Phi 1.5, all models show improved performance with transcriptions compared to Oracle.
This enhancement, particularly in LLaMa 2 architectures, may be attributed to their better
adaptability to speech normalization formats, reduced punctuation, and increased noise.

MMLU

Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

Phi 1.5

Oracle 31.3 39.0 19.3 20.6 29.2 28.9

Whisper Small 26.8 24.0 31.9 27.6 25.0 23.1

Whisper Medium 27.9 20.0 35.6 27.6 25.7 24.9

Whisper Large V2 31.7 19.0 34.1 24.6 26.4 26.0

Llama 2 7B

Oracle 21.5 30.0 18.5 18.4 25.7 20.8

Whisper Small 29.4 31.0 25.2 33.5 31.9 31.2

Whisper Medium 30.6 39.0 25.2 35.3 37.5 29.5

Whisper Large V2 31.7 38.0 26.7 33.5 29.9 31.8

Llama 2 13B

Oracle 21.5 30.0 18.5 18.4 25.7 20.8

Whisper Small 35.8 35.0 39.3 35.7 41.0 28.9

Whisper Medium 37.7 36.0 45.2 39.0 44.4 32.4

Whisper Large V2 34.7 38.0 37.0 39.0 39.6 32.4

Table 6.3: Accuracy (in %) of the zero-shot cascademethods onMMLU benchmarks. Highest
value in bold and second best is underlined.
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MedQA MedMCQA Avg.

Phi 1.5

Oracle 27.7 31.2 28.4

Whisper Small 25.5 25.9 26.2

Whisper Medium 25.4 25.4 26.6

Whisper Large V2 27.6 26.2 27.0

Llama 2 7B

Oracle 27.7 32.1 24.3

Whisper Small 29.9 30.7 30.3

Whisper Medium 29.5 31.1 32.2

Whisper Large V2 28.7 30.8 31.4

Llama 2 13B

Oracle 27.7 32.1 24.3

Whisper Small 36.2 34.0 35.7

Whisper Medium 37.4 34.1 38.3

Whisper Large V2 36.8 33.1 36.3

Table 6.4: Accuracy (in %) of the zero-shot cascade methods on other medical benchmarks
and overall average. Highest value in bold and second best is underlined.

Furthermore, with LLaMa 2, Whisper Medium transcriptions emerge as the top per-
formers. Notably, LLaMa 13B demonstrates a 1.95% overall accuracy gain over Whisper
Large V2 and a 2.54% improvement over Whisper Small. Similar trends are observed in the
7B model, with increases of 0.8% over Large V2 and 1.9% over Small. The performance of
the LLaMa 2 13B model in a zero-shot scenario withWhisper Medium transcriptions shows
promising results.

6.3.2 Zero-Shot End-To-End Models’ Capabilities

MMLU

Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

Whisper
Small 24.1 31.0 20.0 17.6 25.0 20.2

Medium 30.6 20.0 17.8 42.6 26.4 30.6

Large V2 27.5 24.0 26.7 20.2 20.1 19.6

CLAP
Unfused 26.8 23.0 24.4 37.1 29.2 32.9

Large General 29.4 21.0 23.7 44.5 25.7 34.1

Fused 21.5 30.0 18.5 18.4 25.7 20.8

Pengi
Base 24.9 26.0 32.6 21.3 19.4 24.8

Base No Text Encoder 26.8 26.0 25.2 20.2 22.2 20.8

SpeechGPT E2E 28.3 23.0 29.6 17.6 21.5 27.2

SpeechGPT Oracle 36.2 32.0 27.4 35.7 29.9 34.1

Table 6.5: Accuracy (in %) of the zero-shot end-to-end models on MMLU benchmarks using
our entailment method. Highest value in bold and second best is underlined, excluding
SpeechGPT + Oracle (model aligned with reference transcriptions).
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MedQA MedMCQA Avg.

Whisper
Small 27.7 30.6 24.5

Medium 21.9 22.5 26.5

Large V2 25.8 27.4 23.9

CLAP

Unfused 23.1 19.7 27.0

Large General 21.1 20.3 27.5

Fused 27.7 32.0 24.3

Pengi
Base 24.0 24.4 24.7

Base No Text Encoder 24.3 25.9 23.9

SpeechGPT E2E 26.4 23.4 24.6

SpeechGPT Oracle 24.4 27.2 30.8

Table 6.6: Accuracy (in %) of the zero-shot end-to-endmodels on other medical benchmarks
using our entailment method. Highest value in bold and second best is underlined, exclud-
ing SpeechGPT + Oracle (model aligned with reference transcriptions).

Tables 6.5 and 6.6 outline the accuracy performance of zero-shot end-to-end models using
our entailment method on our multiple-choice SQA benchmark. While the overall aver-
age accuracy remains similar across models, speci!c models demonstrate pro!ciency in
particular tasks, with none consistently outperforming others across all tasks. Notably,
WhisperMedium showcases competitive zero-shot performance, surpassing cascade setups
with Phi 1.5 despite having approximately half the parameters. CLAP’s contrastive mod-
eling outperforms Phi 1.5 but falls short of LLaMa 2 7B. Impressively, despite its smaller
size—153M parameters in its base form and 193M in its larger form—CLAP performs re-
markably well, being 14.7 times smaller than Whisper Large V2 combined with Phi 1.5
and 44.3 times smaller with LLaMa 2 7B. SpeechGPT encounters challenges in zero-shot
tasks from speech, contrasting its performance with text (Oracle), highlighting di#culties
in directly handling speech modality representations, which need to be addressed in the
future, with a better alignment approach. Notably, Whisper, especially Whisper Medium,
occasionally outperforms cascade con!gurations with Phi 1.5 in zero-shot scenarios. Spe-
ci!c tasks exhibit varying levels of di#culty for di"erent models; for instance, MedMCQA
yields high results with Whisper Small and CLAP Fused, while MMLU College Medicine
favors Whisper Medium, CLAP Unfused, and CLAP Large General. SpeechGPT generally
underperforms across most tasks, except for MMLU Anatomy and MedQA, where it out-
performs most other models. Despite the small performance improvement over cascade
systems, which is linked to the zero-shot setting, E2E systems can be enhanced by scaling
with better quality SQA data and increasing the number of parameters to see if they follow
scaling laws similar to LLMs.

6.4 Analysis of Encoder Layers

This section presents an extensive analysis to pinpoint the critical location of information
crucial for SQA tasks within the layers encoding the audio signal. To conduct this analysis,
we extracted a subset of the MedMCQA training set consisting solely of audio sequences
shorter than 30 seconds, which comprised 97.56% of the data, resulting in 120 hours of spo-
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ken data. This subset was partitioned into training and validation sets using an 80%/20%
ratio, yielding 95 hours and 23 hours, respectively. Our experimental approach involves
!ne-tuning audio encoders and introducing an intermediate trainable layer of equal size
to the number of encoder layers. This intermediate layer selects information from the en-
coder’s layers through a weighted sum of their representations when feeding the classi!ca-
tion head. The objective of this weighted encoder layers approach is to analyze the necessity
of speci!c layers for executing the SQA task while enhancing model understanding.

As depicted in Figure 6.3, illustrating cumulative weights across encoder layers, Whis-
per models exhibit a propensity to concentrate information in the !nal layers, aligning with
prior research !ndings [302]. This indicates that these audio-based models e"ectively uti-
lize the last layer to represent textual information, possibly due to heavy reliance on the
decoder.

Figure 6.3: Cumulative weights according to encoder layers.

In contrast, Wav2Vec [17] and Data2Vec [16] primarily rely on a single intermediate
layer, speci!cally the 15th and 21st layers, respectively. However, HuBERT [128] and
WavLM [48] adopt a di"erent strategy, integrating information from a broader range of
layers. HuBERT integrates data from 12 layers, while WavLM incorporates information
from 4 layers distributed across various regions of the encoder.

6.5 Conclusion

This study introduces a novel synthetic Spoken Question Answering (SQA) dataset tailored
speci!cally to the medical domain. We conducted zero-shot comparative analyses of end-
to-end speech methodologies using a new entailment technique against cascade speech
transcription and an LLM module. Our experiments and analysis demonstrate the e"ec-
tiveness of our end-to-end approach, yielding performances comparable to those achieved
by cascade models of similar sizes. Moving forward, we aim to explore the utilization of
speech alignment techniques with LLMs to enhance end-to-end question answering perfor-
mance, with a particular emphasis on improving outcomes in low-resource domains such
as healthcare. Our research faced multiple constraints. Using limited speaker variety for
synthetic audio may reduce accuracy compared to natural speech, a"ecting response preci-
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sion. Simplifying task formulation lacks genuine human interaction dynamics but enables
metric-based assessments, enhancing model reproducibility and cost e#ciency. Finally, our
study neglects multilingual contexts, highlighting the need for additional exploration in di-
verse linguistic settings.
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The preceding chapters have built a clear trajectory: from establishing the need for spe-
cialized text-based models like BioMistral (Chapter 5), we moved to the domain of speech,
where the limitations of existingmodels for complex reasoning tasks became clearly evident
(Chapter 6). That work highlighted a fundamental challenge: simply connecting speech
to a powerful language model is not enough. This !nal research chapter addresses that
challenge at its core, proposing a new way for Text-Speech Language Models (TSLMs) to
perform an e"ective fusion of the two modalities and improving alignment.

The dominant method for creating TSLMs is to perform a simple vocabulary expan-
sion, appending speech tokens to a pre-trained text LLM. Our main hypothesis is that this
method’s e"ectiveness is limited by an "abstraction gap" that emerges between the two
modalities. Speech tokens, representing low-level acoustic and phonetic information, are
fundamentally di"erent from the high-level, semantic sub-word tokens that text LMs are
designed to process. Feeding these disparate representations directly into a uni!ed ar-
chitecture constrains the model’s ability to learn shared concepts and transfer knowledge
e"ectively across modalities.

This chapter confronts this challenge by proposing an architecture that explicitly ac-
counts for these di"erent levels of abstraction. Our research is guided by the following
questions:

• How can we e"ectively bridge the abstraction gap between low-level speech tokens
and the high-level representations processed by a text LM?

• Can dedicated adapter modules, which compose speech representations before they
enter the main text LM backbone, improve cross-modal alignment and knowledge
transfer?
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• Since di"erent layers of an LM capture features at varying levels of abstraction, can
a dynamic mechanism that pools information from multiple layers on-the-%y lead to
more e"ective speech generation?

• Can an architecture designed around these principles outperform the standard vo-
cabulary expansion approach, even with signi!cantly less training data and compu-
tational resources?

This chapter is based on the publication (Cuervo et al., 2025) [71], a collaborative work
with Santiago Cuervo, Adel Moumen, and Ricard Marxer. My primary contributions to this
project included the implementation and execution of the experiments and active partici-
pation in developing the core research ideas. Our main contributions are:

• We design and implement a novel TSLM architecture, featuring modality-speci!c
input/output adapters and a dynamic layer pooling mechanism, to explicitly align
feature abstraction levels between speech and text.

• We introduce and release SmolTolk on HuggingFace 1, a suite of TSLMs in three sizes
(150M, 400M, and 2B parameters) that achieve state-of-the-art performance on speech
language modeling benchmarks.

• We promote reproducibility and reduce the computational barrier for future research
by releasing our processed evaluation and interleaved training data in their !nal dis-
cretized form.

• We demonstrate that our approach is signi!cantly more compute-e#cient, outper-
forming previous models that are up to 4.5↓ larger and trained on over 60↓ more
data.

• Through extensive representation analysis, we provide strong evidence that our ar-
chitecture improves cross-modal transfer by increasing feature compositionality and
the overlap between text and speech representation subspaces.

• We show that our dynamic pooling mechanism learns to perform unsupervised word
segmentation as an emergent capability, validating our hypothesis about its function.

7.1 Text-Speech Language Models

Text-Speech Language Models (TSLMs) model the joint probability of text and speech token
sequences as

P (w = w1, . . . , wn) =
n∏

i=1

P (wi|w1, . . . , wi→1), (7.1)

where wi → Vt ↑Vs, with Vt and Vs denoting text and speech vocabularies. TSLMs are typ-
ically decoder-only transformers [275] optimized to minimize the Negative Log Likelihood:

1https://huggingface.co/ParoleLM
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LLM = ↗
n∑

i=1

P (wi|w1, . . . , wi→1). (7.2)

Tokens are mapped to embeddings via a linear function E → R(|Vt|+|Vs|)↑d, where d
is the embedding dimension. The sequence E(w1), . . . , E(wn) is processed by a stack of
decoder-only transformer layers, producing contextual representations (c1, . . . , cn), where
ci → Rd and each ci depends on c≃i. A linear projection U → Rd↑(|Vt|+|Vs|) maps these to
logits de!ning P (wi+1|ci).

Text tokens are typically obtained via sub-word tokenization [249], while speech tokens
are derived through quantization of self-supervised representations. Linguistic tokens2 are
obtained from MLM models like HuBERT [127] and capture phonetic content. Acoustic
tokens, extracted from autoencoder models, preserve speech signal details, including par-
alinguistic and acoustic variability [308].

Training. TSLMs are often trained via vocabulary expansion and speech "ne-tuning of
text LMs. Vocabulary expansion extends the embedding function and output projections
over Vt to include Vs, while the rest of the LM remains unchanged. Fine-tuning methods
vary in data mixture: [245] train on mixed speech-text tasks (TTS, ASR, speech-to-speech
translation), while [55] use word-level alignments to switch modalities within a sequence.
This interleaved text-speech strategy was shown to be crucial for cross-modal transfer,
later validated and scaled up by [216] and [309], achieving state-of-the-art speech LM per-
formance.

2Often referred to in the literature as "semantic tokens", though we argue this is a misnomer as they pri-
marily encode phonetic information [53].
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Figure 7.1: General diagram of our proposed architecture. Input tokens are processed
through modality-speci!c embedding tables. Speech representations (blue) pass through
speech-speci!c layers, bridging the gap between speech and text inputs, before merging
with text embeddings (green) in the text LM backbone. A weighted average of the back-
bone’s representations, computed using !xed and dynamic learned weights yields a repre-
sentations better suited for speech prediction, which is processed through output speech-
speci!c layers to predict the next speech tokens. In parallel, text tokens are predicted from
the !nal text LM representation.

7.2 Proposed Method

Our method is illustrated in Figure 7.1. Below, we describe our model’s architecture and its
training process.

7.2.1 Model

We apply the embedding functionE to the input sequence composed of text and speech to-
kensw, yielding a sequence of text and speech embeddings (E(w1), . . . , E(wn)) = (z1, . . . , zn).

Input speech adapter. Contiguous chunks of speech embeddings are processed through
an input adapter Ain : Rd ⇔ Rd, a stack of decoder transformer layers. The input adapter
is meant to compose the speech token embeddings into higher level representations, which
we believe should facilitate cross-modal transfer bymatching the abstraction level expected
by the text LM input. For a contiguous chunk of speech embeddings (zi, . . . , zi+k), the input
adapter outputs a sequence (z↔i, . . . , z

↔
i+k).

The output of the input adapter and the text embeddings are fed into the text LM trans-
former at their respective positions in the input. For instance, given the input sequence
(w1, w2, w3, w4, w5), where only the third element is a text token, the sequence passed to
the transformer layers after the adapter would be (z1, z2, E(w3), z4, z5). For each trans-
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former layer l, we obtain a sequence of contextual representations (c(l)1 , . . . , c(l)n ). As in
regular text LMs and TSLMs, the text output logits are computed by applying U to the con-
textual representations c(L)i at the last layer L. The speech output logits are computed as
described next.

Dynamic layer pooling and speech input residual. We believe speech language
modeling requires the model to switch between two modes of operation depending on
whether aword is being generated or a newword is about to start. Within aword, themodel
should use low-level representations encoding the spoken word and the current speech to-
ken within that word, as these features fully determine the next speech token to be emitted.
When generating a new word, the model should instead rely on representations predictive
of upcomingwords, such as those in the latter layers of the text LM. To enable this behavior,
we use a learnable mechanism that attends to di"erent layers’ representations in an input-
dependent manner. A linear layer selector S : Rd ↓ RL maps a contextual representation
c
↔
i to a vector of weights ωi = (φ(1)

i , . . . ,φ(L)
i ). These weights are softmax-normalized and

used to compute an input-dependent weighted average yielding a contextual multi-level
representation c̄i:

ωi = Softmax(S(c↔i))

c̄i =
L∑

l=1

φ
(l)
i c

(l)
i

(7.3)

A key question is which representation to use as the layer selector’s input c↔i. We found
that last layer’s representations c(L)i were not well suited as they often resulted in the se-
lector collapsing to select a single layer. Rather than searching for the best layer—which
would likely vary across di"erent architectures—we use a weighted average of the contex-
tual representations with learned input-independent weights:

c
↔
i =

L∑

l=1

↼(l)
c
(l)
i (7.4)

where φ = (↼(1), . . . ,↼(L)), ↼(l) → R are learned weights.

To provide information about the current speech token, we add a residual connection
from the speech input embeddings to the multi-level contextual representation:

c̄
↔
i = c̄i + zi (7.5)

c̄
↔
i contains both the information selected by layer pooling from the text LM layers and

the current speech token.

Output speech adapter. The output adapterAout : Rd ⇔ Rd, a stack of decoder trans-
former layers, takes c̄↔i as input and re!nes it into a representation predictive of upcoming
speech tokens, upon which the speech output logits are computed by applying U .
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7.2.2 Training

We train our model to optimize the negative log-likelihood de!ned in the Equation 7.2 on
sequences from a data mixture similar to that proposed by [55], including unimodal speech
and text samples, as well as interleaved text-speech samples. Unlike previous works, we do
not include ASR or TTS samples.

Two stage training. Training follows a two-stage process. In the !rst stage, the text
LM backbone is frozen, and only the newly added modules are trained on interleaved text-
speech modeling for approximately 3% of the total training iterations. This stage is intro-
duced to mitigate text capability forgetting, as suggested by preliminary experiments. In
the second stage, the full model is trained on the complete data mixture for the remaining
iterations.

Preventing layer selector collapse. In larger models, we observed that the layer
selector S sometimes collapses early in training, attending to a single layer. To mitigate
this, we add an entropy maximization term to the loss to encourage diversity in its output:

L = LLM + ↽
1

n

n∑

i=1

L∑

l=1

φ
(l)
i ln (φ(l)

i ) (7.6)

where ↽ is a hyperparameter that balances the LM objective and the entropy regular-
ization term.

7.3 Experimental Setup

7.3.1 Models and Training

We use SmolLM models [28] as text LM backbones, available in three sizes: 135 million,
360 million, and 1.7 billion parameters. We refer to the models resulting from applying our
method to the SmolLM backbones as S),.T,.*-148M, S),.T,.*-396M and S),.T,.*-
1.9B. We selected SmolLM due to its strong performance relative to other models of com-
parable size, achieving state-of-the-art results under the 2B parameter budget, as well as its
availability in multiple sizes, which aligns with our goal of evaluatingmodels across a range
of capacities. Following [216], and to improve the modeling of long-range dependencies,
we increase the RoPE base frequency from 10,000 to 100,000.

The input and output adapters consist of transformer layers matching the text backbone
architecture. In initial experiments, we observed that using more than two adapter layers
led to only marginal or no improvements; thus, we use two layers for all our models. This
aligns with !ndings from [271] on adapting speech representations to frozen text LMs.
Across models, adding the adapters introduces a parameter overhead of approximately 10%.

For speech tokenization, we follow [116], using the same tokenizer, which quantizes
HuBERT representations extracted at 25 Hz into a 500-token vocabulary. As is common in
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speech LM training on linguistic tokens, we collapse adjacent token repetitions.

All LMs are optimized using AdamW [195] with aweight decay of 0.1. We use a constant
learning rate of 3e→4 for the 135-million and 360-million models, as well as the 1.7-billion
baseline, and 1e→4 for S),.T,.*-1.9B. For S),.T,.*-396M and S),.T,.*-1.9B, we set
↽ = 0.01 in Equation 7.6.

We use a batch size of 1 million tokens with the full 2048-token context. Unless stated
otherwise, each batch contains equal proportions of speech, text, and interleaved text-
speech. All models are trained for 16 billion tokens, except the 1.7-billion model, which
is trained for up to 32 billion.

Model Num. Layers Num. Heads Num. KV Heads Emb. Dim. Hidden Dim.

SmolLM-135M 30 9 3 576 1536
SmolLM-360M 32 15 5 960 2560
SmolLM-1.7B 24 32 32 2048 8192

Table 7.1: Backbones architectural hyperparameters.

Table 7.1 describes the SmolLM [28] backbones architectural hyperparameters. All
S),.T,.* models use two layer input and output adapters with the same architecture as
the backbone layers. Table 7.2 describes the resulting models after vocabulary expansion.

Model Backbone Num. Layers Text params Speech Params

Baseline-135M SmolLM-135M 30 135M 0.29M
Baseline-360M SmolLM-360M 32 360M 0.48M
Baseline-1.7B SmolLM-1.7B 24 1.7B 1M

S),.T,.*-150M SmolLM-135M 34 135M 15M
S),.T,.*-400M SmolLM-360M 36 360M 40M
S),.T,.*-2B SmolLM-1.7B 28 1.7B 270M

Table 7.2: Models description.

Asmentioned previously, we use a linear layer with bias as the dynamic layer selector S.
We experimented with simple non-linearMulti-Layer Perceptron (MLP) selectors; however,
these were prone to collapse and resulted in worse overall performance. That said, a more
carefully designed non-linear selector could potentially perform better. We also explored
alternative ways to de!ne the contextual representation c

↔
i (Equation 7.3) used as input

for the layer selector. Instead of a learned weighted average, we tried concatenating low-
dimensional linear projections from each layer’s representations, but this performed worse.

Regarding training, we tuned the learning rate for each model, including baselines, to
be as high as possible without causing instabilities or increasing text data validation loss,
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which we considered a sign of text capability forgetting. We also experimented with learn-
ing rate schedules for text/backbone parameters, but a constant rate performed better.

For our experiments, we used NVIDIA H100 GPU nodes, each featuring four NVIDIA
H100 80GB SXM5 GPUs, dual Intel Sapphire Rapids 48-core processors, 512GB of RAM,
and four NVIDIA ConnectX-7 400Gb/s In!niBand network adapters. S),.T,.*-2B used
a per-GPU batch size of 8 million tokens and was trained on 64 GPUs across 16 nodes,
taking approximately 10 hours to process 32 billion tokens. All models were trained using
bfloat16 mixed precision with FlashAttention-2 [75] and PyTorch compile.

7.3.2 Evaluation

Metrics. For downstream evaluation, we use standard zero-shot metrics from the speech
language modeling literature. We assess syntactic knowledge using the sBLIMP benchmark
[213], which measures the model’s accuracy in selecting a syntactically correct utterance
over an incorrect one based on estimated likelihood. Semantics and commonsense reason-
ing are evaluated using the sStoryCloze and Topic-sStoryCloze benchmarks [116], which
measure accuracy in selecting the correct continuation of a given context based on pre-
dicted likelihood. To measure cross-modal transfer, following [216] and [309], we evaluate
sStoryCloze and Topic-sStoryCloze in four settings: speech context to speech continuation
(S), text context to speech continuation (T⇔S), speech context to text continuation (S⇔T),
and text context to text continuation (T).

We also report text performance on MMLU [120] before (pre) and after (post) speech
training to assess whether !ne-tuning causes forgetting of text capabilities, as seen in other
TSLMs [216, 89]. We evaluate MMLU following the guidelines for the SmolLM models:
https://huggingface.co/HuggingFaceFW/ablation-model-fineweb-edu#evaluation.

Baselines. We compare S),.T,.* to models trained with the same text LM backbones
and data but using regular vocabulary expansion, referring to these as baselines. We also
compare against state-of-the-art TSLMs: S42$2# LM [216], Moshi [89], and the 1.5-billion
and 9-billion models from Zeng et al. [309]. Unlike the others, Moshi employs a multi-
codebook architecture and relies heavily on text-guided speech generation.
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7.3.3 Data

Modality Dataset
Tokens

Sampling ratio
Text Speech

Text

FineWeb-Edu [28] 4B — 0.7
Cosmopedia-v2 [28] 4B — 0.15
Python-Edu [28] 2B — 0.08
FineMath [191] 2B — 0.06

Speech

LibriSpeech [224] — 67M (960 hours) —
LibriLight [145] — 3.7B (53k hours) —
SWC [23] — 32M (1k hours) —
Tedlium [121] — 0.1B (1.6k hours) —
People [98] — 0.5B (7k hours) —
Vox Populi [281] — 1.6B (24k hours) —
sTinyStories [70] — 4.8B (72k hours) —

Interleaved
text-speech

LibriHeavy [147] 313M 3.1B (50k hours) 0.37
sTinyStories [70] 800M 4.8B (72k hours) 0.53
SWC [23] 3.6M 26M (800 hours) 0.1

Table 7.3: Datasets statistics. Speech datasets were sampled according to their size.

Speech datasets. We use a collection of publicly available English speech datasets for
training: LibriSpeech [224], LibriLight [145], SWC [23], Tedlium [121], People’s Speech
[98], Vox Populi [281], and sTinyStories [70]. These datasets contain a total of 10.89 billion
speech tokens.

Text datasets. We use a 12-billion-token subset of the SmolLM corpus [28]. Unlike
[216], we include math and code data, aiming to better preserve text capabilities. Our data
distribution matches that used for pre-training SmolLM models, as reported in https://

github.com/huggingface/smollm/blob/main/pre-training/.

Text-Speech datasets. We use the forced aligner from [233] to obtain word align-
ments for the LibriHeavy [147], sTinyStories, and SWC datasets. Interleaved samples are
generated on the %y during batch sampling by randomly switching modalities within the
input sequence. Following [216], we randomly select word spans so that each text sequence
contains 10–30 words and each speech sequence 5–15 words, balancing the proportion of
speech and text tokens in each sample.
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7.4 Experiments and Results

Table 7.4 presents the benchmark results. For brevity, we report only the results for the
1.7-billion baseline. Smaller baselines models underperformed relative to the larger one.

Model Params. Tokens
BLIMP tStoryCloze sStoryCloze MMLU

T S T S T⇔S S⇔T T S T⇔S S⇔T T (post/pre)

Textless Speech LMs

GSLM [173] 100M — Ø 54.2 Ø 66.6 Ø Ø Ø 53.3 Ø Ø Ø
AudioLM [34] 150M — Ø 64.7 Ø — Ø Ø Ø — Ø Ø Ø
TWIST [116] cold-init 1.3B 1.3B 10.8B Ø 56.5 Ø — Ø Ø Ø — Ø Ø Ø
TWIST [116] 1.3B 1.3B 10.8B Ø 57.0 Ø 70.6 Ø Ø Ø 52.4 Ø Ø Ø
TWIST [116] 7B 7B 36B Ø 59.0 Ø 74.1 Ø Ø Ø 55.3 Ø Ø Ø
TWIST [116] 13B 13B 36B Ø 59.2 Ø 76.4 Ø Ø Ø 55.4 Ø Ø Ø
Cuervo et al. [70] best 823M 82B Ø 61.3 Ø 78.0 Ø Ø Ø 56.7 Ø Ø Ø
SyllableLM [13] 300M 1.2B Ø 63.7 Ø 75.4 Ø Ø Ø — Ø Ø Ø
AlignSLM [185] 7B 7B — Ø 62.3 Ø 86.8 Ø Ø Ø 61.1 Ø Ø Ø
Slam (scaled) [197] 358M 16.7B Ø 61.1 Ø 84.2 Ø Ø Ø 61.3 Ø Ø Ø

Previous Text-Speech LMs

S42$2# LM [216] 7B ↖175B 73.3 59.7 95.8 90.5 78.6 94.3 74.0 66.3 64.7 71.7 37.7 / 39.0
LAST [271] ↖390M — — 56.8 — — — — — — — — —
Moshi [89] 7.7B 2.1T — 58.8 — 83.0 — — — 60.8 — — 49.8 / 54.3
Zeng et al. [309] 1.5B 1.5B 1T — — — 77.5 81.4 90.1 — 55.4 58.6 64.0 —
Zeng et al. [309] 9B 9B 1T — — — 83.0 85.0 93.6 — 62.4 63.2 76.3 —

Ours

Baseline 135M 135M 16B 79.0 52.0 87.0 73.2 53.3 52.7 63.9 54.0 53.8 53.7 30.3 / 30.2
Baseline 360M 360M 16B 79.8 52.4 90.4 74.1 53.1 53.8 68.4 54.0 52.1 53.1 34.5 / 34.0
Baseline 1.7B 1.7B 16B 79.9 56.3 92.8 77.5 72.6 67.3 72.5 53.0 57.0 57.6 40.0 / 40.0

Baseline 1.7B 1.7B 32B 79.8 58.1 92.9 81.3 76.3 74.0 73.5 55.1 59.0 59.2 39.2 / 40.0

S),.T,.*-150M 150M 16B 79.4 58.0 88.4 82.0 75.2 81.0 64.1 55.0 58.8 58.4 30.0 / 30.2
S),.T,.*-400M 400M 16B 79.8 59.4 91.3 84.6 80.9 85.0 68.4 57.5 62.3 62.1 34.0 / 34.2
S),.T,.*-2B 2B 16B 80.2 61.4 92.6 87.5 83.9 86.0 73.2 60.0 64.0 63.4 40.0 / 40.0

S),.T,.*-2B 2B 32B 80.2 61.9 92.6 87.6 84.3 87.1 73.6 61.4 64.2 64.2 40.1 / 40.0

Table 7.4: Downstream evaluations. The best model in each task is shown in bold and
underlined. The second best is shown in bold. For S42$2# LM we report the results for the
open-weights version. For other models we present the results reported by the authors.

Our method signi!cantly outperforms the baseline using regular vocabulary expansion
across all tasks. One might attribute this di"erence to the model size increase induced by
the added modules. To isolate this factor, Figure 7.2 shows the scaling behavior of the neg-
ative log-likelihood (NLL) on the LibriSpeech dev set (top) and the tStoryCloze benchmark
(bottom) as a function of compute (in FLOPs), which accounts for model size di"erences
and enables a fairer comparison. The !gure demonstrates that, across the entire compute
range, our models consistently outperform their respective baselines. Notably, S),.T,.*-
148M outperforms the 360-million baseline despite being less than half its size, suggesting
that factors beyond model size drive the performance di"erence.
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Figure 7.2: Scaling of the LibriSpeech dev set negative log-likelihood and tStoryCloze ac-
curacy with respect to training compute (in FLOPs) for our models and baselines. For the
Baseline 1.7-billion model, only the !nal checkpoint is shown, as the earlier ones were un-
fortunately lost.

Compared to state-of-the-art TSLMs, S),.T,.*-1.9B outperforms Zeng et al. [309]-
1.5B—the only other model under 2 billion parameters—despite using over 20↓ less training
compute. Notably, even S),.T,.*-396M outperforms Zeng et al. [309]-1.5B on tStoryCloze
S and sStoryCloze S and T⇔S. S),.T,.*-1.9B performs comparably to largermodels across
most tasks, except for S⇔T, where the gap is larger. It also achieves the best performance
on the sBLIMP syntactic task.

Our setup, including the baselines, exhibits less deterioration in text MMLU perfor-
mance relative to other TSLMs. We attribute this to our decision to use a text !ne-tuning
distribution that matches the one used during pre-training.

7.4.1 Ablation Study

Overall, the results indicate that our design choices enhance multimodal performance. To
better understand each component’s contribution, we conduct an ablation study in Table 7.5
on the 360-million parameter model by systematically removing elements and evaluating
their impact.
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Model
tStoryCloze sStoryCloze

T S T⇔S S⇔T T S T⇔S S⇔T

S!"#T"#$-396M 91.3 84.6 80.9 85.0 68.8 57.8 62.3 62.1

–Dyn. pooling 90.8 84.0 80.1 83.9 68.2 57.5 60.9 61.6
–Layer pooling 91.4 82.6 77.8 82.0 68.4 57.5 60.1 60.1
–In Adapter 90.1 82.3 70.1 75.6 68.1 55.6 56.3 57.4
–Out Adapter 90.7 80.7 76.1 84.1 68.1 54.9 60.0 60.0
–Adapters 89.9 77.6 58.8 63.7 68.1 52.5 51.5 54.8
–Residual 91.0 83.1 80.7 82.3 68.8 56.6 61.4 60.8

Baseline 360M 90.3 74.1 53.3 53.8 68.5 54.5 52.1 53.9

Table 7.5: Ablation Study. “–” denotes removal. "–Dyn. pooling" uses !xed learned weights
instead of dynamic ones from the layer selector, while "–Layer pooling" entirely disables
multi-layer pooling, relying only on the last text LM layer.

We observe that removing any component degrades performance across most metrics,
con!rming the importance of our design choices. Eliminating all adapters results in the
steepest drop—especially in cross-modal transfer, highlighting their role in bridging repre-
sentations. The input adapter seems to be of greater importance for cross-modal transfer
than the output adapter, underscoring the importance of merging modalities early in pro-
cessing. Layer pooling also provide consistent gains, demonstrating the bene!ts of allowing
the model to use multiple abstraction levels for speech language modeling. Removing the
residual connection also causes a consistent decrease in performance.

7.4.2 Representation Analysis

To gain deeper insight into the impact of our design choices, we analyze the learned repre-
sentations across di"erent model variants. Speci!cally, we investigate how the introduced
architectural components in%uence feature abstraction and alignment between text and
speech modalities. We focus on two key aspects: (1) the model’s capacity to abstract high-
level features and (2) the shared structure of text and speech representations.

To assess (1), we follow [273] and use the intrinsic dimensionality of representations as a
proxy for compositionality. To evaluate (2), we compute the principal components of speech
and text representations on paired data and measure howmuch variance is explained when
projecting one modality’s representations onto the other’s principal components. The in-
tuition is that knowledge transfer can be quanti!ed by how much the model utilizes the
same subspaces to represent equivalent data across modalities. We apply these analyses to
the 360-million parameter models, including the architectural ablations from Table 7.5. The
results are shown in Figures 7.3 and 7.4.

Intrinsic dimensionality and subspace overlap. The intrinsic dimensionality and
subspace overlap are estimated using !ve batches of 10k representations each, totaling 50k
samples. We compute each metric per batch and report average and deviations. To obtain
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each representation, we extract random subsequences of 20 words and use the !nal repre-
sentation in the sequence as the sequence representation. For the intrinsic dimensionality
text samples are randomly drawn from FineWeb-Edu, while speech samples are taken from
the full set of speech datasets. For the subspace overlap we use paired samples from the
sTinyStories dataset.

Since transformer architectures exhibit large activation outliers, we truncate feature
elements (i.e., individual activations) that exceed the 95th percentile across the entire 50k
sample set.

To estimate the intrinsic dimensionality we use the Generalized Ratios Intrinsic Dimen-
sion Estimator (GRIDE) [77] implementation in dadapy [100] and follow the procedure de-
scribed by [51].

Word segmentation. We apply a peak detector to the sequences of last-layer dynamic
weights, ω(L), using SciPy’s find_peaks tool. Performance is evaluated as a binary predic-
tion task, where a peak indicates the prediction of a boundary at a given position. We allow
a tolerance of one token to account for noise in the boundary annotations. As in standard
binary prediction tasks, we use recall, precision, and the F1-score as performance metrics.
Additionally, we use the R-value [241], which penalizes trivial over-segmentation solutions.
To optimize performance, we tune the prominence parameter of the peak detector over a
grid (0, 0.15] with steps of 0.01 so as to maximize the R-value, following [156].

From Figure 7.3, we observe that di"erent components of our architecture signi!cantly
impact the model’s ability to compose higher-abstraction features. All our models, except
the one without layer pooling, achieve a higher intrinsic dimension, suggesting that layer
pooling is essential for enabling compositionality. The e"ect of the adapters is also evident:
the absence of input adapters leads to lower compositionality in earlier layers, while the
absence of output adapters results in an overall reduction in intrinsic dimension.

151



C3%4#/$ 7

Figure 7.3: Intrinsic dimensionality of representations across layers for the the 360-million
parameter model.

Figure 7.4 supports similar conclusions, showing that our architecture enables the highest
degree of subspace overlap between modalities. As before, adapters and layer pooling are
crucial for cross-modal transfer. The absence of input adapters leads to low subspace over-
lap in earlier layers, while the absence of output adapters reduces overlap in later layers.
We hypothesize that this occurs because the model repurposes later layers to produce rep-
resentations predictive of upcoming speech tokens. In this study the speech input residual
has minimal e"ect.

Figure 7.4: Variance explained by projecting one modality’s representations onto the top
50 principal components of the other across model’s layers for the 360-million parameters
models.

152



T/;#5S4//&3 L%+1(%1/M,0/." -2#3 I)4$,8/0 C$,""5M,0%. T$%+"6/$ !9 A.21+2+1
A!"#$%&#2,+ L/8/."

What is dynamic layer pooling learning?. Figure 7.5 displays the weights assigned
to di"erent layers by the layer selector S (top) and the weights of the last layer—specialized
in next-text token prediction—(bottom) across a given speech input, alongside the corre-
sponding word boundaries. The layer weights follow a pattern consistent with our hy-
pothesis for optimal speech language modeling, namely switching between attending to
low-level representations and those predictive of next words.

Figure 7.5: Selector S layer weights across a speech input sequence.

Notably, spikes in last-layer weights often align with word boundaries, suggesting the
model leverages next-word predictive representations at these points, as hypothesized. To
validate this, we computed a speech word segmentation score using a peak detector on the
last layer’s attention weights as a word boundary predictor.

Table 7.6 compares our approachwith SCPC [30], a state-of-the-art unsupervised speech
segmentation model, on the TIMIT test split [99]. Our method signi!cantly outperforms
SCPC, providing strong evidence for our hypothesis on dynamic pooling behavior.

Model Precision Recall F-1 R-val

SCPC [30] 30.3 20.3 24.5 40.5
S),.T,.*-396M 50.5 46.7 48.5 56.9

Table 7.6: Word segmentation scores.
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It is important to note that we do not claim our method for speech word segmenta-
tion is unsupervised, as the model is trained on interleaved data, which implicitly provides
information about word boundaries.

7.5 Conclusions

We introduced a more e"ective approach to text-speech language modeling by enhanc-
ing vocabulary expansion with speech-speci!c adapters and dynamic layer pooling. These
components improve abstraction alignment across model layers, enabling more e"ective
cross-modal transfer. Our evaluations and representation analyses show that this method
better integrates speech into text LMs.

Our S),.T,.* models achieve state-of-the-art performance using far fewer computa-
tional resources and smaller, less diverse datasets than previous works. Notably, S),.T,.*-
1.9B rivals or surpasses much larger TSLMs. These results underscore the importance of
hierarchical feature compositionality in multimodal learning. Beyond speech, our !ndings
suggest that aligning feature abstraction levels may be key to adapting text LMs for other
modalities.
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The research trajectory of this thesis has progressively narrowed, moving from broad ar-
chitectural challenges to the foundational components of multimodal language modeling.
Having established the need for specialized text models (Chapter 1 and 5) and then pro-
posed a new architecture to bridge the "abstraction gap" between speech and text (Chapter
7), this !nal research chapter critically examines the building blocks of that bridge, the dis-
crete units used to represent the speech signal itself. The previous work operated on the
assumption that existing speech quantization methods were su#cient, while this chapter
challenges that premise by investigating the properties and performance trade-o"s inherent
in these fundamental representations.

While current methods for quantizing continuous speech into discrete tokens have en-
abled signi!cant progress, their implicit biases are not well understood. This compres-
sion may inadvertently discard crucial linguistic or paralinguistic information that are cru-
cial for Spoken Language Understanding tasks. A key uncertainty concerns the emergent,
phoneme oriented structure of these units and raise question about if this property is op-
timal for downstream language modeling or if it does create a bottleneck that limits the
learning of the representation with richer acoustic details? The choice of the speech en-
coder, the token vocabulary size and the datasets used for creating the clustering models,
all represent critical, yet largely unexamined, variables that could fundamentally impact
model performance.

This chapter provides a comprehensive empirical analysis to address these uncertain-
ties, guided by the following key questions:

• How do di"erent foundational speech encoders (e.g., WavLM, HuBERT, Wav2Vec)
and discretization vocabulary sizes in%uence the performance of a downstream speech
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language model?

• What is the relationship between language model scale and its ability to e"ectively
learn from di"erent discrete speech representations?

• How robust are discrete units to acoustic perturbations, and how does the domain of
the data used for generating these units impact this robustness?

• What is the intrinsic linguistic nature of these units? To what extent do they align
with phonemes? And what are the implications of this alignment?

To answer these questions, this study makes the following contributions:

• We conduct a large-scale, systematic analysis of four speech encoders and six vo-
cabulary sizes across three model scales to measure their impact on speech language
modeling performance.

• We identify optimal con!gurations for discrete speech representation, demonstrating
that WavLM-based units with smaller vocabularies (k ↙ 1, 000) consistently provide
the best performance.

• We demonstrate that the acoustic robustness of discrete units is critically linked to
the domain of the data used for their creation, providing new insights into building
more resilient models.

• Weprovide quantitative evidence of the strong, emergent alignment between discrete
units and phonemes, con!rming the linguistic nature of these representations.

8.1 Spoken Language Modeling

This section details our methodology for training and evaluating speech-extended language
models, with a strong focus on speech representations. The studied SLM architecture fol-
lows the approach introduced by SpeechGPT [311] and relies on discrete units and vocab-
ulary expansion.

8.1.1 Model Architecture

We experiment with three variants of SmolLM [28], featuring model sizes of 135M, 360M,
and 1.7B parameters. The core architecture remains identical to the original text-based
models, with the only modi!cation being the expansion of the tokenizer’s vocabulary to
incorporate the newer tokens corresponding to the discrete units (Section 8.1.2).

The models are trained using an autoregressive language modeling objective with a
standard negative log-likelihood (NLL) loss. Given a sequence of tokens x = (x1, ..., xT ),
the loss is computed as:
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L = ↗
T∑

t=1

log p(xt|x<t) (8.1)

where p(xt|x<t) represents the probability of token xt conditioned on the preceding
tokens in the sequence.

Rather than aiming for full acoustic reconstruction, our approach prioritizes semantic
modeling of speech, focusing on the initial adaptation stage of pre-trained textual language
models to spoken input. At this stage, the model exclusively learns to process speech units
while maintaining its original text-processing capabilities.

Training is conducted on 16 Nvidia H100 80GB GPUs with a batch size 16 and gradient
accumulation of 1. Using a context window of 2,048 tokens, we process 524,288 tokens per
step. The training runs for 300 steps, processing approximately 157 million tokens in total.
To optimize training e#ciency and resource utilization, we incorporate several technical
improvements such as LoRA adapters [129] (rank 64, alpha 16) for parameter-e#cient !ne-
tuning. BFloat16 precision and Flash Attention 2 are used to reduce memory overhead. It
uses AdamW [195] optimization with a learning rate of 3∝10→4 and applies a weight decay
coe#cient of 0.1. To ensure reproducible results, the random seed is set to 42.

8.1.2 Speech Encoding and Discretization

To transform the raw speech signal into a discrete representation suitable for language
model input, we employ a two-stage process involving an encoder and a discretizer. We
evaluate four widely used self-supervised speech encoders: WavLM [48], HuBERT [128],
XLS-R [14], and Wav2Vec 2 [17]. For all encoders, we extract features from the !nal hidden
layer, as prior work suggests that this layer provides a strong balance between acoustic and
linguistic information [302, 226]. No additional !ne-tuning of the encoders is performed
to maintain a fair comparison of their base capabilities. Each encoder extracts frame-level
representations at 50 Hz (20 ms frames), which are then discretized into k clusters that will
represent speech units using k-means, following standard practices in spoken language
modeling [311]. To examine the impact of vocabulary size on modeling performance, we
experiment with cluster counts of k = {125, 250, 500, 1000, 2500, 5000}.

The k-means clustering used for speech encoders is constructed either on 2,000 hours
of unlabeled speech from LibriHeavy [146], GigaSpeech [45], People’s Speech [96] or Com-
monVoice 19 [9]. To ensure an unbiased evaluation, no speech data used for clustering
overlaps with the dataset used for speech modeling.

8.1.3 Speech modeling dataset

To train the language models on speech input, we use LibriSpeech [223], a widely adopted
corpus containing 960 hours of read English speech. The dataset consists of three sub-
sets (100h, 360h, and 500h), combined into a 960h training set, o"ering a diverse range of

157



C3%4#/$ 8

speakers and recording conditions. Each speech segment is processed through our encod-
ing pipeline and converted into discrete speech units, which serve as input to the language
model.

8.1.4 Evaluation Methodology

The e"ectiveness of each speech unit con!guration ismeasured using negative log-likelihood
(NLL) on the LibriSpeech test-clean set. Lower NLL values indicate better modeling of the
speech units by the language model, re%ecting more stable and predictable representations
of the speech signal. Additionally, prior research [198, 70] suggests a strong correlation
between NLL and performance on semantic speech understanding tasks, such as sWUGGY
[214]. To ensure we can properly compare the NLL, we maintain consistent frame rates
across all models. In this case, we use 50 Hz encoders and a shared tokenizer for all large
language models.

8.2 Experiments and Results

In this section, we analyze discrete speech units across four dimensions: encoder and dis-
cretization methods, language model scaling, acoustic robustness, and linguistic content.

8.2.1 Comparing Encoders and Discretization Granularity

Table 8.1 presents the NLL results for di"erent encoders with varying cluster sizes at train-
ing steps 100, 200, and 300. Results indicate a consistent initial degradation in performance
as the number of clusters increases. At Step 100, NLL values range from 4.2-4.7 (k = 125) to
7.8-8.1 (k = 5, 000) at Step 100. However, training progression signi!cantly improves per-
formance, particularly between Steps 100 and 200. Among the evaluated encoders, WavLM
achieves the best performance (NLL=2.05, k = 500) at Step 300, followed closely by smaller
cluster con!gurations (k = 125, k = 250) with NLL values, which stabilize around NLL ′
2.15. HuBERT follows a similar trend but consistently underperforms relative to WavLM.
XLS-R and Wav2Vec yield higher NLL scores, particularly at larger k (cluster sizes).
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Encoder Clusters Step 100 Step 200 Step 300

WavLM

k = 125 4.681 2.502 2.149
k = 250 5.356 2.785 2.158
k = 500 6.040 2.621 2.048
k = 1, 000 6.659 3.057 2.189
k = 2, 500 7.281 5.073 4.010
k = 5, 000 7.869 5.538 4.208

HuBERT

k = 125 4.705 2.596 2.240
k = 250 5.393 2.825 2.289
k = 500 6.087 2.909 2.348
k = 1, 000 6.711 3.717 2.822
k = 2, 500 7.430 4.940 3.827
k = 5, 000 8.052 5.759 4.289

XLS-R

k = 125 4.205 2.694 2.433
k = 250 4.902 3.436 2.916
k = 500 5.592 3.608 3.034
k = 1, 000 6.276 3.964 3.282
k = 2, 500 7.201 5.241 4.177
k = 5, 000 7.918 6.034 4.959

Wav2Vec

k = 125 4.600 3.069 2.534
k = 250 5.153 3.559 2.880
k = 500 5.886 4.042 3.251
k = 1, 000 6.656 4.712 3.614
k = 2, 500 7.647 5.744 4.434
k = 5, 000 8.179 6.397 5.057

Table 8.1: Negative log likelihood (↘) comparison of di"erent encoders with varying cluster
sizes, trained on 2,000 hours of unlabeled speech from LibriHeavy. Results are reported at
training steps 100, 200, and 300.

Notably, smaller cluster sizes (k ↙ 1, 000) consistently yield better performance, while
larger clusters (k ∞ 2, 500) lead to substantial degradation. The sharp increases in NLL sug-
gest that larger vocabularies introduce excessive speech unit granularity, potentially lead-
ing to noisier token distributions and increased token sparsity. Consequently, the model
struggles to learn stable speech representations, reinforcing the advantage of using more
compact cluster sets.

8.2.2 Impact of Model Scale on Discrete Unit Learning

Table 8.2 presents results for the SmolLM model across di"erent training con!gurations.
The larger SmolLM-1.7B model signi!cantly outperforms its smaller counterparts, achiev-
ing NLL scores of 1.82-1.95 compared to 2.04-2.24 for the 135M model. This improvement
highlights the strong in%uence of model capacity on speech unit modeling quality.
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SmolLM

Encoder Clusters 135M 360M 1.7B

WavLM

k = 125 2.149 2.088 1.887
k = 250 2.158 2.159 1.861
k = 500 2.048 2.210 1.829
k = 1, 000 2.189 2.386 1.937
k = 2, 500 4.010 2.674 OOM

k = 5, 000 4.208 2.925 OOM

HuBERT

k = 125 2.240 2.158 1.954
k = 250 2.289 2.278 2.049
k = 500 2.348 2.499 2.137
k = 1, 000 2.822 2.698 2.282
k = 2, 500 3.827 3.054 OOM

k = 5, 000 4.289 3.377 OOM

Table 8.2: Negative log-likelihood (↘) comparison of di"erent encoders with varying cluster
sizes. Models are trained on 2,000 hours of unlabeled speech from LibriHeavy over 300 steps
(approximately 150M tokens).

WavLM consistently outperformsHuBERT across all model scales, especially for smaller
cluster sizes (k ↙ 500). The performance gap between encoders remains relatively stable as
model size increases. Largermodels handle higher cluster counts better, with the 1.7Bmodel
maintaining strong performance (NLL 1.83-2.28) within its operational range (k ↙ 1, 000)
but encountering memory limitations at larger cluster sizes.

These !ndings indicate that the best performance is achieved using larger models with
fewer clusters, balancing accuracy and computational e#ciency. Larger models appear
more resilient to noisy and sparse token distributions, where smaller models struggle.

8.2.3 Discrete Unit Stability Under Audio Perturbations

Table 8.3 presents results on discrete unit robustness using a SmolLM-135M model with
WavLM encoder (k = 500) where k-means clustering was built from di"erent datasets.
Evaluations included high-intensity Gaussian noise (Noise-H, SNR 15-20dB), low-intensity
Gaussian noise (Noise-L, SNR 5-10dB), and random pitch shifts (±5% range) on the Lib-
riSpeech test-clean set.
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Source k-means Clean Noise-H Noise-L Pitch Shi!

LibriHeavy 2.621 2.692 2.678 2.704

GigaSpeech 3.073 3.090 3.089 3.111

People’s Speech 2.739 2.853 2.860 2.866

CommonVoice 2.852 3.090 2.853 3.111

Table 8.3: Negative log-likelihood (↘) on LibriSpeech test-clean for SmolLM-135M using
WavLM (k = 500), trained on LibriSpeech for ↔1 epoch.

Models trained on LibriHeavy exhibit superior performance and stability, with only a
slight NLL increase from 2.621 (clean) to 2.704 (perturbed). Other datasets yield higher base-
line NLL and greater perturbation sensitivity, with GigaSpeech and CommonVoice showing
NLL increases up to 0.26 points. This suggests that domain alignment between speech unit
k-means construction data and target application is crucial for optimal performance and ro-
bustness, as shown on LibriHeavy. Interestingly, training on inherently noisy datasets like
GigaSpeech and CommonVoice does not improve robustness to perturbations but leads to
overall performance degradation. This challenges the assumption that exposure to noisy
conditions during training necessarily improves resilience. Finally, the People’s Speech
dataset stands out by maintaining both strong performance and stability under perturba-
tions. This could be attributed to its diverse audio quality levels and its similarity to the
target domain.

8.2.4 Clusters Attribution

To gain deeper insights into how di"erent encoders and vocabulary sizes in%uence the ef-
fectiveness of discrete units, we analyzed cluster utilization using a perplexity-basedmetric:

Hclusters = exp(↗
k∑

i=1

pi log pi) (8.2)

where pi represents the probability of each cluster. The resulting value Hclusters, ex-
pressed as a percentage (Hclusters

k
) ∝ 100), indicates cluster utilization e#ciency, with 100%

representing uniform usage.

Table 8.4 shows the percentage of cluster utilization across di"erent models and vo-
cabulary sizes. HuBERT and WavLM achieve superior cluster utilization (77-92% and 74-
91% respectively) while maintaining strong NLL scores, compared to XLS-R (52-68%) and
Wav2Vec (63-66%). At smaller cluster sizes (k = 250), all models demonstrate optimal uti-
lization, withHuBERT andWavLMexceeding 90% on clean test sets. A comparison between
test-clean and test-other reveals varying levels of robustness across models. HuBERT and
WavLM show minimal degradation (a 2-4% drop), while XLS-R and Wav2Vec exhibit larger
stability gaps (up to 15-18% drop) in challenging conditions. This pattern persists across all
cluster sizes.
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k = 250 k = 1000 k = 2500 k = 5000

Model C O C O C O C O

WavLM 90.9 87.3 83.8 80.3 81.8 78.5 76.5 73.9

HuBERT 91.9 89.9 84.5 83.2 83.3 81.1 79.7 77.6

XLS-R 82.5 68.0 71.4 57.7 70.3 52.1 72.4 56.0

Wav2Vec 76.4 66.3 76.8 64.0 80.8 65.6 78.2 63.1

Table 8.4: Cluster utilization percentage (%) across di"erent models and cluster sizes for
test-clean (C) and test-other (O) sets.

8.2.5 Discrete Unit Alignment with Phonemes

To better understand what discrete units encode and assess whether they capture phonetic
information, we analyze their alignment with phonemes using forced alignment from the
Montreal Forced Aligner (MFA) [202] on LibriSpeech test clean. For each discrete unit, we
compute its temporal overlap with the aligned phonemes, creating a probability distribu-
tion over phonemes for each unit. Figure 8.1 visualizes this alignment as a matrix where
rows represent phonemes and columns represent discrete units, with color intensity indi-
cating the probability of association. The clear diagonal pattern reveals that discrete units
learn to specialize in speci!c phonemes, suggesting the model has captured meaningful
phonetic structure. This specialization is particularly strong for distinctive phonemes like
vowels (/AH/, /IY/, /UW/), certain consonants (/S/, /F/, /M/), and silence, which show
dark regions of high probability along the diagonal for a few sets of units.

(a) Discrete units trained on GigaSpeech (b) Discrete units trained on People’s Speech

(c) Discrete units trained on CommonVoice (d) Discrete units trained on LibriHeavy

Figure 8.1: Phoneme confusion matrices showing the relationship between predicted dis-
crete units and ground truth phonemes. Each matrix represents discrete units k-means
built from a di"erent dataset. All of them based on WavLM (k = 125) and representing
LibriSpeech test-clean subset.
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Interestingly, we observe a natural grouping of acoustically similar phonemes. For in-
stance, related vowel sounds tend to share similar units, as do phonetically similar con-
sonants. This suggests the discretization process captures not just individual phonemes
but also underlying phonetic features. The sparse o"-diagonal elements indicate minimal
confusion between dissimilar phonemes, demonstrating the model’s ability to learn dis-
criminative representations.

The alignment quality remains consistent across di"erent k-means building sources
and shows a similar pattern across all the granularities (see Figure 8.2), but these were
not displayed due to space constraints. This analysis provides quantitative evidence that
self-supervised discrete units can e"ectively capture phoneme-level distinctions without
explicit phonetic supervision, supporting their use as representations for speech process-
ing tasks.

(a) Discrete units trained on People’s Speech Test Clean with 250 WavLM clusters.

(b) Discrete units trained on People’s Speech Test Other with 250 WavLM clusters.

Figure 8.2: Phoneme confusion matrices showing the relationship between predicted dis-
crete units and ground truth phonemes. Each matrix represents discrete units’ k-means
built from a di"erent dataset. All of them are based on WavLM (k = 250) and represent
LibriSpeech test-clean subset.

When we increase the number of clusters, such as in the Figure 8.2, similar phonetic
patterns remain clearly visible, with the diagonal structure preserved but becoming more
!ne-grained. The higher cluster count (250) allows for more specialized unit-to-phoneme
mappings while maintaining the overall phonetic organization. This suggests that even
at higher granularity, discrete units continue to capture meaningful phonetic distinctions,
with each phoneme being represented by a more speci!c set of units rather than becoming
fragmented across unrelated regions.
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8.3 Conclusion

This empirical study has systematically deconstructed the discrete unit representations that
form the foundation of modern speech language modeling. Our analysis provides sev-
eral key takeaways: we have shown that a combination of a powerful speech encoder like
WavLM and a moderately sized discrete vocabulary (k ↙ 1, 000) o"ers the most e"ective
and e#cient pathway for language model adaptation. Furthermore, we demonstrated that
model scale directly enhances the ability to learn from these representations and that the
acoustic robustness of the resulting system is critically dependent on the domain alignment
between the data used for unit clustering and the target application. Finally, our analysis
of the emergent properties of these units con!rms their strong alignment with phonemic
structures, grounding their e"ectiveness in linguistic reality. These !ndings o"er a clear set
of principles for optimizing the foundational layer of future speech and text-speech models.

This conclusion serves as a !tting endpoint to the narrative woven throughout this
thesis. Our research journey began with the broad challenge of adapting language models
to the specialized domain of healthcare, !rst in text (Chapters 1, 2, 3) and then pivoting to
the far more complex modality of speech (Chapters 6, 7). The research presented in this
thesis consistently underscores a central principle, the critical role of the underlying data
representations. We have repeatedly shown that signi!cant performance gains cannot be
attributed solely to scaling models, but by meticulously engineering how information is
encoded and presented to them. This principle was demonstrated in the domain-speci!c
corpora used to train DrBERT, the morpheme-aware tokenizers for French medical text,
the architectural alignment of abstraction levels in our Text-Speech Language Model and
as demonstrated in this !nal chapter with speech discrete units themselves.

Ultimately, this thesis argues that the path toward more capable, e#cient and robust
specialized language models, whether unimodal or multimodal, is paved with a deeper un-
derstanding of how to build underlying representations that capture and re%ect diversity
of the rich and aligned datasets used to be trained on. An immediate and promising step to
improve those TSLM on Spoken Language Understanding tasks would be to combine the
optimized discrete units with the TSLM architecture optimizations discussed in the Chap-
ter 7. The application of these powerful, new models to real-world clinical tasks, such as
diagnostic assistance, question answering from patient interviews and meeting summary,
remains the ultimate goal and a critical avenue for future research.
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To conclude, we summarize the main contributions presented in this thesis before drawing
future research directions.

9.1 Contributions of the Thesis

9.1.1 French healthcare open data collection

Prior to this work, French medical language model development was severely constrained
by an almost complete absence of unstructured medical corpora in a quantity allowing
training for language models. We address this critical gap by introducing two comple-
mentary datasets: NACHOS, the largest open French medical corpus (7.4GB, 1.1B words)
curated from 24 sources, and NBDW, a private corpus (4GB, 655M words) of 1.7 million
de-identi!ed hospital reports from the Nantes Hospital Data Warehouse. Through con-
trolled experiments with equivalent-sized subsets, we demonstrate that strategic data cu-
ration outperforms simple data accumulation, enabling state-of-the-art performance with
signi!cantly reduced training data and compute requirements. Our analysis of mixed-
source training (NBDWmixed) reveals synergistic e"ects when combining public and pri-
vate medical data, while models pre-trained on our corpora achieve superior !ne-tuning
performance with fewer samples. This work establishes the !rst comprehensive frame-
work for French medical language models, optimizing the balance between data source,
quality, and computational e#ciency.

9.1.2 Domain Adaptation of Language Models

Our research demonstrates that MLM approaches achieve remarkable performance even
when trained from scratch with limited domain-speci!c data (less than 10GB). These spe-
cializedmodels often outperform those trained on hundreds of gigabytes of general-purpose
data, highlighting the signi!cant value of domain adaptation strategies.
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However, the landscape is evolving rapidly [255, 10, 44, 103]. As foundation models
are trained on increasingly vast and diverse datasets, their generalization capabilities have
improved dramatically. This trend, denoted as "The Bitter Lesson" by Rich Sutton [257],
suggests that bigger models, trained on more data and compute, will always be better, di-
minishing returns for domain adaptation e"orts. The cost-bene!t ratio of adaptation is be-
coming less favorable; adaptation costs continue to rise while performance gains become
more marginal.

Some methods, like model merging, show promise for e#cient adaptation, potentially
o"ering performance improvements without complete retraining. Nevertheless, even these
approaches face limitations as models scale up and inherently capture more domain knowl-
edge during pretraining.

9.1.3 Tokenization: ALinguisticDisparitywith Socio-EconomicCon-

sequences

Our comprehensive analysis (Figure 9.1) across numerous European languages reveals the
critical importance of tokenization in language models. Beyond technical considerations,
tokenization introduces signi!cant biases that have far-reaching implications.

Figure 9.1: Tokens-per-word ratios for 39 tokenizers across 23 European languages, calcu-
lated on health-related parallel data from ELRC [194]. This heatmap visualizes tokenization
e#ciency, with greener cells indicating lower fertility values and thus more e#cient token
usage.
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The heatmap reveals striking disparities in tokenization e#ciency. Bulgarian (BG) and
Greek (EL) consistently show the highest fertility rates (5.6-7.3) across most tokenizers,
requiring signi!cantly more tokens per word than West Germanic languages. English (EN)
and French (FR) demonstrate remarkably e#cient tokenization (1.4-2.4), particularly with
models like GPT-2, BLOOM-7B, and DeepSeek. Finnish (FI) and Hungarian (HU) exhibit
moderate to high fertility (3.8-5.5), re%ecting their agglutinative morphology. Notably, the
BERT base uncased tokenizer struggles with non-Latin scripts, while more recent models
like BLOOM and GPT show improved but still uneven multilingual capabilities.

The contrast between automatic and manual tokenization approaches helps explain
these observed disparities. While automatic tokenizers like BPE optimize for statistical fre-
quency, producing arbitrary subword splits, linguistically-grounded manual tokenization
preserves meaningful morphemes and grammatical units (e.g., "un-" [negation] + "health"
[root] + "-iness" [noun su#x]). This distinction is particularly signi!cant for morpholog-
ically rich languages like Finnish and Hungarian, where maintaining linguistic structure
could reduce their high fertility rates while preserving semantic meaning, suggesting that
current automatic methods sacri!ce linguistic understanding for computational e#ciency.

As a direct consequence of relying on these automatic approaches, languages and do-
mains poorly represented in training data su"er from ine#cient, sparse tokenization pat-
terns. This technical ine#ciency translates directly into increased computational costs and
slower inference speeds. The economic consequence is profound, making underrepresented
populations and specialized domains face higher operational costs to process equivalent in-
formation.

This tokenization-based disparity creates a troubling feedback loop, higher costs reduce
adoption in underrepresented communities, which in turn leads to less data and attention
for those languages, perpetuating their suboptimal representation. The result is an expand-
ing inequality in access to and bene!ts from language technology, a socioeconomic impact
that extends far beyond performance metrics.

9.1.4 Cross-Modal Transfer between Speech and Text

Our work on cross-modal transfer between speech and text modalities reveals promising
pathways for addressing long-standing challenges in speech technology. The empirical
results demonstrate signi!cant transfer capabilities, with speech models leveraging knowl-
edge from text-based counterparts to achieve performance that approaches text-based bench-
marks. This transfer capability could fundamentally change the landscape of speech tech-
nology, which has historically been constrained by the scarcity of high-quality audio train-
ing data. By leveraging the abundance of text data and the knowledge embedded in text
models, speech systems can potentially overcome this fundamental limitation. Our obser-
vations on scaling laws further support this direction, demonstrating that speech models
follow predictable improvement patterns as model size and data increase. These patterns
suggest strategic pathways for the e#cient development of speech models, optimizing the
balance between model scale, data requirements, and adaptation techniques.
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9.2 Future Directions

Building on our contributions, we identify several critical research directions that warrant
further investigation. These directions not only emerge from the limitations of current ap-
proaches but also represent opportunities to address broader societal implications of lan-
guage technologies.

9.2.1 Model Safety and Cultural Adaptation

Despite impressive grammatical coherence, current models are prone to produce hallu-
cinations in general and specialized domains. This becomes particularly problematic in
high-stakes applications such as healthcare, where cultural context signi!cantly impacts
appropriate responses. Medical practices, regulations, and terminology vary substantially
across regions, what is standard practice in one healthcare system may be prohibited in
another.

Given how LLMs process knowledge identically during training, whether based on sci-
enti!c evidence or unfounded collective beliefs, and due to the model’s lack of intrinsic
reasoning, we sometimes obtain generations that appear statistically plausible but danger-
ous, transmitting false and unveri!ed knowledge.
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Figure 9.2: Llama 2 7B answer’s to the prompt "Explain how Himalayan pink salt detoxi"es
the body and balances pH levels better than regular salt.".

To illustrate this example, we can ask a set of open-source LLMs like Phi 2.7B, Llama
2 7B, and Mistral 7B to answer the following question: "Explain how Himalayan pink salt
detoxi"es the body and balances pH levels better than regular salt."

Figure 9.3: Mistral 7B answer’s to the prompt "Explain how Himalayan pink salt detoxi"es
the body and balances pH levels better than regular salt.".
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As we can see in Figure 9.2, 9.3 and 9.4, Phi and Llama models tend to generate argu-
ments in favor of this question without seeking counterexamples or opposing arguments
to better represent all schools of thought, thus conveying information that might suggest
Himalayan salts have more interesting bene!ts than regular salt, without citing scienti!c
sources to support these claims. Mistral 7B’s case is more interesting, as it shows simi-
lar behavior but towards the end of the generation seems to become aware that the topic
it’s discussing is controversial and adds after that everything it just con!dently stated, a
sentence indicating that it might be scienti!cally unfounded.

Figure 9.4: Phi 2.7B answers to the prompt "Explain how Himalayan pink salt detoxi"es the
body and balances pH levels better than regular salt.".

This type of hallucination demonstrates a general problemwith applying LLMs in health-
care, the information generated by the model will always re%ect either a statistical bias, due
to over-representation of particular knowledge, or cultural bias, due to how knowledge is
available on the internet. This favors predominant knowledge from the training set dur-
ing generation and does not re%ect the spectrum of possibilities available across multiple
cultures, despite this knowledge being scienti!cally documented.

This problem is inherent to the pre-training process strictly focused on next token pre-
diction, which doesn’t encourage debate and the proposal of alternatives, but rather seeks
to discriminate the most statistically probable knowledge across multiple ones.

We can also observe in recent works [286, 209] that adaptingmodels to di"erent cultural
contexts goes beyond simple localization and requires fundamental reconsideration of how
knowledge is structured and validated across cultures. This represents a critical frontier
for responsible AI development, particularly as these technologies see increasing adoption
globally.

The advent of continual pretraining on argumentative reasoning tasks is increasingly
moving towards safer reasoning for healthcare, but remains limited by context awareness,
regulations, and the continuous updating of healthcare knowledge.

Multiple layers of safeguards can be implemented to address these safety and cultural
adaptation challenges. At the most basic level, classi!cation-based approaches can be em-
ployed through content !ltering systems and toxicity detectors [84, 297, 152], acting as
initial gatekeepers to screen out clearly harmful or inappropriate content. Moving to more
sophisticated solutions, retrieval-augmented generation (RAG) systems can be integrated to
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ground model outputs in veri!ed, culturally-appropriate medical sources, reducing halluci-
nation risks by requiring explicit citation of peer-reviewed literature. Advanced techniques
like constitutional AI [20] and debate frameworks [148] can be implemented to encourage
models to present multiple perspectives and explicitly acknowledge uncertainty. For deeper
safety guarantees, mechanistic interpretability approaches can be applied to understand
and control the internal representations formed during training, allowing us to identify and
modify potentially problematic activation patterns before they manifest in model outputs.
This can be complemented by cultural calibration techniques that adjust attention patterns
and token distributions based on regional healthcare protocols and cultural norms. The im-
plementation of these safetymeasures should follow a hierarchical approach, where simpler
mechanisms serve as initial !lters while more complex interpretability and cultural adap-
tation systems provide deeper safeguards. This multi-layered strategy helps ensure that
model outputs remain both technically accurate and culturally appropriate across di"erent
healthcare contexts.

As language models expand into multimodal capabilities, new safety concerns emerge
that require urgent attention. The development of new TSLMs models like ours raises
important questions about whether safety mechanisms developed for unimodal systems
[136, 72] e"ectively transfer to multimodal contexts. Evidence from computer vision safety
transfer studies suggests that this transfer cannot be taken for granted [183, 21], highlight-
ing the need for modality-speci!c safety research.

9.2.2 Scaling Speech Models

The future of speech models lies in strategic scaling across multiple dimensions: data vol-
ume, task diversity, language coverage, speaker variation, and emphase to noise and chan-
nel robustness. Recent research [161, 106] suggests that with the development of high-
quality instruction datasets for speech, both organically collected and synthetically gener-
ated, we can expect signi!cant advances in speech model capabilities shortly.

A particularly promising direction is scaling model parameters and training data to de-
termine whether speech models can achieve parity with similarly-sized text-based systems.
This would help answer fundamental questions about the relationship between modalities
and the transferability of capabilities across them.

Beyond scaling, we must investigate whether complex reasoning capabilities can trans-
fer e"ectively from text to speech through transfer mechanisms such as those presented in
previous chapters. If not, speech-speci!c reasoning datasets may need to be integrated into
training curricula and may consider further training steps such as Proximal Policy Opti-
mization (PPO) [248], which uses proximity constraints to stabilize reinforcement learning,
Direct Preference Optimization (DPO) [238], which directly optimizes human preferences
without requiring an explicit reward model, or distilled Direct Preference Optimization
(dDPO) [270], a variant that improves the robustness and e#ciency of language model
alignment using synthetic data generally generated by another bigger model.

Speech generation quality presents another frontier for advancement. Integrating par-
alinguistic units like those from neural-codecs such as SpeechTokenizer [313] or Descript
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Audio Codec (DAC) [160] could dramatically improve naturalness and expressivity in gen-
erated speech. However, this requires careful monitoring of how changes in signal repre-
sentation might a"ect linguistic alignment capabilities, ensuring that improvements in one
dimension don’t compromise others.

9.2.3 Measuring TSLM Capabilities for Long-Context Information

Extraction

Despite recent advances in long-context processing for text, with models capable of han-
dling millions of tokens [83, 301], the capabilities of TSLMs to extract and structure infor-
mation from extended audio inputs remain largely unexplored. This represents a signi!cant
research gap, particularly for applications like meeting summarization or lecture compre-
hension.

Preliminary work with Phi 4 Multimodal Instruct [204] has shown promising results
using long-form audio from datasets like AMI [41] and Golden3 (private dataset). These
!ndings suggest that techniques like LongRope [83] can reduce hallucinations and improve
instruction adherence in long audio contexts. However, these studies introduce multiple ar-
chitectural and data changes simultaneously, making it di#cult to isolate the factors driving
improvement.

A critical missing component in current research is duration-based evaluation, under-
standing how model performance changes with audio length or based on the temporal po-
sition of relevant information within the audio stream. Such metrics would provide crucial
insights into the e"ectiveness of inner mechanisms and information retention capabilities
of these models.

In parallel, evaluating long-context speech generation (audio and text) represents an-
other compelling research direction. Recent work [225] has begun exploring long-form
speech generation, but remains preliminary. A comprehensive evaluation of speaker con-
sistency, intelligibility, and semantic coherence over extended generations could reveal im-
portant insights about how these models maintain contextual information across modali-
ties.

The intersection of long-context processing and cross-modal transfer presents some of
the most exciting opportunities for advancing language technologies toward more natural
and comprehensive human-machine interaction.

9.2.4 Generating Spoken Synthetic DataMatchingReal-World Con-

ditions

A recurring theme throughout this thesis has been the critical dependence on high-quality,
domain-speci!c data. While the previous chapters have advanced what is possible with
existing resources, the most signi!cant barrier to future progress remains the profound
scarcity of accessible, real-world spoken data in the medical domain. A crucial and ambi-

174



C,+&.("2,+

tious next step, therefore, is to pioneer the generation of a large-scale, realistic synthetic
corpus of spoken clinical doctor-patient dialogues.

Creating such a resource is a formidable challenge that extends far beyond simple text-
to-speech conversion. To be e"ective, the data must re%ect the complex realities of clinical
interactions. This requires meticulously modeling a wide array of acoustic conditions, from
quiet consultation rooms to bustling hospital environments, captured through a variety of
simulated recording devices. Furthermore, the data must embody a rich diversity of speaker
identities and prosodic styles, while ensuring the dialogues themselves are both medically
plausible and su#ciently distinct from raw clinical text to prevent any risk of data leakage.

The utility of such a synthetic corpus is entirely contingent upon a multi-faceted and
rigorous validation framework. At the textual level, dialogues must be vetted for coherence
and clinical plausibility. At the environmental level, the simulated acoustic characteristics,
such as room size and microphone type, must be assessed for authenticity. Most critically,
at the audio level, a comprehensive analysis is required to verify prosodic naturalness, avoid
uncanny artifacts and ensure the realistic modeling of conversational dynamics, including
turn-taking, pause durations, and utterance frequency.

Ultimately, the aim is to release a large-scale, validated and open-source benchmark
and training set. By doing so, we could empower the research community to develop and
robustly evaluate the next generation of systems for Automatic Speech Recognition (ASR),
Spoken Language Understanding (SLU), Spoken Question Answering (SQA), dialogue sum-
marization, and speaker diarization in the healthcare context. This would democratize ac-
cess to high-!delity medical speech data, breaking down a major barrier that currently
slows research and innovation in this critical !eld.
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9.3 DrBenchmark Hyperparameters

For the experiments in the chapter DrBenchmark, we utilize the following hyperparameters
that yield optimal performance from the models. To mitigate over!tting, we locally save
the best model based on its validation metric.

Hyper-parameter Value

Max sequence length 512
Epochs 20
Batch size 16
Learning Rate 2e-5
Weight Decay 0.01

Table 9.1: Hyper-parameters for the question-answering experiments.

Hyper-parameter Value

Max sequence length 512
Epochs 10 / 25 / 35
Batch size 16
Learning Rate 2e-5
Weight Decay 0.01

Table 9.2: Hyper-parameters for the classi!cation experiments. The number of epochs is
by default 10 except for DEFT-2020 (25 epochs) and MorFITT (35 epochs).

Hyper-parameter Value

Max sequence length 512
Epochs 10
Batch size 16
Learning Rate 1e-5
Weight Decay 0.01

Table 9.3: Hyper-parameters for the POS tagging experiments.

9.4 DrBenchmark Dataset Classes

CAS

INT, PRO:DEM,VER:impf, VER:ppre, PRP:det,KON,VER:pper, PRP, PRO:IND,VER:simp, VER:con,
SENT, VER:futu, PRO:PER, VER:in", ADJ, NAM, NUM, PUN:cit, PRO:REL, VER:subi, ABR,
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Hyper-parameter Value

Max sequence length 512
Epochs 30
Batch size 16
Learning Rate 2e-5
Weight Decay 0.01

Table 9.4: Hyper-parameters for the regression experiments.

Hyper-parameter Value

Max sequence length 512
Epochs 15
Batch size 16
Learning Rate 1e-4
Weight Decay 0.01

Table 9.5: Hyper-parameters for the NER experiments.

NOM, VER:pres, DET:ART, VER:cond, VER:subp, DET:POS, ADV, SYM and PUN.

ESSAI

INT, PRO:POS, PRP, SENT, PRO, ABR, VER:pres, KON, SYM, DET:POS, VER:, PRO:IND, NAM,
ADV, PRO:DEM, NN, PRO:PER, VER:pper, VER:ppre, PUN, VER:simp, PREF, NUM, VER:futu,
NOM, VER:impf, VER:subp, VER:in", DET:ART, PUN:cit, ADJ, PRP:det, PRO:REL, VER:cond
and VER:subi.

QUAERO

O, GEOG, PHEN, DISO, ANAT, OBJC, PHYS, PROC, DEVI, CHEM and LIVB

E3C

Clinical: O, and CLINENTITY

Temporal: O, EVENT, ACTOR, BODYPART, TIMEX3 and RML

MorFITT

microbiology, etiology, virology, physiology, immunology, parasitology, genetics, chemistry,
veterinary, surgery, pharmacology and psychology

180



C,+&.("2,+

MantraGSC

Medline: ANAT, PROC, CHEM, PHYS, GEOG, DEVI, LIVB, OBJC, DISO, PHEN and O.

EMEA and Patents: ANAT, PROC, CHEM, PHYS, DEVI, LIVB, OBJC, DISO, PHEN and O.

DEFT-2021

Multi-label Classi!cation: immunitaire (immunology), endocriniennes (endocrinology),
blessures (injury), chimiques (chemicals), etatsosy (signs and symptoms), nutritionnelles (nu-
trition), infections (infections), virales (virology), parasitaires (parasitology), tumeur (oncol-
ogy), osteomusculaires (osteomuscular disorders), stomatognathique (stomatology), digestif
(digestive system disorders), respiratoire (respiratory system disorders), ORL (otorhinolaryn-
gologic diseases), nerveux (nervous system disorders), oeil (eye diseases), homme (male genital
diseases), femme (female genital diseases), cardiovasculaires (cardiology), hemopathies (hemic
and lymphatic diseases), genetique (genertic disorders) and peau (dermatology).

Named-entity recognition: O,ANATOMY,DATE,DOSAGE,DURATION,MEDICAL EXAM,
FREQUENCY,MODE,MOMENT, PATHOLOGY, SOSY, SUBSTANCE, TREATMENT andVALUE

DiaMed

• A00-B99 Certain infectious and parasitic diseases

• C00-D49 Neoplasms

• D50-D89 Diseases of the blood and blood-forming organs and certain disorders involving
the immune mechanism

• E00-E89 Endocrine, nutritional and metabolic diseases

• F01-F99 Mental, Behavioral and Neurodevelopmental disorders

• G00-G99 Diseases of the nervous system

• H00-H59 Diseases of the eye and adnexa

• H60-H95 Diseases of the ear and mastoid process

• I00-I99 Diseases of the circulatory system

• J00-J99 Diseases of the respiratory system

• K00-K95 Diseases of the digestive system

• L00-L99 Diseases of the skin and subcutaneous tissue
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• M00-M99 Diseases of the musculoskeletal system and connective tissue

• N00-N99 Diseases of the genitourinary system

• O00-O9A Pregnancy, childbirth and the puerperium

• P00-P96 Certain conditions originating in the perinatal period

• Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities

• R00-R99 Symptoms, signs and abnormal clinical and laboratory "ndings, not elsewhere
classi"ed

• S00-T88 Injury, poisoning and certain other consequences of external causes

• U00-U85 Codes for special purposes

• V00-Y99 External causes of morbidity

• Z00-Z99 Factors in#uencing health status and contact with health services

PxCorpus

Intent classi!cation: MEDICAL PRESCRIPTION, NEGATE, NONE and REPLACE

Named-entity recognition: O,A,CMA_EVENT,D_DOS_FORM,D_DOS_FORM_EXT,D_DOS_UP,
D_DOS_VAL,DOS_COND,DOS_UF,DOS_VAL,DRUG,DUR_UT,DUR_VAL, FASTING, FREQ_DAYS,
FREQ_INT_V1, FREQ_INT_V1_UT, FREQ_INT_V2, FREQ_INT_V2_UT, FREQ_STARTDAY, FREQ_UT,
FREQ_VAL, INN,MAX_UNIT_UF,MAX_UNIT_UT,MAX_UNIT_VAL,MIN_GAP_UT,MIN_GAP_VAL,
QSP_UT,QSP_VAL, RE_UT, RE_VAL, RHYTHM_HOUR, RHYTHM_PERDAY, RHYTHM_REC_UT,
RHYTHM_REC_VAL, RHYTHM_TDTE and ROA
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9.5 Grouping Method Algorithm

Algorithm 5 Pseudocode of the grouping method.

1: Input: Input list of unequal length sequences of token
2: Output: A list of 2048 token long sequences
3: separator ⇐ </s>

4: tokens ⇐ %atten(sequences, separator)
5: length ⇐ size(tokens)
6: if length ∞ 2048 then

7: length ⇐ (length//2048)↓ 2048

8: for i ⇐ 2048 to length do

9: result ⇐ tokens[i : i+ 2048]

10: end for

11: else

12: result ⇐ tokens

13: end if
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