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ABSTRACT

The medical field presents unique Natural Language Processing (NLP) challenges through
its specialized terminology, strict data regulations, and critical information needs. With the
democratization of Language Models (LM) for assisting healthcare and clinical workers in
their day-to-day work, the need for their adaptation to the domains of application became
necessary to facilitate their accessibility to a broader audience, languages, and domains
while reducing the computational cost of their usage.

On the other hand, traditional approaches to medical speech processing rely on cascade
systems that convert speech to text, apply NLP system, and sometimes regenerate speech.
While practical, these systems often lose paralinguistic features critical to clinical commu-
nication and suffer from error propagation between processing stages. Recent advances in
self-supervised speech representation quantization have created new possibilities for in-
tegrating speech representation into other systems without intermediate text conversion,
potentially preserving more communicative nuance.

In this thesis, I investigate among other things, how speech capabilities can be inte-
grated into existing text-based Pre-trained Language Models (PLM) with healthcare-related
capabilities, leveraging their embedded medical knowledge while enabling direct speech
processing. The examination of alignment between speech and text representations at
various abstraction levels reveals potential pathways for effective cross-modal knowledge
transfer with limited training data, a crucial consideration given healthcare’s data con-
straints.

Keywords: Speech Processing, Domain Adaptation, Cross-Modal Transfer, Healthcare
Adaptation, Language Models, Multi-modal Speech-Text Modeling, Large Language Model
(LLM)






RESUME

Le domaine médical présente des défis uniques en matiere de Traitement Automatique de la
Langue Naturelle (TALN) a travers sa terminologie spécialisée, ses réglementations strictes
sur les données et ses besoins critiques en information. Avec la démocratisation des Modéles
de Langues (ML) pour assister les professionnels de santé dans leur quotidien, leur adapta-
tion aux domaines d’application est devenue nécessaire pour faciliter leur accessibilité a un
public plus large, a différentes langues et domaines, tout en réduisant le colit computation-
nel de leur utilisation.

D’autre part, les approches traditionnelles du traitement de la parole médicale reposent
sur des systémes en cascade qui convertissent la parole en texte, appliquent un systeme de
TALN, et parfois régénerent la parole. Bien que pratiques, ces systémes perdent souvent
des caractéristiques paralinguistiques essentielles a la communication clinique et souffrent
de la propagation d’erreurs entre les étapes de traitement. Les récentes avancées dans la
quantification des représentations vocales auto-supervisées ont créé de nouvelles possi-
bilités d’intégration de la représentation vocale dans d’autres systémes sans conversion
intermédiaire en texte, préservant potentiellement plus de nuances communicatives.

Dans cette thése, j'examine comment les capacités vocales peuvent étre intégrées aux
Modeles de Langue Pré-entrainés (MLP) basés sur le texte et possédant des connaissances
liées aux domaines de la santé, en exploitant leurs connaissances médicales acquises tout
en permettant un traitement direct de la parole, sans étapes intermédiaires. I’analyse des
capacitées d’alignement entre les représentations vocales et textuelles a différents niveaux
d’abstraction ont révélé des méthodes plus optimales pour un transfert efficace de con-
naissances intermodales et savorisant ainsi ’apprentissage contraint par une quantité de
données d’entrainement limitées, une considération cruciale étant donné les contraintes de
données dans le domaine de la santé.

Mots-clés: Traitement de la Parole, Adaptation au Domaine, Transfert Intermodal,
Adaptation aux domaines de la santé, Modéles de Langue, Modélisation Multimodale Parole-
Texte, Grand Modéle de Langage (GLM)
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INTRODUCTION

0.1 Motivations and Research Question

Healthcare natural language understanding faces unique challenges stemming from strict
privacy requirements, limited data availability, and prohibitive annotation expenses. These
barriers significantly restrict the development of accessible open-source solutions. Never-
theless, text and speech processing technologies hold tremendous potential for healthcare
applications, from supporting clinical staff in daily activities to enhancing hospital revenue
systems and enabling researchers to process vast amounts of unstructured data in the pur-
suit of novel treatments for both common and rare conditions.

Contemporary approaches in this domain predominantly leverage machine learning
paradigms, utilizing LM either for semantic representation through vectors or direct inter-
action via autoregressive architectures such as Generative Pre-trained Transformer (GPT)
models. This thesis investigates several pivotal questions at the intersection of LM, speech,
and healthcare. We examine optimal strategies for encoding medical knowledge in LM
for downstream application, comparing the efficacy of continual pre-training versus from-
scratch approaches for adapting to resource-constrained domains like French medical lan-
guage. My research also explores whether publicly accessible data can achieve compa-
rable performance to private clinical datasets and challenges the assumption that more
data invariably produces better outcomes. The thesis also addresses a fundamental ten-
sion, whether domain specialization compromises general language understanding,.

Furthermore, we investigate how domain-specific tokenization affects both performance
metrics and practical considerations like information density and computational efficiency,
factors that ultimately determine accessibility across different languages and specialized
fields. Through systematic comparative evaluation, this research identifies which approaches
excel in specific contexts and where they fall short. The resource-intensive nature of health-
care data annotation prompted us to compare instruction-tuned Large Language Models
(LLM), which were on the premises, with traditionally task-specific fine-tuned Masked Lan-
guage Models (MLM). My findings reveal that LLMs demonstrate remarkable generalization
to unfamiliar tasks, occasionally surpassing specialized models in areas like question an-
swering. These insights informed that our adaptation methodology through continual pre-
training on PubMed Central’s open-access corpus, strategically leveraging the multilingual
foundation of the model to facilitate knowledge transfer to medical applications and there-
fore French.

Recognizing the advancing capability of pre-trained LLMs to generalize across special-
ized domains through diverse training and reinforcement learning techniques, we expanded
our research to incorporate speech modality into state-of-the-art LM, which showed good
capabilities spoken tasks. This multimodal integration raises compelling questions about
specialized processing requirements for speech, scaling benefits across data and model pa-
rameters, knowledge transfer between modalities, identifying which neural components
contribute most significantly to speech comprehension, and preserving textual capabilities
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while acquiring speech understanding.

0.2 Thesis Structure

This thesis is written around eight key articles, each chapters from Chapter 1 to 8 represent
one article, they are structured into three main parts following the temporality of the thesis
and showing the incremental efforts put in place to build language models adequate to
process speech with healthcare related capabilities: the first one dedicated on the adaptation
of MLM on the healthcare domains and their deep quantitative and qualitative analysis (Part
II). The second part (Part III) presenting MLM limitations and how the adaptation of LLM
can allow to go therefore those limitations. Finally, Part IV, about our how do we managed
to align pre-trained LLMs with speech modality in order to leverage widely available textual

knowledge.

0.3 Ressources
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https://drive.google.com/file/d/1]zZmWreVwZ2CTfPedvC_0T6xlkmp_HjL

« Yanis Labrak, Adel Moumen, Mickael Rouvier and Richard Dufour (2024).
InterSpeech 2024, September 2024, Kos Island, Greece - Zero-Shot End-To-End Spoken Question An-
swering In Medical Domain. - https://www.isca-archive.org/interspeech_2024/labrak24_interspeech.html

+ Yanis Labrak, Adrien Bazoge, Richard Dufour, Mickael Rouvier, Emmanuel Morin, et al. (2024).
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Language Models for Medical Domains. - https://aclanthology.org/2024.findings-acl.348/

« Yanis Labrak, Mickael Rouvier and Richard Dufour. (2024)
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main.185/

« Yanis Labrak, Adrien Bazoge, Béatrice Daille, Mickael Rouvier and Richard Dufour. (2024)
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Glossary

TALN Traitement Automatique de la Langue Naturelle
NLP Natural Language Processing

LM Language Models

ML Modéles de Langues

MLP Modéles de Langue Pré-entrainés

PLM Pre-trained Language Models

LLM Large Language Models

MLM Masked Language Models

CoT Chain-of-Thought

BoW bag-of-words

TF-IDF Term Frequency-Inverse Document Frequency
GRUs Gated Recurrent Units

LSTM Long Short-Term Memory

GPT Generative Pre-trained Transformer
NER Named Entity Recognition

POS Part-of-Speech

RE Relation extraction

QA question-answering

ICO Intervention-Comparator-Outcome

NLI Natural Language Inference

EMR Exact Match Rate

EDRM Euclidean Distance-based Relative Metric
SSL Self-Supervised Learning

ASR Automatic Speech Recognition

CNN Convolutional Neural Network

RVQ Residual Vector Quantization

STFT Short-Time Fourier Transform

MFCC Mel-Frequency Cepstral Coefficients
TTS Text-To-Speech

WER Word Error Rate

CER Character Error Rate

SQA Spoken Question Answering

MCOQA Multiple-Choice Question Answering
NLL Negative Log Likelihood

NACHOS opeN crAwled frenCh Healthcare cOrpuS
OCR optical character recognition

BPE byte-pair encoding

RAG retrieval-augmented generation

TSLMs Text-Speech Language Models

MLP Multi-Layer Perceptron

NSP Next Sentence Prediction

BERT Bidirectional Encoder Representations from Transformers
SFT Supervised Fine-Tuning

QLoRa Quantized Low-Rank Adaptation

LoRA Low-Rank Adaptation

AWQ Activation-aware Weight Quantization
BnB BitsandBytes

HPC high-performance computing
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Background and Related Work






0.4 Language Modeling

NLP has been transformed by large pre-trained language models based on the Transformer
architecture [275]. These models, trained on massive text corpora and then fine-tuned for
specific tasks, have become the standard approach in both general and specialized domains
like medical NLP. Models such as GPT-4 [219] and Med-PaLM 2 [254] have demonstrated
unprecedented performance, sometimes matching or exceeding human expert capabilities
in medical tasks.

To understand the foundations of these powerful approaches, this chapter traces the
evolution of text representation methods through four major paradigms: discrete repre-
sentations that established basic computational text processing; statistical representations
that introduced probabilistic approaches to word sequences; continuous but static word
embeddings that enabled semantic relationships in dense vector spaces; and finally, cur-
rent contextualized representations powered by transformer architectures.

NLP, whether in the general domain or in the medical field, develops and utilizes sta-
tistical methods, particularly machine learning or deep learning methods. The use of such
methods requires a text representation adapted to these tools, generally in vector form.
Various forms of vector representations of text have been proposed, ranging from discrete
representations to numerical representations. The evolution of these statistical methods
has been accompanied by an evolution in vector representations of words, with increas-
ingly effective representations for incorporating word semantics.

0.4.1 Discrete Representations

Discrete representations form the foundation of early text processing methods in NLP.
These representations encode text data into mathematical structures that computers can
process, while maintaining the discrete nature of language units such as words or char-
acters. Unlike continuous representations, discrete representations treat each word as a
distinct, atomic unit, without an inherent notion of similarity or relationship between dif-
ferent words.

Bag-Of-Words

The most straightforward and historically significant approach to discrete text represen-
tation is the bag-of-words (BoW) model. This method, rooted in distributional semantics,
as introduced by Zellig S. Harris [115], operates on a fundamental premise: the essential
meaning within a text can be captured by considering word occurrences while disregarding
grammatical structure and word order.

In its simplest form, a bag-of-words representation transforms a text into a vector whose
dimension equals the size of the vocabulary. Each dimension corresponds to a specific word,
and its value represents the frequency of that word in the text. Figure 1 illustrates this
transformation process, where an input text is converted into a fixed-size vector based on a
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predefined vocabulary. Note how words present in the vocabulary but absent from the text
(such as "bird" and "park") receive zero frequency values, while frequent words like "the"
have higher counts.

Vocabulary (size=9)

the cat and
Input text: dog play o
"The cat and the dog :
play in the garden" garden | bird park
\
BoW vector:

3 1 1 1 1 1 1 0 0

the cat and dog play in garden bird park

Figure 1: [llustration of the BoW representation. The input text is transformed into a fixed-
size vector where each dimension corresponds to a word in the vocabulary, and the value
represents the frequency of that word in the text. Note that words in the vocabulary that
don’t appear in the input text ("bird" and "park") have a frequency of 0.

Formally, let V denote the vocabulary size. Then, a text is represented as a V' -dimensional
vector T', where each component corresponds to a word in the vocabulary :

f - (f17f27 ey f|V|)

where f; represents the frequency of the i-th word in the vocabulary.

The BoW model can be extended beyond simple word frequencies to capture word co-
occurrences within a context window. For a given word w, its representation considers
surrounding words within a fixed window size f. Formally, a word ¢ co-occurs with w if:

¢ € [w_y,w_q1] U [wy, wy]

This process results in a co-occurrence matrix M € RIVI*IVl where each entry M;;
represents the number of times word ¢ co-occurs with word j within the specified context
window.

The BoW approach offers several advantages. Its implementation is straightforward and
computationally efficient, making it well-suited for processing large text corpora. More-
over, as illustrated in Figure 1, the representations are inherently interpretable, with vector
dimensions directly corresponding to vocabulary words.

Despite its advantages, the BoW approach faces several significant limitations. As il-
lustrated in the figure, the resulting vectors are inherently sparse, with many dimensions
containing zeros, particularly for rare words or those absent from the training text. This



sparsity issue is compounded by the high dimensionality of the representations, as the
vocabulary size determines the vector dimensions and can reach hundreds of thousands
in large-scale applications. The quality of word representations also varies considerably:
while common words benefit from rich contextual information, leading to meaningful rep-
resentations, rare words suffer from limited contextual data, resulting in less reliable vec-
tors. Moreover, the fundamental premise of BoW, discarding word order and grammatical
relationships, leads to a loss of important semantic nuances that could be crucial for un-
derstanding the text’s meaning. For example, the vectors for the sentences "The vehicle is
stationed on the left." and "The car is parked on the left" are far from each other despite
having the same meaning.

Term Frequency-Inverse Document Frequency

While the basic BoW model captures word frequencies, it treats all words equally, regard-
less of their importance or discriminative power. The Term Frequency-Inverse Document
Frequency (TF-IDF) weighting scheme addresses this limitation by balancing two factors:
how frequently a term appears in a document (term frequency) and how unique that term
is across the entire corpus (inverse document frequency).

Document corpus:

Doc 1: " The cat and the dog play in the garden "
Doc 2: " A bird in the garden "

Doc 3: " The dog barks at the cat "

BoW vectors: TF-IDF vectors:
Doc 1: Doc 1:

cat  and dog play in  garden bird barks cat  and dog play i

3
the the in  garden bird barks

Figure 2: Illustration of TF-IDF transformation. The raw frequency counts from BoW are
converted to weighted values that reflect term importance across the document corpus.
Common words like "the" receive lower weights despite high frequency, while distinctive
terms maintain higher importance.

Term Frequency (TF) measures how often a term occurs in a document, similar to the
basic BoW approach:

TR(t, d) Number of times term ¢ appears in document d

Total number of terms in document d

Inverse Document Frequency (IDF) penalizes terms that appear in many documents, as
these are likely less informative, such as the stop words:
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Total number of documents in corpus D

IDF(¢, D) = lo
(t. D) % Number of documents containing term ¢

The TF-IDF score for a term in a document is then calculated as:

TF-IDF(¢, d, D) = TF(t, d) x IDE(t, D)

This weighting scheme effectively reduces the importance of common words like "the"
or "and" that appear in most documents while emphasizing rare, potentially more mean-
ingful terms. Figure 2 demonstrates how TF-IDF transforms the raw frequency counts from
the BoW model into weighted values that better reflect term importance.

The TF-IDF representation offers several advantages over the basic BoW model. It effec-
tively reduces the impact of common, less informative words while emphasizing distinctive
terms that better characterize document content. This weighting scheme has proven par-
ticularly effective for information retrieval and document classification tasks, where iden-
tifying discriminative features is crucial.

Despite these improvements, TF-IDF still inherits some limitations of the BoW ap-
proach. The representations remain sparse and high-dimensional, and the method con-
tinues to disregard word order and semantic relationships between terms. For instance,
synonyms like "vehicle" and "car" are treated as entirely different dimensions despite their
semantic similarity. Additionally, TF-IDF requires a predefined corpus to calculate the IDF
component, making it unable to handle out-of-vocabulary terms.

These inherent limitations have spurred the development of more sophisticated word
representation techniques, particularly continuous word embeddings. By projecting words
into a fixed-dimensional dense vector space, these advanced methods effectively address
the challenges of sparsity and high dimensionality while preserving or even enhancing the
capture of semantic relationships between words. This evolution in representation tech-
niques has provided more practical and efficient solutions for modern NLP applications.

0.4.2 Statistical Representations

While discrete representations like BoW provide a foundation for text processing, they lack
the ability to model sequential patterns in language. Statistical representations, particularly
n-gram language models, emerged as a way to capture local word dependencies and predict
the probability of word sequences. These models build upon the distributional hypothesis
while incorporating sequential information, making them particularly effective for tasks
like speech recognition and machine translation.

N-gram Probabilistic Language Models

N-gram language models represent one of the most influential statistical approaches to
language modeling. Unlike BoW, which treats words as independent units, n-gram models

10



like KenLM [119] consider sequences of n consecutive words to estimate the probability of
the next word in a sequence. Formally, an n-gram model approximates the probability of a
word sequence W = (wy, ..., w,,) as:

m

P(W) ~ HP(wi\wi_nH, ...,wi_l)

i=1

where each word’s probability depends on its n — 1 preceding words (its past context).

KenLM implements two efficient data structures for storing and querying these proba-
bilities: PROBING and TRIE. The PROBING structure uses linear probing hash tables opti-
mized for speed, while TRIE employs a trie with bit-level packing and interpolation search
focused on memory efficiency. For a trigram model (n=3), probabilities are stored in the
form:

log P(wi|wi—2, w;—1)

A significant challenge with n-gram models is data sparsity: many possible n-gram
sequences are never observed in training data, resulting in a sparse probability matrix. To
address this issue, language models typically implement backoff mechanisms, which fall
back to lower-order n-grams when a higher-order sequence is not observed. For example,
if a specific trigram is not found in the training data, the model can back off to bigram or
unigram probabilities using computed backoff weights. This technique allows the model to
make reasonable probability estimates even for previously unseen sequences.

One advantage of n-gram models, including KenLM, is their ability to efficiently cap-
ture local word dependencies and idiomatic expressions while minimizing memory usage.
For instance, in the phrase "New York City," the model learns that "City" is highly prob-
able following "New York" and stores this information compactly. KenLM achieves this
efficiency through different data structures: the PROBING structure allows fast hash-based
lookups, while the TRIE structure reduces memory footprint using careful bit-packing and
interpolation search.

However, like all n-gram models, these methods face inherent challenges. The spar-
sity problem remains significant: as n increases, the number of possible n-grams grows
exponentially, making it impossible to observe all valid combinations in the training data.
Additionally, n-gram models are constrained by their fixed context window size, limiting
their ability to capture long-range dependencies or semantic relationships beyond their
order.

Another major limitation is their inability to generalize beyond observed sequences.
For example, if a model is trained on the phrase "the car’s color is red" it will recognize this
exact sequence but struggle to generalize to variations like "the car’s color is magenta" This
rigidity stems from the discrete nature of n-gram representations, which lack the ability to
infer relationships between words beyond their explicit occurrence in the training data.

These constraints, particularly the difficulty in capturing semantic similarities and long-

11



CHAPTER 0

range dependencies, led to the development of continuous representations, such as word
embeddings and neural language models, which offer greater flexibility and generalization
capabilities.

0.4.3 Continuous and Static Representations

Traditional n-gram language models, while effective for local patterns, struggle with data
sparsity and discrete word representations. Word embedding methods were introduced to
address these limitations. These methods map words into continuous vector spaces where
each word is represented by a dense, real-valued vector of fixed dimension n. These vectors
are learned on large amounts of data using neural network approaches, capturing semantic
relationships more effectively than discrete vectors: semantically similar words will have
similar vectors and will be close to each other in the representation space, where this would
not be possible previously.

This fundamental shift toward a fixed dimension vector that allows a semantic compari-
son between words was, at the time of the release of Word2Vec in 2009, a game-changing ap-
proach that heavily influenced the future of modeling approaches of words and sequences.

Importantly, these word embeddings serve as crucial building blocks in modern neural
architectures, where they are used to initialize the hidden layers of various neural net-
work systems. Before the transformer architecture became dominant, word embeddings
were generally pre-trained and therefore extensively employed in recurrent neural net-
works such as LSTMs! (LSTMs!) and Gated Recurrent Units (GRUs), bootstrapping these
models with rich semantic representations that significantly improved their performance
on various NLP tasks. This integration of pre-trained word embeddings into neural archi-
tectures established a fundamental paradigm that continues to influence how we represent
and process language in deep learning systems.

Word2Vec embeddings: CBOW and Skip-gram architectures

Word2Vec, introduced by Mikolov et al. [205], revolutionized word representations by
proposing two neural architectures for learning n-dimensional word embeddings: Contin-
uous Bag-of-Words (CBOW) and Skip-gram. As illustrated in Figure 3, these architectures
approach the learning task from opposite directions.
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Figure 3: Word2Vec architectures: CBOW predicts the target word from context words,
while Skip-gram predicts context words from the target word.

The CBOW architecture (left side of Figure 3) predicts a target word given its context.
Initially, both the target word and its context are converted to one-hot vectors (vectors
where all components are 0 except for one position which is 1). The input layer is the sum
of the context’s one-hot vectors, while the output layer is the target word’s one-hot vector.
The hidden layer forms the embedding layer where each vocabulary word is represented by
a real-valued vector. The model is trained by comparing predicted and actual embeddings
of the target word and adjusting the vector representations through backpropagation.

Conversely, the Skip-gram architecture (right side of Figure 3) attempts to predict the
context words given a target word. However, with large vocabularies, this approach faces a
computational challenge: for each positive pair (target word, context word), the model must
generate numerous negative pairs (target word, vocabulary words not in the context) for
training. To address this optimization problem, the authors introduced negative sampling,
which stochastically samples only a subset of negative pairs for each positive example,
significantly accelerating the training process.

GloVe embeddings

GloVe (Global Vectors for Word Representation) [229] combines the advantages of two ap-
proaches: statistical word co-occurrence methods and neural word embeddings. As shown
in Figure 4, GloVe builds upon a word co-occurrence matrix and learns embeddings through
matrix factorization.

The model first constructs a co-occurrence matrix from the text corpus, measuring how
often each word pair appears within a given context window. From this matrix, word co-
occurrence probabilities are calculated, representing the conditional probability of word j
co-occurring with word 7. The model is then trained by minimizing:

%
> F(Xi) (] @y + bi + by — log (X))
ij=1
where X; represents the co-occurrence counts and f(X;;) is a weighting function.

13



CHAPTER 0

Xy || Xi2 || Xa3
Xo1 || Xog || Xog |-+
A [ ] N
Word Vector w; : : : - Context Vector w;
— —

<

Figure 4: GloVe word vectors based on factorizing the word co-occurrence matrix.

FastText embeddings

Unlike Word2Vec and GloVe, which treat words as atomic units, FastText [33] extends the
skip-gram model by representing each word as a bag of character n-grams, called subword
units, as shown in Figure 5. Instead of learning a single vector per word, FastText learns
representations for character n-grams (typically of length 3-6) and represents words as the
sum of these n-gram vectors.

For example, the word "where" would be broken down into character n-grams: <wh,
whe, her, ere, re> plus the special sequence <where>. The model adds special boundary
tokens < and > to mark the beginning and end of words, helping distinguish between n-
grams that appear in different positions. Like skip-gram, the model is trained to predict
context words, but uses the sum of n-gram vectors instead of word vectors. The final word
embedding is computed as:

s(w) = Z 24

9€Gy

where G, is the set of character n-grams in word w and z, are the learned n-gram
vectors.

This approach offers two key advantages: First, it can generate embeddings for out-
of-vocabulary words by combining their character n-gram vectors. Second, it better cap-
tures morphological relationships between words, particularly beneficial for morphologi-
cally rich languages, as words sharing similar character sequences will have similar repre-
sentations.

These static word embedding approaches marked a significant advancement in word
representation. However, they share a common limitation: each word has a single fixed
representation regardless of its context.
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Figure 5: FastText word representation as the sum of its character n-gram vectors.

0.4.4 Continuous and Contextualized Representations

While static word embeddings represented a significant advancement in NLP, they face
a fundamental limitation: each word has only one representation regardless of its con-
text [90]. This limitation becomes particularly apparent when dealing with polysemous
words or context-dependent meanings. For instance, the word "bank" in "river bank" ver-
sus "financial bank" should ideally have different representations reflecting their distinct
meanings. Contextualized representations address this limitation by dynamically generat-
ing word representations based on their surrounding context [230].

The emergence of contextualized representations was made possible by several key de-
velopments: advanced tokenization methods, the transformer architecture [276], and novel
self-supervised training objectives. These innovations collectively enabled the creation of
powerful language models that could capture nuanced semantic relationships and generate
context-aware word representations.

Tokenization Algorithms

Modern language models process text at a subword level rather than treating words as
atomic units. This approach addresses the vocabulary size limitations and out-of-vocabulary
problems faced by word-level models [249]. Three main tokenization algorithms have
emerged as standards in the field: Byte-Pair Encoding (BPE) [249], WordPiece [295], and
SentencePiece [158]. Figure 6 illustrates the general pipeline these algorithms follow, from
raw text to final subword tokens.
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c-e-p-h-a-1l-o-g-r-a-p-h-y
c-e-p-h-al-o-g-r-a-p-h-y  Merge: a+l — al
c-e-ph-al-o-g-r-a-p-h-y Merge: p+h — ph

c-e-ph-al-o-gr-a-p-h-y Merge: g+r — gr Red: current merge

c-e-ph-al-o-gr-a-ph-y Merge: p+h — ph

ce-ph-al-o-gr-a-ph-y Merge: c+e — ce . .
ce-phal-o-gr-a-ph-y Merge: ph+al — phal - possible merge points
ce-phal-o-graph-y Merge: gr+aph — graph

ce-phal-o-graphy Merge: graph+y — graphy

cephal-o-graphy Merge: ceph+al — cephal

Figure 6: BPE segmentation process for the medical term "cephalography". Each step shows
a merge operation (highlighted in red) based on the frequency of character pairs in the vo-
cabulary. The process demonstrates how BPE can identify meaningful medical morphemes:
"cephal" (head), "0" (combining vowel), and "graphy" (process of recording/imaging). Hy-
phens indicate possible merge points for the next iteration.

Byte-Pair Encoding, originally developed for data compression [95], iteratively merges
the most frequent pairs of bytes or characters to build a vocabulary of subword units. As
shown in Figure 6, the algorithm begins with character-level splitting and progressively ap-
plies merge operations based on frequency statistics from a training corpus. These merge
operations combine frequent character sequences into larger subword units, creating a vo-
cabulary that efficiently represents the training data.

WordPiece follows a similar pipeline but modifies the merging criteria. Instead of using
pure frequency counting, it employs a likelihood-based approach for merge operations.
This modification helps create more linguistically meaningful subword units, particularly
useful for morphologically rich languages. The algorithm evaluates potential merges based
on how much they would improve the likelihood of the training data given the current
vocabulary.

Finally, SentencePiece implements a language-agnostic tokenization approach by treat-
ing input text as a sequence of Unicode characters. Unlike BPE and WordPiece, which
typically operate on pre-tokenized text, SentencePiece applies its tokenization process di-
rectly to raw text. This makes it particularly suitable for languages without clear word
boundaries, such as Chinese or Japanese, as it learns word segmentation and subword tok-
enization jointly.

Transformer Architecture

The Transformer architecture, introduced by Vaswani et al. [276], revolutionized NLP by
replacing recurrent neural networks such as long short-term memory (LSTMs) [124] and
gated recurrent neural networks [61] with self-attention mechanisms [18]. This mechanism
enables parallel processing of input sequences and captures long-range dependencies more
effectively than previous approaches.
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At its core, the Transformer uses self-attention to compute representations of input to-
kens by considering their relationships with all other tokens in the sequence [276]. Each to-
ken’s representation is computed as a weighted sum of all tokens’ values, where the weights
are determined by learned attention patterns. The multi-head attention mechanism allows
the model to capture different types of relationships simultaneously, such as syntactic de-
pendencies and semantic associations.

The architecture consists of multiple layers of self-attention and feed-forward neural
networks, combined with residual connections [117] and layer normalization [12]. Position
information is incorporated through learned positional encodings, allowing the model to
understand token order despite its parallel processing nature.

Self-supervised Training Objectives

The effectiveness of contextualized representations largely depends on their training ob-
jectives. Self-supervised learning enables models to learn from vast amounts of unlabeled
text by creating supervised learning tasks from the data itself [192]. Three primary training
objectives have emerged: masked language modeling, autoregressive language modeling,
and encoder-decoder language modeling, which we will explore in the following parts:

Encoder-only models: BERT and variants Bidirectional Encoder Representations from
Transformers (BERT) [81] involves two tasks during pre-training: MLM and Next Sentence
Prediction (NSP).

Masked language modeling, mainly popularized by BERT, consists of randomly mask-
ing tokens in the input sequence and training the model to predict these masked tokens,
as shown in Figure 7. This objective forces the model to develop a deep understanding of
bidirectional context and linguistic patterns. The masking strategy typically includes re-
placing tokens with a special [MASK] token in 15% of the cases, random tokens, or leaving
them unchanged, helping the model learn robust representations [192].

Input: [CLS] my little [MASK] is cute [SEP]
~ N V /S 7 7
Masked Language Model

s L N NN

Output: [CLS] y little dog cute [SEP]

dog: 0.7, cat: 0.2, poney: 0.05

Figure 7: Masked Language Modeling (MLM) predicts masked tokens using bidirectional
context.

The second training objective, NSP, consists of training the model to understand re-
lationships between sentences by predicting whether two sentences appear consecutively
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in the original text, using a special [CLS] token prepended to the input to capture this
relationship.

The model architecture consists of multiple transformer encoder layers that process
input text in both directions simultaneously. BERT’s architecture comes in two variants:
BERTgasg (12 layers, 12 attention heads, 768 hidden size, 110M parameters) and BERTy arge
(24 layers, 16 attention heads, 1024 hidden size, 340M parameters), both pre-trained on 3.2B
words from Wikipedia and BooksCorpus [317].

BERT’s input representation combines three embeddings as shown in the Figure 8: to-
ken embeddings (using WordPiece tokenization with a vocabulary of size 30K), position
embeddings (encoding token position in the sequence), and segment embeddings (distin-
guishing between sentence pairs).

RoBERTa (Robustly Optimized BERT Approach) [192] represents a significant enhance-
ment of the BERT architecture through several carefully designed optimizations. One of the
key innovations is the implementation of dynamic masking, where the model generates
new masking patterns each time a sequence is presented during training. This contrasts
with BERT’s static masking approach and helps prevent the model from memorizing spe-
cific mask patterns, leading to more robust learning.

1 nputTo kens [cLs] my ‘ dog ‘ is ‘ cute ‘ [SEP] ‘ he likes ‘ play ‘ #ing ‘ [SEP] ‘
TOk en Embedding s Etok Etok ‘ Etok Etok ‘ Etok ‘ Etok ‘ Etok ‘ Etok ‘ Etok ‘ Etok ‘ Etok ‘
+ + + ¥ T + + T + + +
POSitiO”Embeddinys Ey ‘ E; ‘ E3 ‘ Eq ‘ Es ‘ 3 ‘ E; ‘ Eg ‘ Eo ‘ E1o ‘ En ‘
+ + + + + + + + + + +
SegmentEmbeddmgs Ea ‘ Ea ‘ Ea ‘ Ea ‘ Ea ‘ Ea ‘ Ep ‘ Ep ‘ Ep ‘ Ep ‘ Ep ‘
F’inalEmbeddings ‘ E1 ‘ E; ‘ E3 ‘ Eq ‘ Es ‘ Eq ‘ E; ‘ Eg ‘ Eo ‘ E1o ‘ En ‘

Figure 8: BERT input representation showing the combination of token, position, and seg-
ment embeddings. The final embedding for each token is the sum of its corresponding
token embedding, position embedding, and segment embedding. [MASK] tokens are used
for masked language modeling training.

A crucial modification was the elimination of BERT’s NSP task. This seemingly simple
change had profound implications: it not only streamlined the training process but also
allowed for larger batch sizes, significantly improving training efficiency. The experiments
also show that NSP’s benefits were minimal compared to the computational overhead it
introduced.

RoBERTa also refined the tokenization strategy by implementing byte-pair encoding
(BPE) with a larger vocabulary of 50K tokens, enabling more nuanced text representa-
tion. While maintaining the same architectural scale as BERT srgg with 355M parameters,
RoBERTa’s training process was substantially more extensive, utilizing a massive 160GB
text corpus (compared to BERT’s 16GB). This corpus included not only BERT’s original
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training data but also additional datasets like Common Crawl News [114] and OpenWeb-
Text [102], contributing to its improved performance across various NLP tasks.

The success of ROBERTa’s optimized training approach inspired several language-specific
adaptations, particularly for French. CamemBERT [199] emerged as a significant French
language model, applying RoBERTa’s architecture and training methodology to French
text from the OSCAR corpus [221]. Unlike multilingual models that often compromise
performance due to vocabulary distribution across languages, CamemBERT was specifi-
cally designed for French, achieving state-of-the-art performance on French NLP bench-
marks. Similarly, FlauBERT [174] represents another notable French adaptation, incor-
porating both RoBERTa’s architectural improvements and training strategies while being
trained on diverse French corpora. Both models demonstrate the effectiveness of adapting
proven architectural innovations to specific linguistic contexts, validating the transferabil-
ity of RoOBERTa’s key improvements across different languages and domains.

These modifications, combined with optimized hyperparameters and longer training
times, resulted in a model that consistently outperformed BERT on benchmark tasks.

A key limitation of BERT and its variants is the quadratic computational complexity of
self-attention with respect to sequence length, restricting input sequences to 512 tokens.

Decoder-only / Auto-regressive Models: GPT and variants Autoregressive language
modeling, used in GPT-style models [236, 237], trains the model to predict the next token
given all previous tokens in the sequence, as shown in the Figure 9. This objective naturally
aligns with the way humans process language left-to-right (in most languages), making
it particularly effective for text generation tasks. The model learns to capture complex
dependencies and patterns in language by repeatedly predicting the next token in context
[38].

The Generative Pre-trained Transformer family of models [236] pioneered the use of
transformer decoders for generative pre-training. The original GPT architecture consists
of 12 transformer decoder layers, 12 attention heads, and a hidden size of 768, using BPE
tokenization with a 40K vocabulary. Like BERT, GPT follows a two-stage approach: pre-
training and fine-tuning. During pre-training, the model uses Causal Language Modeling
on continuous sequences of 512 tokens, initially trained on the BooksCorpus dataset.

GPT-2 [237] introduced significant innovations in multi-task learning and zero-shot
transfer. Rather than traditional fine-tuning, GPT-2 treated task-specific learning as unsu-
pervised pre-training examples. The model was trained on WebText, a dataset introduced
in the same article and carefully curated from web pages taken from Reddit’s outbound
links that received positive feedback from the community, chosen for content quality and
for the naturally occurring demonstrations of various tasks in varied domains and contexts.
This dataset results in 8 million documents for a total of 40 GB of text after de-duplication
and cleaning.
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Input: I like | cats | more | than
1 1 1 { l

Autoregressive Language Model

\

Output: dogs

dogs: 0.7, birds: 0.2, fish: 0.1

Figure 9: Autoregressive Language Modeling predicts the next token based on previous
context.

GPT-2 pioneered the use of prompting or conditioning, where task instructions are
prepended to the input sequence, enabling zero-shot task adaptation to perform multiple
tasks such as reading comprehension, translation, summarization and question answering
without explicit fine-tuning.

GPT-3 [38] scaled this approach dramatically to 175 billion parameters, trained on 300
billion tokens from diverse sources including filtered Common Crawl (410B tokens), Web-
Text2 (19B tokens), Booksl and Books2 (67B tokens combined), and English Wikipedia.
The model introduced various prompting paradigms: few-shot (using multiple examples),
one-shot (single example), and zero-shot (task description only) learning.

The rapid evolution of increasingly large autoregressive models led to important ques-
tions about the relation between data and parameters, also called scaling laws. One of the
first contributions in this direction is the Chinchilla scaling law [125] which suggests that
model parameters and training tokens should scale proportionally for optimal compute
efficiency, revising earlier assumptions about faster parameter scaling. This insight influ-
enced the development of subsequent models like BLOOM [292], PaLM [56], OPT [312],
and later on LLaMA [267], each accompanied by instruction-tuned variants (BloomZ [207],
Flan-PalLM [59], OPT-IML [134] and Alpaca [259]) optimized for zero- and few-shot per-
formance with natural language instructions.

These developments demonstrated that scale, combined with sophisticated prompting
techniques, enables powerful general-purpose language capabilities [219, 138, 28]. The
emergence of prompt-based fine-tuning, also called in-context learning (ICL), has made
the need for adapting the model parameters to newer domains, data distribution, or tasks
less obvious [86], has further enhanced the adaptability of these models to specific tasks
while maintaining their general-purpose capabilities.

Encoder-Decoder Models: T5 and BART Encoder-decoder models are a fundamental
architecture in NLP, where an encoder transforms an input sequence into an intermediate
representation, and a decoder generates an output sequence from this representation. This
architecture is particularly effective for tasks such as machine translation, text summariza-
tion, and text generation.
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Text-to-Text Transfer Transformer (T5) [239] unified various NLP tasks into a single
text-to-text format, where both inputs and outputs are treated as text strings. This unifica-
tion is achieved through task-specific prefixes (e.g., "summarize:" for summarization, "sst2
sentence:" for sentiment analysis) that are prepended to input texts, building upon GPT’s
prompting approach. T5 was pre-trained on both unsupervised and supervised tasks, using
the massive C4 (Colossal Clean Crawled Corpus) [239] dataset made of 750GB of cleaned
Common Crawl data, along with supervised tasks from GLUE [279] and SuperGLUE [278]
benchmarks.

Original: ‘ The H cat “ sat “ on H the H mat ‘today‘

Encoder Input: The | cat | <X>| on | the | <Y> | today
SN\

Bidirectional Encoder

Autoregressive Decoder

/ \Y\

Decoder Target: <X> at

Figure 10: Encoder-Decoder training objective with span corruption. The encoder pro-
cesses text with corrupted spans (replaced by sentinel tokens <X>, <Y>), while the decoder
learns to reconstruct the original spans. This approach combines BERT-style masking with
sequence-to-sequence learning.

T5’s pre-training introduced span corruption, where randomly sampled spans covering
15% of input tokens are replaced with unique sentinel tokens, offering a more structured
alternative to BERT’s random masking. During training, the encoder processes the cor-
rupted text while the decoder reconstructs the original spans, with targets consisting of
the removed tokens delimited by their associated sentinel tokens as shown in Figure 10.
The model has evolved into several variants, including mT5 [299] for multilingual tasks
(supporting 101 languages), UL2 [260] with diverse pre-training objectives, and instruction-
tuned versions like Flan-T5 [59], Tk-Instruct [283], T0 [246] and Flan-UL2, available in sizes
ranging from millions to billions of parameters.

BART [178] combined the bidirectional encoder of BERT with the autoregressive de-
coder of GPT, featuring 12 layers in both encoder and decoder with a 1024 hidden size. Its
pre-training involves sophisticated text corruption strategies: text infilling, where spans
of text with lengths drawn from a Poisson distribution (A = 3) are replaced with single
mask tokens, and sentence permutation, which randomly reorders document sentences.
Using the same BPE tokenization and training data as ROBERTa, BART excels at both un-
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derstanding and generation tasks, particularly in sequence-to-sequence applications like
summarization and translation.

The encoder-decoder architecture’s versatility stems from its natural separation of un-
derstanding and generation: the encoder captures semantic and structural information from
the source text into a continuous representation (context), while the decoder generates tar-
get text by considering both this encoded context and its previously generated tokens. This
architecture has proven particularly effective for tasks requiring both deep understanding
and structured generation, such as machine translation, text generation, and summariza-
tion, making it a more effective approach which allows to obtain better performances until
the release of ChatGPT and Llama.

Pre-training and Model Adaptation Strategies for Healthcare

Adapting LLM for healthcare applications presents unique challenges in bridging general
language capabilities with specialized medical knowledge. These adaptation strategies must
address the complexity of medical terminology while ensuring models can process diverse
clinical document formats, including progress notes, discharge summaries, and diagnostic
reports. Successful adaptation enables models to generate outputs that align with medical
reasoning patterns and documentation standards.

Pre-training Approaches Two principal paradigms guide the adaptation of language
models for healthcare applications:

Continual pre-training offers an alternative strategy that builds upon existing general-
purpose language models by extending their training with medical domain data. This trans-
fer learning approach preserves the model’s general language understanding and tokeniza-
tion process while incorporating specialized medical knowledge using sources like PubMed
or MIMIC [142]. This approach is relatively affordable and was used as the first method to
obtain a domain-specific variant of BERT in healthcare with BioBERT [176], Clinical BERT
[5], and BlueBERT [228].

Pre-training from scratch domain-specific models, on the other hand involves train-
ing them exclusively on medical corpora, enabling them to develop specialized vocabulary
and embed domain-specific knowledge. This resource-intensive approach requires substan-
tial medical text data, typically drawn from sources like PubMed abstracts, complete medi-
cal articles, and when available, clinical documentation from electronic health records. This
foundational training establishes broad medical knowledge and terminology comprehen-
sion, creating a base for specialized applications. A significant challenge in this approach
is developing effective tokenization strategies to handle complex medical terminology, ab-
breviations, and specialized nomenclature. Among the first language models, architecture
adaptation from-scratch to the healthcare domains arrived with BERT and its variants like
PubMedBERT [109] and SciBERT [26].
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In-Context Learning In-context learning has emerged with GPT-2 [37] as a powerful
paradigm for learning new capabilities and knowledge on-the-fly, making it quite aligned
with sparse and diversified medical applications, allowing models to adapt to specific medi-
cal tasks without fine-tuning. Models like GPT-4 [220] and Med-PaLM 2 [254] have demon-
strated remarkable capabilities in few-shot medical reasoning [217], where they can lever-
age a small number of examples to perform complex medical tasks (See Figure 11). This
approach has been particularly effective in the clinical context, where models can analyze
patient cases by referencing similar examples provided in the prompt.

Input: Patient with

Input: Patient with Input: Patient with

chest pain, shortness of
breath
Output: Evaluate for

fever, cough, fatigue headache, neck stiffness

Output: Consider upper Output: Screen for

respiratory infection meningitis

acute coronary syndrome

N ~

Input: Patient
New . L.

with fever, joint LM
Query |

pain, rash

Model | Output: Evaluate for systemic

Response | lupus

Figure 11: Few-shot learning in medical diagnosis with a number of examples set to three.
The language model learns from a few example cases (also called "shots") and applies this
knowledge to classify the input or generate appropriate responses for new medical cases.
Each example contains an input-output pair showing symptoms and corresponding diag-
nostic considerations.

Recent studies have shown that carefully crafted medical examples can significantly im-
prove diagnostic accuracy and clinical reasoning. For instance, ChatDoctor [181] and Doc-
torGLM [298] have demonstrated that providing structured medical examples with detailed
symptom-diagnosis relationships helps models better understand clinical presentations and
generate more accurate medical assessments.

Chain-of-Thought Reasoning Chain-of-Thought (CoT) [285] prompting has revolution-
ized medical reasoning in LLM by enabling step-by-step clinical reasoning processes (see
Figure 12). This approach mirrors the systematic thinking patterns of healthcare profes-
sionals, breaking down complex medical decision-making into logical steps.

Medical reasoning benefits significantly from CoT, where models explicitly articulate
the progression from symptoms to the final task (e.g, differential diagnoses or codification),
considering various factors such as patient history, lab results, and potential complications.
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Clinical Case: 65—yee'1r— Step 1: Identify key symptoms:
old female presents with: . .
. Acute chest pain ; Dyspnea

- Sudden chest pain Medical Knowl-

- Shortness of breath edge:

- History of hyperten- Step 2: Consider risk factors: - Wells criteria

sion Age > 60 ; Recent immobilization 1. PERC rule

- Recent long flight l - Risk stratification
Step 3: Form differential: PE vs. | .~ Treatment guide-
ACS vs. Aortic dissection lines

7

’
7
’

Step 4: Evaluate urgency: High-

risk presentation

Assessment & Plan: 1. High suspicion for Pulmonary Embolism ; 2. Im-
mediate CT-PA needed ; 3. Consider empiric anticoagulation ; 4. Urgent ED
evaluation

Figure 12: Chain-of-Thought reasoning in medical diagnosis. The model follows a system-
atic approach to clinical reasoning, breaking down the diagnostic process into logical steps
while incorporating relevant medical knowledge. Each step builds upon previous observa-
tions and considerations, leading to a comprehensive assessment and management plan.
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0.4.5 Downstream Tasks

NLP encompasses a wide range of computational tasks designed to understand, analyze,
and generate human language. These tasks form the foundation for various applications in
text processing and analysis, ranging from basic linguistic analysis to complex reasoning
tasks. While many NLP tasks were initially developed for general domain text, they have
been adapted and specialized for various domains, including healthcare.

Named Entity Recognition Named Entity Recognition (NER) is a fundamental NLP task
that aims to identify and classify named entities in text into predefined categories such as
person names, organizations, locations, medical codes, time expressions, quantities, and
more (as shown in Figure 13). In the biomedical domain, NER is particularly valuable for
extracting structured information from unstructured clinical notes, research papers, and
other medical texts. This task presents unique challenges in the biomedical context due
to the domain’s specialized terminology, frequent abbreviations, complex naming conven-
tions, and the high cost of annotation requiring expert knowledge.

The patient presents with and has been taking
since their . Lab tests revealed elevated levels of
in the

Figure 13: Examples of Named Entity Recognition (NER) in healthcare domains.

For French biomedical texts, several datasets are available: QUAERO [211] contains
103,056 words from drug leaflets and biomedical titles, annotated with 10 entity categories
corresponding to UMLS [188] Semantic Groups, with 26,409 entity annotations mapped to
5,797 unique UMLS concepts. E3C [196] provides clinical entity and temporal information
annotations, split into 70/10/20 for train/validation/test as shown in Table 1. Mantra-GSC
[155] offers biomedical NER annotations from three sources (Medline with 11 classes, EMEA
and Patents with 10 classes), similarly split 70/10/20. DEFT-2021 [107] contains 275 clinical
cases with 13 types of entities. The PxCorpus [153] includes 1,981 transcribed dialogues
with 38 NER classes. For English, BC5CDR [180] serves as a benchmark for chemical and
disease entity recognition, while the NCBI-disease [85] corpus targets disease name recog-
nition and normalization.

Subset Train Validation Test
Clinical 87.38 % of layer 2 12.62 % of layer 2 100 % of layer 1
Temporal 70 % of layer 1 10 % of layer 1 20 % of layer 1

Table 1: Description of the sources for E3C.

25



CHAPTER 0

Relation Extraction Relation extraction (RE) is a natural language processing task that
aims to identify and classify semantic relationships between entities mentioned in text as
shown in the Figure 14. In the biomedical domain, this typically involves detecting mean-
ingful associations between biomedical entities such as genes, proteins, diseases, drugs, and
symptoms. For example, a relation extraction system might identify that a particular gene
"causes" a disease, a drug "treats" a condition, or a protein "interacts with" another pro-
tein. This task is more complex than named entity recognition as it requires understanding
not just what entities are present, but how they relate to each other semantically. Relation
extraction is crucial for building structured knowledge bases from unstructured text, en-
abling advanced biomedical applications like drug discovery, clinical decision support, and
literature-based discovery.

Studies show that BRCA1 mutations increase the risk of breast/'cancer .

increases_risk

Figure 14: Example of Relation Extraction with an angled arrow showing the relationship
between entities.

Currently, relation extraction tasks are primarily represented by English-language datasets,
with the Genetic Association Database (GAD) [36] serving as a comprehensive resource of
human genetic association studies, providing annotations of gene-disease relationships ex-
tracted from biomedical literature.

Text Classification Text classification is a fundamental NLP task that involves catego-
rizing text documents into predefined classes or categories. In the biomedical domain, this
typically includes assigning medical specialties, disease codes, or thematic categories to
clinical notes, research papers, or patient records. Text classification tasks generally fall
into two main types: multi-class and multi-label classification. In multi-class classification,
each document belongs to exactly one category from a set of mutually exclusive classes
(e.g., assigning a single primary diagnosis). In contrast, multi-label classification allows
documents to simultaneously belong to multiple categories (e.g., a clinical case exhibiting
multiple conditions or relevant to several medical specialties). The latter is particularly
common in biomedical contexts, where patients often present with comorbidities and doc-
uments frequently span multiple medical domains.

French healthcare classification datasets include MorFITT [171] (3,624 biomedical ab-
stracts annotated across 12 medical specialties, totaling 5,116 annotations), DiaMed [166]
(739 clinical cases annotated with 22 ICD-10 chapters, DEFT-2021 [107] (275 clinical cases
annotated with 23 MeSH axes), and PxCorpus (1,981 recordings with 4 intent classes). For
English, datasets include HoC [22], LitCovid [47], PubHealth [210], and the N2C2 2006
Smokers [272] dataset.

Question Answering The medical domain benefits from various question-answering (QA)
datasets, each with distinct characteristics. These datasets cover a broad spectrum of tasks,
ranging from pharmacy professional examinations (FrenchMedMCQA) to medical board
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questions (MedMCQA), and biomedical research comprehension (PubMedQA). The formats
vary considerably, including multiple-choice questions with single or multiple answers,
yes/no/maybe questions, and questions requiring in-depth analysis of clinical trials. These
datasets are also linguistically diverse, with some also available in French, English, or Chi-
nese, reflecting the international nature of medical research.

FrenchMedMCQA [163] represents the first French medical QA dataset, containing 3,105
pharmacy specialization exam questions. Each question offers 5 options (A through E) and
comes from real French pharmacy specialization diplomas. The dataset balances between
single-answer (1,080) and multiple-answer (2,025) questions, providing a diverse testing
ground for French medical language understanding.

MedMCQA [222] stands as a comprehensive medical dataset comprising 193,155 ques-
tions from AIIMS and NEET PG exams. It spans 21 medical subjects across 2.4k healthcare
topics, with each question accompanied by detailed explanations. The dataset’s diversity is
reflected in its question types, including diagnosis (16.39%), treatment (14.36%), and logical
reasoning (28.83%), supporting both single and multiple correct answers.

PubMedQA [140] focuses on biomedical research comprehension, featuring 211.3k ar-
tificially generated questions alongside 1,000 expert-annotated ones. Questions follow a
yes/no/maybe format and are derived from PubMed research articles and abstracts. The
dataset emphasizes complex reasoning, with 57.5% of questions requiring inter-group com-
parisons and 96.5% demanding quantitative reasoning skills.

MMLU’s [120] medical component consists of 1,089 questions across 6 medical subjects.
As part of a broader evaluation benchmark, this multiple-choice dataset tests both basic and
advanced medical knowledge, designed specifically to evaluate model capabilities against
human expertise levels.

MedQA [139] offers a multilingual perspective on medical board exams, featuring USMLE
questions in English (10,178 training + 1,273 test samples) with parallel datasets in simpli-
fied and traditional Chinese. The dataset emphasizes clinical reasoning and knowledge
retrieval, complemented by accompanying medical textbook knowledge sources.

SciQ [287] presents a crowdsourced approach to science questions, including medical
topics. Its multiple-choice format derives questions from science textbooks, with most ques-
tions including their source passages, ensuring context-rich learning opportunities.

BioASQ 7b [268] specializes in biomedical question-answering, incorporating various
question types including factoid, yes/no, and list-type questions. The dataset demands pre-
cise answer extraction and tests comprehensive biomedical domain expertise.

Evidence Inference 2.0 [82] targets clinical trial analysis through 12,616 prompts derived
from 3,346 articles. It employs Intervention-Comparator-Outcome (ICO) triplets, requiring
sophisticated understanding of clinical trial reports and their implications for treatment
effects.

Semantic Similarity Semantic similarity is a NLP task that aims to quantify the degree
of semantic relatedness between texts, ranging from words and phrases to entire docu-
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ments. In the biomedical domain, this task is particularly valuable for identifying related
medical concepts, finding similar clinical cases, or determining if two medical descriptions
refer to the same condition despite using different terminology. Unlike classification, which
assigns discrete categories, semantic similarity produces continuous scores that reflect the
gradation of relatedness. These scores typically range from 0 (completely unrelated) to a
maximum value (identical or perfectly related). Semantic similarity assessment in medi-
cal texts is especially challenging due to the domain’s complex terminology, where similar
concepts may be expressed using entirely different vocabularies, and subtle differences in
description might indicate significant clinical distinctions.

In French, CLISTER [123] provides 1,000 manually annotated clinical case pairs with
similarity scores (0-5), based on three dimensions: surface similarity, semantic similarity of
medical concepts, and clinical compatibility. DEFT-2020 [40] offers similarity scoring (0-5)
across different medical text types including clinical texts, encyclopedia entries, and drug
labels, with annotations based on annotator intuition. The corpus contains 1,010 sentence
pairs from the CLEAR corpus [104].

Natural Language Inference Natural Language Inference (NLI), also known as textual
entailment, is a task that evaluates the logical relationship between a premise (a given state-
ment) and a hypothesis (a potential conclusion). The goal is to determine whether the
hypothesis can be inferred from the premise. Typically, the relationship is classified into
three categories: entailment (the hypothesis logically follows from the premise), contra-
diction (the hypothesis contradicts the premise), or neutral (the premise neither confirms
nor contradicts the hypothesis). In the biomedical domain, NLI is particularly valuable for
verifying clinical reasoning, checking if conclusions drawn from patient information are
valid, and assessing whether medical texts contain contradictory information. This task
requires deep semantic understanding and often domain-specific knowledge to correctly
identify logical relationships between medical statements.

The English healthcare-specific MedNLI dataset [251] focuses on clinical domain infer-
ence using MIMIC-III notes, with premises drawn from the Past Medical History sections
and hypotheses generated by clinicians. The dataset contains 14,049 sentence pairs (11,232
train, 1,395 dev, 1,422 test) with entailment annotations. SciTail [149] provides 27,000 entail-
ment pairs derived from science question answering tasks, where hypotheses are created
from science questions and correct answer candidates, while premises come from relevant
web sentences. The dataset is unique in using naturally occurring sentences rather than
artificially created ones. Currently, there are no prominent French datasets specifically
dedicated to natural language inference in the medical domain.

Part-Of-Speech  Part-of-Speech (POS) tagging is a NLP task that involves labeling each
word in a text with its corresponding grammatical category, such as noun, verb, adjective,
or adverb as shown in Figure 15. In the biomedical domain, POS tagging serves as a prepro-
cessing step for many advanced NLP applications, including Named Entity Recognition, syn-
tactic parsing, and information extraction. Medical texts present unique challenges for POS
tagging due to their specialized vocabulary, complex noun phrases, abbreviated terms, and
domain-specific syntactic patterns. Accurate POS tagging in clinical and biomedical texts
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enables better understanding of the grammatical structure of medical language, which in
turn improves the performance of downstream tasks like relation extraction and semantic

analysis.
o

patientyouy hypertensionyoy
depuis;y:y § plusieursyoyy § annéesyouy

Figure 15: Example of Part-of-Speech (POS) tagging in French medical text. Each word is
highlighted with a color corresponding to its grammatical category, with tiny subscripts
indicating the specific part of speech.

Two significant French corpora provide part-of-speech annotations for medical texts.
The CAS corpus [105] consists of 3,790 clinical cases with 31 distinct POS tags. These an-
notations were automatically generated using the Tagex tool' and subsequently validated
against manual annotations, achieving a high precision of 98%. The ESSAI corpus [73] en-
compasses 7,247 clinical trial protocols and CAS corpus [105] comprises 3,790 clinical cases,
annotated with a more granular set of 41 POS tags using TreeTagger [247]. Neither dataset
originally included predefined data splits; therefore, both were randomly partitioned fol-
lowing the same distribution: 70% for training, 10% for validation, and 20% for testing pur-
poses.

https://allgo.inria.fr/app/tagex
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0.4.6 Downstream Tasks Metrics

Evaluating NLP downstream tasks requires specialized metrics that capture the unique
characteristics of each task. Here, we present the primary metrics used to assess model
performance across various textual NLP tasks.

Named Entity Recognition For NER, the SeqEval F1 score is the standard metric, which
extends traditional F1 to sequence labeling by considering entity-level rather than token-
level performance:

Precision X Recall
F1 =2 x — (1)
Precision + Recall

where Precision measures the percentage of predicted entities that are correct:

o True Positives
Precision = — — (2)
True Positives + False Positives

and Recall measures the percentage of actual entities that were correctly identified:

True Positives
Recall = — - 3)
True Positives + False Negatives

Unlike token-level metrics, SeqEval only counts an entity as correct if both its span
boundaries and entity type are correctly predicted.

Accuracy is also sometimes reported, measuring the proportion of correctly predicted
entities among all predictions:

Number of correctly predicted entities

(4)

Accuracy =
y Total number of entities

Text Classification For text classification tasks, Weighted F1 balances precision and re-
call while accounting for class imbalance:

Weighted F1 = ) " w; x F1i (5)

i=1

where w; represents the proportion of samples belonging to class 7, and F1; is the F1
score for that class ¢. This metric is particularly valuable in medical contexts where cer-
tain conditions or specialties may be underrepresented but equally important to identify
correctly.
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Question Answering Question answering tasks utilize specialized metrics depending on
the answer format. For multiple-choice questions, Exact Match Rate (EMR) measures the
percentage of questions where the model’s prediction exactly matches the correct answer:

N
1 ..
EMR = 7 3 (71 = 1) ©)

where J¥ is the indicator function, ¥: is the predicted answer, and y; is the correct answer.

For multiple-answer questions, Hamming Score evaluates partial correctness:

Yiny,|

Hamming Score = Z ’|Y v (7)
U

where Y7 is the set of predicted answers and Y; is the set of correct answers for question

Semantic Similarity For semantic similarity tasks, Euclidean Distance-based Relative
Metric (EDRM) measures how well a model’s predicted similarity scores align with human
judgments:

Zf\[1<sz — 5i)?
i = 15—

EDRM =1 —

(®)

where s; is the gold standard similarity score, si is the predicted score, and 5 is the mean
of all gold standard scores.

Spearman’s rank correlation coefficient assesses how well the ranking of text pairs by
predicted similarity aligns with human judgments:

63, A

N(N?—1) ©)

p=1-—=—=

where d; is the difference between the ranks of corresponding predicted and gold stan-
dard similarity scores, and NN is the number of text pairs.

Part-Of-Speech Tagging POS tagging employs SeqEval F1 similar to NER, but with eval-
uation conducted at the token level rather than entity level:

Number of correctly tagged tokens

(10)

A =
ccuracy Total number of tokens
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Additionally, per-class F1 scores are calculated to assess performance on specific gram-
matical categories, which is particularly important for identifying specialized medical ter-
minology with the correct grammatical function.

These comprehensive metrics provide a robust framework for evaluating model perfor-
mance across a diverse range of textual NLP tasks, enabling precise assessment of language
understanding capabilities in specialized domains such as healthcare.
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0.5 Speech Processing

0.5.1 Raw Signal

Audio signals are fundamentally represented as numerical sequences capturing sound am-
plitude variations over time. The temporal resolution of these signals is defined by the
sampling rate, measured in Hz (samples per second), with higher rates corresponding to
increased audio fidelity.

The precision of amplitude measurement is determined by bit depth, which defines the
number of possible discrete values each sample can take. An 8-bit audio sample represents
28 = 256 distinct amplitude levels, while professional recording equipment typically uses
16-bit (65,536 levels) or 24-bit (16,777,216 levels) depth for higher fidelity. These higher bit
depths capture nuances in vocal timbre and acoustic characteristics. Recording format also
matters: mono (single channel) serves basic voice recordings, while stereo (dual channel)
captures directional and spatial sound characteristics.

The information density of audio creates significant storage challenges. A 24-hour
continuous recording at 16 kHz with 16-bit depth requires approximately 2.7GB, while its
textual transcription might occupy only 100KB, a 27,000 reduction factor. Similarly, a 15-
minute high-quality stereo recording at 44.1 kHz with 24-bit depth requires about 150MB,
compared to just 5KB for a text summary. This disparity impacts storage infrastructure,
computational resources for processing, research budgets, data pipeline design, and imple-
mentation of efficient storage solutions for speech projects.

0.5.2 Spectrogram

While raw audio signals capture amplitude variations over time, they don’t directly repre-
sent critical features such as frequency components and phonetic characteristics. In speech
analysis, the spectrogram provides a sophisticated visualization of frequency distributions
over time, offering crucial insights for various linguistic and acoustic applications. This
frequency-time representation is particularly valuable in speech processing, where subtle
acoustic patterns can indicate specific phonetic elements.

The spectrogram is constructed through sequential frequency analysis of short time
windows, typically using the Fourier transform [93]. Each spectrum represents the fre-
quency composition within a specific time window, revealing linguistically significant pat-
terns. In speech analysis, vowels typically show formant frequencies with the first formant
(F1) between 273-805Hz and the second formant (F2) between 770-2524Hz (as measured
in French vowels produced by female speakers [201]), while fricative consonants like /s/
produce distinctive energy in higher frequency bands around 4000-8000Hz [50].

The temporal evolution of these frequency patterns creates a comprehensive spectro-
gram, visualized as a frequency/time image. In speech applications, this representation
enables to identify and track various phonetic elements and speech characteristics. For ex-
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ample, in speaker identification or emotion recognition, the fundamental frequency (F0)
patterns differ significantly between speakers: adult male voices typically show F0 around
100-150Hz, while females range from 170-220Hz [92, 234]. Variations in these patterns can
also indicate different speaking styles [8], emotional states [25], or accent characteristics
[262].

For enhanced perceptual relevance, frequency components are often converted to the
mel scale, creating mel-spectrograms that better align with human auditory perception.
This transformation is particularly valuable in speech recognition and synthesis, as it bet-
ter represents how listeners actually perceive sound. The Mel-Frequency Cepstral Coeffi-
cients (MFCC) [76] provide an even more refined representation by applying a discrete co-
sine transform to the mel-scaled frequencies. MFCCs have proven especially useful across
multiple speech domains.

0.5.3 Speech Feature Extraction

Self-Supervised Learning (SSL) represents a paradigm shift in machine learning [277, 66]
where models learn from the inherent structure of data rather than human-annotated labels,
fundamentally transforming speech feature extraction. While traditional approaches relied
on hand-crafted features like MFCCs, SSL has emerged as a powerful technique for learning
robust speech representations from vast amounts of unlabeled audio data [190, 46]. These
learned feature extractors capture more nuanced aspects of speech signals, forming the
foundation of modern speech processing systems. SSL objectives can be broadly categorized
into contrastive approaches, which maximize similarity between related speech segments
while minimizing similarity with unrelated ones [274], and non-contrastive approaches,
which often involve reconstruction tasks or predictive modeling of speech features [62].
This self-supervised paradigm has proven particularly effective when combined with deep
learning architectures, enabling systems to extract meaningful representations that capture
both acoustic and linguistic information without requiring extensive labeled datasets [288].

In the following sections, we will explore two main types of learned representations:
continuous representations, which capture information in a dense and continuous manner,
and discrete representations, which encode information as distinct, quantized units.

Continuous Representation

Recent advances in speech SSL models have enabled the extraction of high-quality contin-
uous representations from speech signals. These learned representations, or embeddings,
capture rich acoustic and linguistic information that can be leveraged for downstream tasks.

Wav2Vec. Wav2vec 2.0 [17] represents a significant advancement in speech SSL, intro-
ducing a powerful architecture that combines feature extraction with contextual represen-
tation learning. The model employs a Convolutional Neural Network (CNN) encoder to
extract latent speech representations from a raw signal, followed by a quantization module
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and a transformer encoder. Its training objective involves predicting quantized latent rep-
resentations of masked regions, using a contrastive loss function where negative examples
are sampled from other masked regions within the same sequence. This architecture has
demonstrated remarkable performance, particularly in Automatic Speech Recognition (ASR)
tasks, achieving state-of-the-art results with minimal labeled data, as little as 10 minutes of
transcribed speech [15].

L Contrastive loss
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Figure 16: Architecture of wav2vec 2.0. The model processes raw waveform through a CNN

raw waveform

encoder to obtain latent speech representations, which are then quantized. A Transformer
processes these representations with masked prediction, using a contrastive loss between
the context representations and quantized targets.

HuBERT. HuBERT (Hidden-Unit BERT) [127] introduces an innovative approach to speech
SSL by incorporating iterative pseudo-labeling. While sharing architectural similarities
with Wav2Vec 2.0, HuBERT distinguishes itself through its unique training objective [127].
Instead of contrastive learning, it employs a prediction-based approach where the model
learns to predict cluster assignments of masked regions [127]. These clusters are initially
derived from MFCC features and later refined using the model’s own representations in
subsequent iterations. This iterative refinement process enables HUBERT to capture in-
creasingly sophisticated speech patterns, leading to superior performance in various speech
processing tasks [288].

WavLM. WavLM [48] builds upon HuBERT’s framework while introducing significant
enhancements for real-world speech scenarios. It maintains the masked prediction objec-
tive but extends it with a denoising component and explicit training on diverse speech
conditions, including clean, noisy, and overlapping speech. Architecturally, WavLM intro-
duces a gated relative position bias in its self-attention mechanism to better model multi-
speaker scenarios. Like its predecessors, WavLM employs a CNN encoder that converts raw
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waveforms into latent representations with a 20ms stride, followed by transformer layers
for contextualization. The resulting embeddings (768 or 1024-dimensional, depending on
model size) capture both acoustic and linguistic features, with different layers specializing
in different aspects of speech [250].

Whisper. Unlike the previously discussed models that focus on self-supervised pre-training
objectives, Whisper [235] employs a supervised approach trained on 680,000 hours of la-
beled multilingual and multitask data. While it shares the encoder-decoder transformer ar-
chitecture common in modern speech systems, Whisper distinguishes itself through its in-
put processing and training methodology. Rather than operating directly on raw waveforms
like Wav2Vec 2.0, HuBERT, and WavLM, Whisper first converts audio into mel-spectrogram
features. Its encoder processes these spectrograms to produce contextualized embeddings
where each vector represents 25ms of speech with a 10ms stride, offering denser temporal
coverage than WavLM’s 20ms stride. The encoder generates 1024-dimensional feature vec-
tors (in the large model) that capture both local acoustic properties and broader linguistic
context. What truly sets Whisper apart is its multitask training approach, which enables a
single model to perform speech recognition, language identification, and translation across
99 languages.

Discrete Units

Speech Units

Traditional approaches to discrete speech representation often relied on phonetic units
or hand-crafted features. More recently, self-supervised learning has enabled the discov-
ery of discrete speech units directly from data [17, 52]. These learned units can capture
meaningful acoustic and linguistic patterns without requiring explicit phonetic annotations
[173]. For instance, Wav2Vec 2.0 introduced quantized speech representations through
Gumbel-Softmax quantization [17], while HuBERT employed iterative k-means clustering
to discover discrete units [127].

However, these discrete representations are primarily limited by their dependence on
vocoders for speech reconstruction [154]. Vocoders are required to convert the discrete
units back into continuous audio waveforms, introducing additional complexity and po-
tential quality degradation in the reconstruction process [154]. This limitation has moti-
vated the development of neural codec approaches that can both discretize and reconstruct
speech signals efficiently.

Neural Codecs

Neural codecs represent a significant advancement in speech processing, offering ef-
ficient discrete representations while maintaining high-quality reconstruction capabilities
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[307]. These models combine the benefits of discrete representations with end-to-end train-
ing, eliminating the need for separate vocoders.

EnCodec. EnCodec [87] is a neural audio codec that achieves state-of-the-art results
across multiple sampling rates (8 to 48 kHz) and bitrates (1.5 to 24 kbps). The model employs
a streaming convolutional encoder-decoder architecture with a quantized latent space using
Residual Vector Quantization (RVQ). A key innovation is its training approach that combines
reconstruction losses (in both time and frequency domains) with adversarial losses from a
multi-scale Short-Time Fourier Transform (STFT) discriminator, effectively reducing artifacts
in the reconstructed audio. EnCodec introduces a novel loss balancer mechanism that auto-
matically adjusts the weights of different loss terms based on their gradients, stabilizing the
challenging multi-objective training process. The model achieves real-time encoding and
decoding on a single CPU core while maintaining superior perceptual quality compared
to established codecs like Opus and EVS across various audio domains, including speech,
noisy speech, and music. Additionally, a lightweight Transformer model can be used for en-
tropy coding to further compress the representation by up to 40% while maintaining audio
quality.

SpeechTokenizer. SpeechTokenizer [313] introduces a unified approach to speech to-
kenization that hierarchically disentangles different aspects of speech information across
RVQ layers. The model adopts an encoder-decoder architecture with RVQ, where the
first layer captures semantic content while subsequent layers encode paralinguistic infor-
mation like timbre and prosody. Unlike previous approaches requiring separate tokeniz-
ers, SpeechTokenizer employs semantic distillation from HuBERT to guide the first RVQ
layer, enabling better alignment between tokens and linguistic content. The model uses
a convolution-based encoder-decoder network with a two-layer BiLong Short-Term Mem-
ory (LSTM) replacing EnCodec’s LSTM to enhance semantic modeling capabilities. Speech-
Tokenizer introduces a novel "D-axis" continuous distillation loss that calculates cosine
similarity across each dimension rather than at each timestep, providing richer supervi-
sion signals. Experiments on their proposed SLMTokBench benchmark demonstrate that
SpeechTokenizer achieves comparable reconstruction quality to EnCodec while showing
stronger performance on speech language modeling tasks. The first-layer tokens exhibit
high mutual information with text (significantly outperforming EnCodec’s first-layer to-
kens on Phone-Normalized Mutual Information), while the complete token set maintains
high-quality audio reconstruction capabilities, making it particularly suitable for unified
speech language models.

Mimi. Mimi [88] is a neural audio codec developed specifically for the Moshi speech-
text foundation model, designed to enable real-time dialogue applications. Unlike previous
approaches requiring separate encoders for semantic and acoustic tokens, Mimi introduces
a novel "split RVQ" architecture that addresses the semantic-acoustic trade-off. The model
builds on SoundStream and EnCodec’s SeaNet autoencoder design but adds Transformer
modules in the bottleneck (8 layers, 8 heads) to improve both audio quality and seman-
tic information capture. Mimi operates at 12.5Hz (one token per 80ms) with 8 quantizers
of 2048 codes each, resulting in a bitrate of 1.1kbps. A key innovation is its distillation
approach, where non-causal semantic information from WavLM is distilled into the first
level of quantization, while the remaining levels capture acoustic details. To prevent the
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semantic-acoustic trade-off from degrading audio quality, Mimi employs a split RVQ where
semantic information is distilled into a plain VQ, with a parallel 7-level RVQ for acoustic in-
formation, and their outputs are summed. This architecture maintains causal processing for
streaming applications while effectively combining semantic and acoustic information. An-
other notable finding is that training with adversarial losses only (removing reconstruction
losses) significantly improves subjective audio quality despite degrading objective metrics
[88].
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0.6 Multi-Modal Speech-Text Language Modeling

Speech constitutes a primary mode of human communication, yet it remains significantly
underrepresented in digital data compared to text. While text-based language models can
train on trillions of tokens harvested from the web, high-quality speech datasets are orders
of magnitude smaller. This data disparity creates a fundamental challenge for developing
robust speech understanding systems, particularly for domain-specific applications where
speech data is even more limited.

This asymmetry in data availability, however, opens up promising research directions.
By developing methods to effectively transfer the rich semantic knowledge embedded in
text-based models to the speech domain, we can potentially overcome the inherent limita-
tions of speech data scarcity. Recent breakthroughs in self-supervised learning have made
significant progress toward this goal, enabling models to extract powerful representations
from unlabeled speech. These approaches have yielded impressive results across various
speech processing tasks, including automatic speech recognition, speaker identification,
and emotion detection.

In this section, I present how these speech representations can be effectively integrated
with text-based language models to create unified multi-modal systems. By leveraging
the discrete speech tokens discussed earlier, we can develop architectures that process
both speech and text within a common framework. This integration enables more nat-
ural human-machine interactions and unlocks new capabilities in speech understanding,
generation, and translation that surpass what is possible with unimodal approaches.

0.6.1 Modality Integration

The integration of speech modalities into language models has evolved through two dis-
tinct phases, each articulated around the encoder-decoder architecture, marking significant
progress in the field and addressing different challenges in multi-modal processing.

Phase 1: Continuous Representation Integration

Early approaches to speech-text integration primarily relied on encoder-decoder architec-
tures like SpeechT5 [7] and Whisper [235]. These models established the initial bridge be-
tween speech and text processing, treating the conversion as a sequence-to-sequence task.
SpeechT5 introduced a unified-modal encoder-decoder framework that could handle var-
ious speech-text tasks, including ASR, Text-To-Speech (TTS), speech translation, and voice
conversion through a shared encoder-decoder architecture with task-specific adapters. Whis-
per demonstrated remarkable robustness by training on 680,000 hours of multilingual and
multitask supervised data, achieving strong zero-shot generalization to unseen datasets.

While these models achieved impressive results for their specific tasks, they suffered
from several limitations when considered as general-purpose speech-text interfaces. A sig-
nificant constraint was their decoder architecture, which typically lagged behind the rapid
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advancements in text language modeling. As the NLP community progressed from GPT-2-
scale models to much larger and more capable architectures, speech-text models continued
to use relatively simple decoders that couldn’t match the sophisticated generation and un-
derstanding capabilities of state-of-the-art text LLMs. This architectural gap limited their
ability to produce nuanced, contextually appropriate responses or to leverage the rich world
knowledge embedded in modern language models.

Models like Qwen-Audio [57] and SALMONN [258] demonstrated that continuous speech
features could be effectively processed by modern transformer architectures through spe-
cialized audio encoders and showed improvement by leveraging textual knowledge. Qwen-
Audio employed a unified architecture that processed both audio and text inputs by con-
necting a single audio encoder (initialized from Whisper-large-v2) to alarge language model
(Qwen-7B [19]), enabling zero-shot generalization across modalities. This approach al-
lowed Qwen-Audio to handle diverse audio types, including human speech, natural sounds,
music, and songs within a single model architecture.

A key innovation in Qwen-Audio was its multi-task training format framework, which
addressed the challenge of one-to-many mapping caused by variations in textual labels
across different datasets. By conditioning the decoder on a sequence of hierarchical tags
(including transcription tags, audio language tags, task tags, text language tags, and times-
tamp tags), Qwen-Audio enabled knowledge sharing between similar tasks while avoiding
interference. The model also incorporated speech recognition with word-level timestamp
prediction, which improved performance on grounding-based QA tasks.

SALMONN further advanced this approach by introducing a dual encoder structure
with a speech encoder from Whisper and a BEATs audio encoder, enabling the processing
of various audio types while maintaining alignment with text representations through a
window-level Q-Former connection module. This continuous representation approach of-
fered several advantages, including the ability to process various audio types beyond speech
(such as environmental sounds and music) and the preservation of rich signal information,
including prosody, speaker characteristics, and emotional content.

However, these continuous representations posed significant challenges for efficient
training and inference. Their high dimensionality, often hundreds or thousands of times
larger than text embeddings, resulted in substantial computational requirements and mem-
ory usage. This dimensionality gap created architectural challenges when integrating with
text-based models, often requiring complex projection layers or dimension reduction tech-
niques that could introduce information loss. Additionally, the lack of discretization made
it difficult to leverage the advances in text-based language modeling that rely on discrete
token prediction objectives.

Phase 2: Discrete Speech Tokens Integration

The current state-of-the-art approaches represent a significant evolution, utilizing discrete
speech tokens that enable more efficient integration with traditional language modeling
architectures. This discretization approach transforms the continuous speech signal into a
sequence of tokens from a finite vocabulary, similar to text tokenization, allowing speech
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to be processed using the same mechanisms developed for text language modeling and is
more suitable for causal language modeling.

Discrete tokens offer substantial computational efficiency by reducing the dimension-
ality of speech representations, leading to faster training and inference compared to con-
tinuous representations. Their architectural compatibility with existing LLM frameworks
is notable, as they align naturally with architectures optimized for processing discrete sym-
bols, enabling seamless integration without significant modifications. This unified vocab-
ulary approach allows multiple modalities to be handled within a common framework,
enabling models to learn cross-modal relationships more effectively while significantly re-
ducing memory requirements due to the compact nature of discrete representations.

Modern systems like GSLM [4], TWIST [116], and SpiritLM [215] demonstrate the ef-
fectiveness of discrete representations for speech language modeling:

GSLM (Generative Spoken Language Model) pioneered the approach of building purely
speech-based language models without relying on text supervision. The system consists
of three components: a speech tokenizer that converts raw audio into discrete units, a lan-
guage model trained on these units, and a unit-to-speech module for generation. GSLM
used HuBERT for feature extraction, followed by k-means clustering to create discrete to-
kens, achieving the best performance with 200 clusters at 50Hz. The model was trained on
6,000 hours of speech and demonstrated the ability to generate coherent speech continua-
tions while preserving speaker characteristics and prosodic elements that are typically lost
in text-based approaches. GSLM established benchmarks for evaluating speech language
models, including sWUGGY and sBLIMP for lexical and syntactic modeling,.

TWIST (Textually Warm-Initialized Speech Transformer Language Models) built upon
GSLM’s foundation by introducing a novel approach that leverages pretrained text language
models to improve speech language modeling. Despite the different granularity levels be-
tween speech tokens (phoneme-state level) and text tokens (subword level), TWIST demon-
strated that initializing a speech language model from a pretrained text model like OPT or
LLaMA provides consistent performance improvements. The authors conducted extensive
empirical analysis on various aspects of the model design, including the effect of model
scale (from 125M to 13B parameters), dataset size (from 1% to 100% of their 150,000 hours
corpus), speech tokenizer configurations, and model architectures. Their findings showed
that both model and data scaling significantly improve performance, with their largest 13B
parameter model achieving state-of-the-art results on speech benchmarks. TWIST also
contributed two spoken versions of the StoryCloze benchmark to better evaluate contex-
tual understanding in speech models. Human evaluations confirmed that TWIST models
generate more coherent and natural speech compared to cold-start models of equivalent
size.

SpiritLM (Interleaved Spoken and Written Language Model), the most recent advance-
ment, extended speech language modeling by creating a multimodal foundation model that
freely mixes text and speech. Built on a 7B pretrained text language model, SpiritLM was
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continuously trained on interleaved speech and text data, with sequences concatenated as
a single stream of tokens using a word-level interleaving method. The model comes in two
versions: a BASE version using HuBERT phonetic units and an EXPRESSIVE version that
incorporates pitch and style tokens to model vocal characteristics. For text, both versions
use subword BPE tokens. This architecture allows SpiritLM to maintain the semantic capa-
bilities of text models while adding expressive speech generation. The model demonstrates
impressive few-shot learning capabilities across modalities, enabling tasks like ASR, TTS,
and speech classification without task-specific fine-tuning. SpiritLM’s bitrate efficiency
makes it particularly suitable for applications requiring both content preservation and ex-
pressive speech generation.

0.6.2 Alignment Datasets

Developing multi-modal text-speech models relies heavily on specialized datasets that serve
different purposes. These datasets can be broadly categorized into unsupervised, massive-
scale collections and carefully labeled, task-specific datasets.

Unsupervised, massive-scale datasets prioritize quantity and diversity over precise an-
notations. LibriLight [144] stands as a prime example with 60,000 hours of unlabeled speech
data derived from audiobooks, enabling self-supervised learning at scale. Similarly, Spo-
tify Podcasts [65] offers approximately 100,000 hours of conversational audio with rough
transcript alignments. VoxPopuli [280] contributes 400,000 hours of parliamentary speech
across 23 languages, while YouTube-derived datasets provide virtually unlimited, though
noisy, speech data. These massive collections are crucial for pre-training foundation mod-
els like GSLM, TWIST, and SpiritLM, allowing them to learn general speech representations
and patterns. However, they often contain alignment errors, background noise, and varying
recording qualities that can introduce challenges during training.

In contrast, task-specific labeled datasets offer high-quality annotations but at a much
smaller scale.

LibriSpeech [223] provides 1,000 hours of carefully transcribed audiobook readings
with precise word-level alignments.

VCTK [137] contains studio-quality recordings from 109 speakers with exact transcrip-
tions for TTS applications.

Fisher [64] and Switchboard [101] offer conversational speech with detailed turn-
taking annotations for dialogue modeling.

CommonVoice [9] is a crowdsourced multilingual speech corpus where volunteers
contribute recordings of text prompts and validate others’ contributions. It contains over
33,500 hours of speech across 134 languages and 350,000 distinct speakers, with varying
degrees of coverage. The dataset is designed to democratize speech technology by providing
freely available data that represents diverse accents, demographics, and linguistic contexts.

These datasets enable supervised learning for specific applications like ASR, TTS, or
speech translation, but their limited size and domain specificity can restrict model gener-
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alization.

Weakly supervised datasets bridge the gap between fully unsupervised and carefully
labeled collections.

GigaSpeech [45] exemplifies this approach with 10,000 hours of multi-domain En-
glish speech from audiobooks, podcasts, and YouTube, covering both read and spontaneous
speaking styles across diverse topics. It employs forced alignment and segmentation to cre-
ate sentence-level training data while filtering out low-quality transcriptions.

Similarly, People’s Speech [97] provides 30,000 hours of diverse English speech with
commercial-use licensing, collected from appropriately licensed Internet sources. Unlike
many datasets focused on read speech in clean environments, People’s Speech includes
content from government recordings, interviews, health discussions, and more, with natu-
ral background noise that better represents real-world conditions.

The trade-off between these dataset types is evident in how different models utilize
them. GSLM primarily leveraged unsupervised data to learn speech representations with-
out text supervision. TWIST demonstrated that combining massive unsupervised pre-
training (150,000 hours) with the structural knowledge from text models yields superior
performance. SpiritLM took a hybrid approach, using a small but carefully curated parallel
corpus for speech-text alignment while continuing to train on larger unsupervised collec-
tions.

Overall, the observations suggest that the optimal approach combines multiple dataset
types: initial pre-training on massive unsupervised data to learn general patterns, followed
by fine-tuning on weakly supervised and high-quality labeled datasets to enhance perfor-
mance on specific tasks. This strategy allows models to benefit from the scale of unsuper-
vised data while maintaining the precision offered by carefully annotated collections.

0.6.3 Instruction Tuning

Instruction tuning has significantly enhanced model performance on diverse tasks without
task-specific fine-tuning, while also improving robustness. Given these notable advances in
the text domain, researchers have naturally sought to extend these benefits to speech pro-
cessing, where similar improvements could transform human-machine interaction. Recent
advances in cross-modal instruction tuning have produced several innovative architectures,
with particular emphasis on multi-stage training approaches to effectively bridge modali-
ties.

SpeechGPT [310], built on LLaMA-13B, introduced a comprehensive three-stage train-
ing methodology. The first stage focuses on paired speech-text data training, where the
model learns to process and align speech inputs with corresponding textual representa-
tions. This foundation stage establishes basic cross-modal understanding capabilities. The
second stage introduces speech instruction data, where the model learns to follow specific
commands and instructions in the speech domain. This stage utilizes carefully curated
datasets containing diverse speech-based instructions and their corresponding responses,
enabling the model to understand and execute spoken commands effectively. The third
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stage, termed chain-of-modality instruction training, represents a significant innovation.
In this stage, the model learns to handle complex interactions involving multiple modality
transitions. This approach represents a substantial improvement over previous models like
GSLM and TWIST, which primarily focused on learning speech representations or align-
ing speech with text, but lacked the ability to follow complex instructions across modal-
ities. Unlike SpiritLM, which used interleaved speech-text training, SpeechGPT’s staged
approach allows for more systematic acquisition of cross-modal capabilities, resulting in
more robust performance on instruction-following tasks and more natural interactions with
users. Technically, SpeechGPT employs discrete speech representations using mHuBERT
[306] to tokenize speech into 1024 discrete units obtained using k-Means, which are then
incorporated into the LLM’s vocabulary.

Complementing these developments, Moshi [89] introduced breakthrough capabilities
in real-time spoken dialogue, featuring ultra-low latency processing and multi-stream ar-
chitecture enabling natural interruptions and overlapping speech. Its integration with He-
lium LLM and Mimi neural codec represents a significant advance in natural human-Al
interaction, achieving theoretical latency as low as 160ms. The model’s architecture specif-
ically addresses the challenges of real-time interaction, allowing for more natural conver-
sation flow and immediate response generation. While previous models like Qwen-Audio
made important strides in multimodal understanding, Moshi fundamentally reimagines the
interaction paradigm by prioritizing real-time responsiveness. Unlike earlier approaches
that processed complete utterances before generating responses, Moshi’s streaming archi-
tecture enables it to begin formulating responses while still receiving input, similar to hu-
man conversation patterns.

0.6.4 Downstream Tasks

Evaluation of multi-modal language models relies on several key benchmarks spanning
linguistic competence, reasoning abilities, and modality transfer capabilities. The sBLIMP
benchmark [214] measures syntactic competence by evaluating models’ ability to distin-
guish between grammatically correct and incorrect spoken utterances, providing crucial
insights into the model’s understanding of language structure across modalities. Simi-
larly, sWuggy [214] assesses phonological processing by testing discrimination between
real words and phonologically plausible non-words in the speech domain.

For ASR capabilities, models are typically evaluated on LibriSpeech [223], which of-
fers both "clean" and "other" (more challenging) test sets to measure transcription accuracy
across varying acoustic conditions. This provides a standardized measure of a model’s abil-
ity to convert speech to text accurately. CommonVoice [9] serves as another critical ASR
benchmark, offering evaluation across 100+ languages with diverse accents and recording
conditions, making it particularly valuable for assessing multilingual and cross-dialect per-
formance.

The sStoryCloze and Topic-sStoryCloze benchmarks introduced in TWIST [116] assess
semantic understanding and common sense reasoning through continuation tasks, while
tStoryCloze evaluates similar capabilities in the text domain. These evaluations span mul-
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tiple modality combinations: Speech-to-Speech, Text-to-Speech, Speech-to-Text, and Text-
to-Text. This comprehensive evaluation framework ensures models maintain coherence
and understanding across modality transitions.

This multi-faceted evaluation approach provides a holistic assessment of models’ abili-
ties to process, understand, and generate content across modalities, ensuring they meet the
requirements for practical applications in diverse real-world scenarios.

0.6.5 Downstream Tasks Metrics

Standard metrics for downstream tasks provide quantitative measures of model perfor-
mance across different capabilities. For ASR tasks, Word Error Rate (WER) measures the
percentage of words incorrectly transcribed, with lower values indicating better perfor-
mance. Character Error Rate (CER) functions similarly to WER but at the character level,
proving useful for languages without clear word boundaries.

D+
WER:MT+><100

where S is the number of substitutions, D is the number of deletions, I is the number
of insertions, and NV is the number of words in the reference. Similarly, CER uses the same
formula but operates at the character level rather than the word level.

For linguistic competence tasks, accuracy serves as the primary metric for sSBLIMP and
sWuggy, where models are evaluated on their ability to correctly distinguish between min-
imal pairs. The reasoning tasks in sStoryCloze and its variants typically report accuracy
in selecting the correct continuation. For Spoken Question Answering (SQA) tasks, accu-
racy measures how often the model provides the correct answer to questions presented in
spoken or textual form.

Number of correct predictions

100

Accuracy =
Y Total number of predictions

Negative Log Likelihood (NLL) provides a probabilistic assessment of model predictions,
measuring how confidently the model assigns probability to correct outputs. Lower NLL
values indicate that the model assigns higher probability to the ground truth, suggesting
stronger predictive performance.

T
L==> logp(za) (11)
t=1

where p(z;|z;) represents the probability of token z; given all previous tokens z_;
in the sequence, and 7T is the total sequence length. This metric is particularly valuable
for evaluating generative models and their ability to accurately predict next tokens in a
sequence.
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CHAPTER

DRBERT: A RoBUSsT PRE-TRAINED MODEL
IN FRENCH FOR BIOMEDICAL AND CLIN-
ICAL DOMAINS

As we described in the previous chapters, language modeling has become a fundamental
component in the making of state-of-the-art task-specific models in NLP [230, 81]. More
specifically, large-scale MLM based on transformer architecture [275] and trained on large
raw text corpora have impressively extended the performance of NLP models on most tasks.

However, while these models have shown remarkable success in general domains, re-
cent works have demonstrated that optimal performance in specialized domains, such as
finance, medical, or travel, can only be achieved using PLM adapted to the targeted con-
ditions. This is particularly challenging for languages other than English, where domain-
specific data are generally difficult to obtain, resulting in quite a few specialized PLMs avail-

able.

Several key research questions arise when considering domain adaptation of language
models:

« What is the optimal trade-off between using healthcare related data from publicly
accessible internet sources (which often differ significantly in structure and com-
plexity from real-world applications) versus using data collected from private data
warehouses when considering domain adaptation?

« How important is the variety of data sources compared to the volume of data?
« Can low-resource domain-specific data outperform large general-domain models?

+ Is cross-lingual transfer effective for domain adaptation?

This chapter presents our work on developing and evaluating the first biomedical and
clinical transformer-based language models for French healthcare domains, based on the
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RoBERTa architecture [193]. This work, which received an Honorable Mention at ACL
2023 [165], addresses several of the aforementioned research questions through extensive
experimentation and analysis. Our main contributions are:

« We demonstrate that pre-training on constrained resources (4GB) of web-crawled
medical data can compete with, and often outperform, models trained on specialized
clinical data.

« We show that continual pre-training of English domain-specific models on French
data is more effective than adapting French general-domain models.

« We release DrBERT", the first open-source French biomedical language model, along
with NACHOS?, a large French medical corpus. To ensure reproducibility and facili-
tate future research, we also make available all the code’ for training, preprocessing
and high-scale distributed learning.

Our results demonstrate that pre-training on constrained resources of web-crawled
medical data can compete with, and even frequently surpass, models trained with special-
ized data from medical reports. We also show that continual pre-training on an existing
domain-specific English model (PubMedBERT) is a more viable solution than on a French
domain-generalist model when targeting French biomedical downstream tasks.

1.1 Pre-Training Datasets

In the biomedical domain, previous works [109] on PLMs highlighted the importance of
matching the data sources used for its training to the targeted downstream tasks. Due to
their sensitive nature (protection of user data, protected health information of patients,
etc.), medical data are extremely difficult to obtain. Massive collection of web data related
to this domain appears to be a solution that can overcome this lack. However, these web
documents vary in terms of quality. No comparison has been made between PLMs based
on specific domain data from the web and those on private documents from clinical data
warehouses, whose quality can be controlled.

We extracted two different medical datasets for French. In the first one, I gathered
data crawled from a variety of free-of-use online sources, and the second one, collected by
Adrien, gather private hospital stays reports from the Nantes University Hospital.

Table 1.1 gives a general overview of the two collected corpora. The public web-based
data, detailed in Section 1.1.1, allowed the constitution of a corpus, called NACHOS; 4,
containing 7.4 GB of data. The private dataset, called NBDWg,,,;; is described in Sec-
tion 1.1.2 and contains 4 GB of data. In order to perform comparable experiments, we
extracted a NACHOS sub-corpus (NACHOS;,,,,i;) of the same size as the private data. Fi-
nally, Section 1.1.3 describes the pre-processing applied to both datasets.

'https://huggingface.co/Dr-BERT/DrBERT-7GB
2https://huggingface.co/datasets/Dr-BERT/NACHOS
Shttps://github.com/qganastek/DrBERT
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Corpus Size #words #sentences

NACHOS;,¢c (public) 74GB  1.1B 54.2 M
NACHOS;,,a;; (public) 4 GB 646 M 253 M

NBDWg,.qi; (private) 4 GB 655 M 431 M
NBDW,,;cq (both) 4+4GB 13B  684M

Table 1.1: Overview of the public NACHOS) and private (NBDW) collected datasets.

1.1.1 Public corpus - NACHOS

We collected the opeN crAwled frenCh Healthcare cOrpuS (NACHOS), a French medical
open-source dataset compiled by crawling a variety of textual sources around the medical
topic. It consists of more than one billion words, drawn from 24 French-speaking high-
quality websites. The corpus includes a wide range of medical information: descriptions of
diseases and conditions, information on treatments and medications, general health-related
advice, official scientific meeting reports, anonymized clinical cases, scientific literature,
thesis, French translation pairs, university health courses and a large range of data ob-
tained from raw textual sources, web scrapping, and optical character recognition (OCR).
Table 1.2 summarizes the different data sources of NACHOS.

We use heuristics to split the texts into sentences and aggressively filter out short or low-
quality sentences like those obtained from OCR. Finally, we classified them into languages
by using our own classifier trained on the multilingual Opus EMEA [263] and MASSIVE [91]
corpora to keep only the sentences in French.

For the 4 GB version of NACHOS (NACHOS;,,.11), we shuffled the whole corpus and se-
lected randomly 25.3M sentences to maximize data source homogeneity. The full NACHOS
corpus is now freely available online®.

*“https://drbert.univ-avignon.fr/
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Resource name # words
HAL 638,508,261
Haute Autorité de Santé (HAS) 113,394,539
Drug leaflets 74,770,229
Medical Websites Scrapping 64,904,334
ANSES SAISINE 51,372,932
Public Drug Database (BDPM) 48,302,695
ISTEX 44,124,422
CRTT 26,210,756
WMT-16 10,282,494
EMEA-V3 6,601,617
Wikipedia Life Science French 4,671,944
ANSES RCP 2,953,045
Cerimes 1,717,552
LiSSa 235,838
DEFT-2020 231,396
CLEAR 225,898
CNEDIMTS 175,416
QUAERO French Medical Corpus 72,031
ANSM Clinical Study Registry 47,678
ECDC 44,482
QualiScope 12,718
WMT-18-Medline 7,673
Total 1,088,867,950

Table 1.2: Word-count distribution across the 22 sources of the NACHOS biomedical corpus.

1.1.2 Private corpus - NBDW

The private corpus, called Nantes Biomedical Data Warehouse (NBDW), was obtained us-
ing the data warehouse from Nantes University Hospital. This data warehouse includes
different dimensions of patients’ related data: socio-demographic, drug prescriptions and
other information associated with consultation or hospital stays (diagnosis, biology, im-
agery, etc.). The authorization to implement and exploit the NBDW dataset was granted
in 2018 by the CNIL (Commission National de I'Informatique et des Libertés), the French in-
dependent supervisory authority in charge of application of national and European data
privacy protection laws; authorization N°2129203.

For this work, a sample of 1.7 million de-identified hospital stays reports was randomly
selected and extracted from the data warehouse. As described in Table 1.3, the reports are
from various hospital departments, emergency medicine, gynecology and ambulatory care
being the most frequent.

Each of the reports was split into tokens sequence with an average of 15.26 words per
sequence. Then, all tokens sequences from all reports were shuffled to build the corpus.
This corpus contains 655M words, from 43.1M sentences, for a total size of approximately
4 GB.
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DOMAINS
Medical Specialty # documents # words
Other 474,588 192,832,792
Emergency Medicine 235,579 90,807,406
Ambulatory Care 119,149 50,975,472
Consultation 95,135 38,335,804
Gynecology 132,983 38,204,495
Cardiology 29,633 22,654,583
Medical Oncology 45,603 22,587,869
Gastroenterology 46,600 21,340,794
Orthopaedic Surgery 82,084 18,983,791
Hematology 41,776 18,285,983
Critical Care Medicine 20,819 16,472,785
Otolaryngology 69,343 16,131,214
Dermatology 51,804 15,035,412
Rheumatology 31,527 14,647,543
Urology 51,535 14,272,231
Colon and Rectal Surgery 45,987 13,334,550
Internal Medicine 23,904 13,282,253
Psychiatry 26,628 12,496,503
Neurosurgery 34,481 10,360,533
Nephrology 19,171 9,548,533
Ophthalmology 19,700 4,464,515
Total 1,698,029 655,055,061

Table 1.3: Number of documents and total word counts by medical specialty in the NBDW
corpus.

1.1.3 Pre-processing steps

The supplied text data has been split into subword units using SentencePiece [159], a
language-independent subword tokenizer that does not require pre-tokenization, thereby
avoiding the requirement for language-specific tokenizers. Unlike traditional approaches
like Moses that rely on hand-crafted language-dependent rules, SentencePiece enables purely
end-to-end text processing. We employ a vocabulary size of 32k subword tokens. For each
model pre-trained from scratch (see Section 1.2.2), tokenizers were built using all the sen-
tences from the pre-training dataset.

SentencePiece supports two distinct modes: BPE [249] and unigram language model [157].
Algorithm 1 outlines the core tokenization process, which begins with text normalization
and treats the input as a sequence of Unicode characters, replacing whitespace with a spe-
cial meta symbol "\" (U+2581).
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Algorithm 1 SentencePiece Tokenization

e i e
B W N = O

Input: Text 7', Vocabulary V', Model type M € {BPE, Unigram}

Output: Tokenized sequence S

procedure PREPROCESS(T")
Normalize Unicode characters with NFKC
Replace whitespace with special token _ (U+2581)
Treat input as sequence of Unicode characters
return Preprocessed text 7’

end procedure

if M = BPE then
S < BPETokEeN1ZE(T",V)

else if M/ = Unigram then
S < UniGrRaMTOKENIZE(T", V)

: end if

: return S

The BPE variant (described in Algorithm 2) operates by iteratively merging the most

frequent adjacent character pairs. SentencePiece implements an optimized O(N log N) al-
gorithm using binary heaps to manage merged symbols efficiently, compared to the O(N?)
complexity of naive implementations.

Algorithm 2 BPE Tokenization in SentencePiece

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

procedure BPETokeNIZE(T", V)
Initialize S as character sequence of 7"
while possible merges exist do
Find most frequent adjacent token pair (a, b) in S using priority queue
Replace all occurrences of (a, b) with merged token ab
Add ab to vocabulary if not present
if vocabulary size = |V| then
break
end if
end while
return S
end procedure

The unigram language model (described in Algorithm 3) employs a probabilistic ap-

proach, finding the most likely segmentation using the Viterbi algorithm. This method
enables multiple segmentation candidates during training, making it suitable for subword
regularization.
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Algorithm 3 Unigram Tokenization in SentencePiece

1:
2
3
4
5:
6
7
8
9

10:
11:

procedure UNIGRAMTOKENIZE(T”, V)
Initialize language model P with probabilities for tokens in V'
S0
x« T
while = # () do
(s'2’) < argmax (s,2') : . = s + 2'P(s) > Find best token using Viterbi
S« Su{s!
x 1
end while
return S
end procedure

For training the unigram model, SentencePiece employs a normalized likelihood-based

pruning method (described in Algorithm 4) to iteratively reduce the vocabulary to the target
size, typically removing tokens with lowest loss at each iteration.

Algorithm 4 Normalized Likelihood Pruning for Unigram Model

1:

_ =
=

Input: Vocabulary V, Corpus C, Current model parameters #, Pruning rate p (typically
20%)
Output: Reduced vocabulary
for each tokent € V do
Compute loss if token ¢ is removed:
loss(t) = .o (log P(x]0) —log P(x]0\ 1))
Normalize loss: [08S,0pm (t) = ﬁi—sq((%
end for
Sort tokens by 1058, (1) in ascending order
Remove bottom p% of tokens from V'

Re-estimate probabilities for remaining tokens

: return Updated vocabulary V'

A key advantage of SentencePiece is its lossless tokenization design, which preserves all

information needed to perfectly reconstruct the original text. This is achieved by treating
whitespace as a normal symbol (escaped with \) rather than as a boundary marker. The
model is self-contained, with all normalization rules and parameters embedded in the model
file, ensuring perfect reproducibility across environments.

In our implementation, we used the unigram model which has been shown to achieve

superior performance for morphologically rich languages while maintaining competitive
results across other language families. Experimental results reported by Kudo and Richard-
son demonstrate that SentencePiece can achieve comparable or better BLEU scores even
without pre-tokenization, while providing significantly faster processing, especially for
non-segmented languages.
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1.2 Models Pre-Training

In this section, we describe the pre-training modalities of our studied models from two
points of view: 1) the influence of the data used (size and nature), and 2) the pre-training
strategies of the models. These two levels are respectively detailed in Sections 1.2.1 and 1.2.2.
Section 1.2.3 finally presents the existing state-of-the-art pre-trained models that will be
used for comparison purposes.

1.2.1 Influence of data

One issue is to identify the amount of data required to create a model that performs well
and can compete with models trained on general domains. Recent studies, such as those by
[314] and [200], discuss the impact of the size of pre-training data on model performance.
According to these studies, some tasks are performing better with fewer data while others,
such as commonsense knowledge and reasoning tasks, keep improving performance when
pre-training data is added.

In the medical field, no study has been conducted to compare the impact of varying the
amount of domain-specific data during pre-training, or to assess the impact of the suppos-
edly variable quality of the data depending on their source of collection.

We thus propose to evaluate the pre-training of several language models on either
NACHOS;, o1 or NBDWy,,,.;; corpus, as described in Section 1.1. Additionally, we pro-
pose a model pre-trained on NACHOS,,,¢. to investigate if having almost twice as much
data improves model performance. Finally, a combination of both public NACHOS,,,,;; and
NBDW,,,,.;; sources for a total of 8 GB (NBDW,,,;,.q) is explored to demonstrate if combin-
ing private and public data is a viable approach in low-resource domains.

1.2.2 Pre-training strategies

In addition to the analysis on the size and the sources of data, we also seek to evaluate three
training strategies of PLMs for the medical domain:

+ Training a full model from scratch, including the subword tokenizer.

« Continuing the pre-training of the state-of-the-art language model for French, called
CamemBERT, on our medical-specific data while keeping the initial tokenizer.

« Continuing the pre-training of a state-of-the-art domain specific language model for
medical but here in English, called PubMedBERT, on our French data while keeping
the initial tokenizer.

Regarding the last strategy, our objective is to compare the performance of an English
medical model further pre-trained on our French medical data, against another one based on
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a generic French model. Indeed, the medical domains shares many terms across languages
that make relevant the mixture of resources from two languages.

Table 1.4 summarizes all the configurations evaluated in this chapter, integrating both
the study of data size and pre-training strategies.

Model name Strategy Corpus
DrBERT From scratch NACHOS 4 ge
DrBERT From scratch NACHOS;,.au
ChuBERT From scratch NBDW .11
ChuBERT From scratch NBDW, ized

CamemBERT  continual pre-training NACHOS;,,q1
PubMedBERT continual pre-training NACHOS;,,,q1;
CamemBERT  continual pre-training NBDWg,,q1

Table 1.4: List of studied pre-trained model configurations.

Model architecture All models pre-trained from scratch use the CamemBERT ¢ con-
figuration, which is the same as RoBERTa y,, architecture (12 layers, 768 hidden dimen-
sions, 12 attention heads, 110M parameters). We did not train the large version of our
models due to resource limitations.

Language modeling We train the models on the Masked Language Modeling (MLM)
task using HuggingFace library [291]. It consists of randomly replacing a subset of tokens
from the sequence with a special token and asking the model to predict them using cross-
entropy loss. In BERT and RoBERTa models (including CamemBERT), 15% of the tokens
are randomly selected. Of those selected tokens, 80% are replaced with the <mask> token,
10% remain unchanged, and 10% are randomly replaced by a token from the vocabulary.
We keep this masking probability of 15% for the training of our models.

Optimization & Pre-training We optimize the models for 80k steps with batch sizes of
4,096 sequences, each sequence filled with 512 tokens, allowing us to process 2.1M tokens
per step. The learning rate is warmed up linearly for 10k steps, going up from zero to the
initial 5% 10 learning rate. Models are trained on 128 Nvidia V100 32 GB GPUs for 20
hours on Jean Zay supercomputer. We use mixed precision training (FP16) [203] to reduce
the memory footprint, allowing us to enlarge the batch size to 32 sequences on each GPU.

1.2.3 Baseline models

We describe some existing pre-trained models used as baselines in our comparative study.
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CamemBERT [200] is a RoBERTa-based model pre-trained totally from scratch on the
French subset of the OSCAR corpus (138 GB). In our case, this model is our main baseline
to compare our results on, since it is the state-of-the-art model for French. We also use the
4 GB model’s variants of CamemBERT to compare the impact of the nature and quantity of
the data.

PubMedBERT [109] is a BERT-based biomedical-specific model pre-trained totally
from scratch on the 3.1 billion words of PubMed corpus (21 GB).

ClinicalBERT [130] is a clinical-specific model based on BERT tokenizer and weights,
which has been further pre-trained on the 0.5 billion words of MIMIC corpus (3.7 GB).

BioBERT v1.1[176] is a biomedical-specific model based on BERT tokenizer and weights
which has been further pre-trained using the 4.5 billion words of PubMed corpus.

1.3 Downstream Evaluation Tasks

Thematic / Corpus name Task Metric Train Dev Test

Public Corpus

ESSAIS [73] POS Tagging Macro F1 9,693 2,077 2,078
CAS: French Corpus with Clinical Cases [105] POS Tagging Macro F1 5,306 1,137 1,137
MUSCA-DET - Social Determinants of Health extraction (Task 1) Nested NER Macro F1 19,861 2,207 5,518
MUSCA-DET - Social Determinants of Health extraction (Task 2)  Multi-label Classification Macro F1 19,861 2,207 5,518
QUAERO French Medical Corpus - EMEA [211] Nested NER Weighted F1 11 12 15
QUAERO French Medical Corpus - MEDLINE [211] Nested NER Weighted F1 833 832 833
FrenchMedMCQA [164] MCQA EMR / Hamming Score 2,171 312 622
Private Corpus
Medical report acute heart failure structuration Named Entity Recognition Macro F1 2,527 281 703
Acute heart failure (aHF) classification Binary Classification Macro F1 1,179 132 328
Technical Specialties Sorting Classification Multi-class Macro F1 4,413 1,470 1,473
Medical report structuration prescriptions Named Entity Recognition Macro F1 61 15 26

Table 1.5: Corpus, tasks and metrics synthesis for evaluating medical-specific models.

To evaluate the different pre-training configurations of our models, a set of tasks in the
medical domain is necessary. While this NLP domain-specific benchmark exists in English
(BLURB [109]), none existed for French at the time we started working on this project. In
this section, we describe an original benchmark, summarized in Table 1.5, integrating vari-
ous NLP medical tasks for French. Among them, some are from publicly-available datasets
(Section 1.3.1), allowing the replication of our experiments. Other tasks come from private
datasets (Section 1.3.2) and cannot be shared. However, they are useful to evaluate our
models more accurately.

1.3.1 Publicly-available tasks

The publicly available tasks used in these experiments are presented below.
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ESSAIS / CAS: French Corpus with Clinical Cases The ESSAIS [73] and CAS [105]
corpora respectively contain 13,848 and 7,580 clinical cases in French. Some clinical cases
are associated with discussions. A subset of the whole set of cases is enriched with morpho-
syntactic (POS tagging, lemmatization) and semantic (UMLS concepts, negation, uncer-
tainty) annotations. In our case, we focus only on the POS tagging task.

FrenchMedMCQA The FrenchMedMCQA corpus [164] is a publicly available Multiple-
Choice Question Answering (MCQA) dataset in French for the medical domain. It contains
3,105 questions coming from real exams of the French medical specialization diploma in
pharmacy, integrating single and multiple answers.

QUAERO French Medical Corpus The QUAERO French Medical Corpus [211] intro-
duces an extensive corpus of biomedical documents annotated at the entity and concept
levels to provide NER and classification tasks. Three text genres are covered, comprising a
total of 103,056 words obtained either from EMEA or MEDLINE. Ten entity categories corre-
sponding to UMLS [32] Semantic Groups were annotated, using automatic pre-annotations
validated by trained human annotators. Overall, a total of 26,409 entity annotations were
mapped to 5,797 unique UMLS concepts. To simplify the evaluation process, we sort the
nested labels in alphabetical order and concatenate them together into a single one to trans-
form the task into a usable format for token classification with BERT based architectures.

MUSCA-DET MUSCA-DET is a French corpus of sentences extracted from the "Lifestyle"
section in clinical notes from Nantes University Hospital biomedical data warehouse. The
corpus contains 27,000 pseudonymized sentences annotated with 26 entities related to So-
cial Determinants of Health (living, marital status, housing, descendants, employment, al-
cohol, smoking, drug abuse, physical activity). The corpus includes two tasks: nested NER
and multi-label classification.

1.3.2 Private tasks

MUSCA-DET MUSCA-DET is a French corpus of sentences extracted from the "Lifestyle"
section in clinical notes from Nantes University Hospital biomedical data warehouse. The
corpus contains 27,000 pseudonymized sentences annotated with 26 entities related to So-
cial Determinants of Health (living, marital status, housing, descendants, employment, al-
cohol, smoking, drug abuse, physical activity). The corpus includes two tasks: nested NER
and multi-label classification.

Technical Specialties Sorting This classification task has to assign the specialty of a
medical report based on its transcription. The dataset consists of 7,356 French medical
reports that have been manually annotated and equally sampled across 6 specialties: Psy-
chiatry, Urology, Endocrinology, Cardiology, Diabetology, and Infectiology.
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Medical report structuration prescriptions (NER) The task seeks to identify named
entities in a gold sample of 100 long medical reports obtained from French speech transcrip-
tions. The named entities are annotated using the BIO format and fall into 12 classes: O,
AGE, CITY, DATE, EMAIL, HOSPITAL, PHONE, DOSAGE, DURATION, FORM, MEDICATION
and POSOLOGY.

Medical report acute heart failure structuration (NER) This corpus contains 350
hospital stay reports (divided into 3,511 sentences) from Nantes University Hospital. The
reports are annotated with 46 entity types related to the following clinical information:
cause of chronic heart failure, triggering factor for acute heart failure, diabetes, smoking
status, heart rate, blood pressure, weight, height, medical treatment, hypertension and left
ventricular ejection fraction. Overall, the corpus contains 6,116 clinical entities.

Acute heart failure (aHF) classification This task consists of the classification of hos-
pital stays reports according to the presence or absence of a diagnostic of acute heart failure.
This corpus consists of 1,639 hospital stays reports from Nantes university hospital, which
are labeled as positive or negative to acute heart failure.

1.4 Results and Discussions

As previously described, we evaluate the performance of our pre-trained language models
proposed for the biomedical domain on a set of public and private NLP downstream tasks
related to the medical domain. We first propose to analyze the results according to the
different pre-training strategies used (Section 1.4.1) then to focus on the impact of the pre-
training data, whether in terms of size or nature (Section 1.4.2). Finally, we are interested
in the generalization capacities of our domain-specific models by applying and comparing
them on general domain NLP tasks (Section 1.4.3).

Note that all the PLMs have been fine-tuned in the same way for all downstream tasks
and all the reported results are obtained by averaging the scores from four runs. Perfor-
mance on biomedical downstream tasks is reported in Tables 1.7 and 1.6 for respectively
private and public tasks. For readability reasons, the first part of each table presents the ex-
isting baseline model results, the second part our specialized models trained from scratch,
and the last part our models using continual pre-training.
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MUSCA-DET T1 MUSCA-DET T2  ESSAI POS CAS POS FrenchMedMCQA QUAERO-EMEA QUAERO-MEDLINE

P R F1 P R F1 P R F1 P R F1 Hamming EMR P R F1 P R F1

CamemBERT OSCAR 138 GB 89.04 88.59 88.54 89.87 87.12 88.20 81.57 81.01 81.10 96.37 94.53 95.22 36.24 16.55 90.57 91.06 90.71 76.58 78.67  77.41
CamemBERT OSCAR 4 GB  86.09 85.45 85.43 92.68 90.34 91.27 84.01 83.51 83.69 98.15 95.34 96.42 35.75 1537 90.75 91.16 90.83 78.55 79.33  78.76
CamemBERT CCNET 4GB 91.12 89.91 90.33 93.10 90.42 91.38 85.60 85.63 85.42 98.19 96.75 97.33  34.71 14.41 90.31 90.59 90.33 78.06 78.11  77.61

PubMedBERT 93.04 91.45 91.99 84.41 80.60 81.97 88.43 87.93 87.78 97.40 94.86 95.90  33.98  14.14 86.89 87.33 86.79 77.33 77.28  77.09
ClinicalBERT 91.79 89.44 90.36 85.43 81.23 82.95 89.09 88.78 88.24 97.94 95.88 96.73 3278  14.19 84.91 85.47 84.79 75.56 74.85 75.05
BioBERT 1.1 91.82 89.82 90.46 85.52 80.14 81.91 86.76 84.90 85.18 98.10 96.39 97.12  36.19 1543 8455 85.03 84.29 72.62 73.30  72.68
DrBERT NACHOS 4 92.10 90.27 91.04 94.97 90.41 92.24 90.96 89.19 89.75 97.37 94.49 9565  36.66 1532 91.93 92.52 92.09 77.85 78.54 77.88
DrBERT NACHOS, ../ 93.35 90.62 91.77 91.31 86.60 88.57 90.12 88.37 88.76 97.04 94.88 9570 ~ 37.37 1334 91.54 92.00 91.66 77.91 79.34 78.18
ChuBERT NBDW,,,. 94.88 90.79 92.23 94.77 90.27 92.17 88.53 87.73 87.71 97.00 94.65 9561 3516 1479 88.11 88.78 88.15 75.05 76.57 74.94
ChuBERT NBDW,,,;,.q 94.39 91.93 92.73 94.22 90.02 91.71 86.36 85.50 85.73 97.77 9530 96.35 3458  12.21 90.36 90.94 90.52 78.61 79.32  78.63

CamemBERT NACHOS,,,.; 81.44 81.39 80.96 79.74 78.08 78.70 80.59 79.88 80.04 95.64 91.57 92.46 32.87 13.76  67.56 77.48 71.10 55.45 62.34 57.43
PubMedBERT NACHOS,,,,,; 92.51 91.49 91.53 94.95 92.55 93.62 84.73 83.80 83.85 97.82 96.12 96.81 35.88 15.21 90.97 91.27 91.03 82.03 81.71 81.73
CamemBERT NBDW .. 82.35 81.59 81.57 78.14 76.38 77.12 79.44 79.79 79.25 95.98 92.11 93.18 27.73 11.89 53.44 73.11 61.75 48.71 61.33  53.05

Table 1.6: Performance on public biomedical downstream tasks. Best model in bold and
second is underlined.

1.4.1 Impact of pre-training strategies

As observed both in Tables 1.7 and 1.6, models pre-trained completely from scratch (Dr-
BERT NACHOS and ChuBERT NBDW) tend to produce the best results for both types of
data sources and tasks (i.e. private and public). Indeed, considering the F1-score, they ob-
tain the best results on all private tasks and on almost all public ones (5 tasks out of 7).
The two public remaining tasks (MUSCA-DET T2 and QUAERO-MEDLINE) are then better
handled using PubMedBERT NACHOS;,,,.i;, @ model that has already been pre-trained on
domain-specific data (biomedical English data) then further pre-trained with our French
medical data (NACHOS;,,,q11).

We also observed that continual pre-training from domain generic models (Camem-
BERT NACHOS;,,,4i; or CamemBERT NBDW,,,.;;) does not allow reaching the performance
of the other specific models, neither of these two models reaching the first or second place
(in terms of performance) on any task.

Finally, the baseline models trained on generic data (CamemBERT OSCAR) and those
trained on biomedical data in English (PubMedBERT, ClinicalBERT and BioBERT) remain
competitive in few biomedical public tasks (CAS POS, FrenchMCQA or MUSCA-DET T2),
while none of them are placed in first or second place on private tasks. This seems to
highlight the difficulty of private tasks when non-matching data are used.

1.4.2 Effect of data

Regarding the amount of data used for pre-training models (small vs. large or mized),
results show that, the larger the data are, the better the model performs, no matter the pre-
training strategy or the source of data (private or public). However, the difference is very
low for most tasks, with small systems often being ranked second behind large models,
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even though they contain half as much data.

aHF NER aHF classification =~ NER Medical Report Specialities Classification
P R F1 P R F1 P R F1 P R F1
CamemBERT OSCAR 138 GB  40.89 35.22 35.13 8190 79.12 80.13 8798 91.66 89.35 99.32 99.09 99.20
CamemBERT OSCAR 4 GB 46.32 43.17 42.66 8149 81.42 8141 87.79 90.74 88.78 99.53 99.69 99.61
CamemBERT CCNET 4 GB 47.25 422 4311 82.02 7930 7998 87.61 92.28 89.34 99.54 99.55 99.55
PubMedBERT 52.61 4630 47.22 7817 76.18 76.86 87.07 92.61 89.20 99.25 99.51 99.37
Clinical BERT 50.11 44.15 44.70 80.13 7592 77.12 87.04 92.14 88.77 98.58 98.62 98.58
BioBERT v1.1 4937 47.25 46.01 79.69 7851 79.00 88.17 91.80 89.38 98.59 99.03 98.80
DrBERT NACHOS,,, e 55.29 46.66 48.22 81.33 81.25 81.25 87.99 92.80 89.83 99.82 99.90 99.86
DrBERT NACHOS,, ... 54.55 4339 4593 79.85 80.10 79.87 8757 9276 89.44 99.85 99.85 99.85
ChuBERT NBDW,,,,. 56.92 4746 49.01 81.03 82.67 81.56 87.76 92.63 89.58 99.76 99.90 99.83
ChuBERT NBDW,,,;,..q 54.62 47.81 49.14 8223 8171 81.98 87.42 9236 89.30 99.81 99.82 99.81

CamemBERT NACHOS;,,,.; 22.02 16.67 16.08 74.86 69.82 69.80 6572 6849 66.74 99.44 99.67 99.54
PubMedBERT NACHOS;,,,.u 53.44 48.21 48.72 83.06 80.39 81.40 8735 92.69 89.36 99.52 99.58 99.55
CamemBERT NBDW,,,; 2544 1933 1912 79.50 7474 76.02 6880 71.23 69.64 99.60 99.57 99.58

Table 1.7: Performance on our private biomedical downstream tasks. Best model in bold
and second is underlined.

We notice a clear dominance of models that were pre-trained on web-based sources,
specifically OSCAR and NACHOS, when applied to public tasks. Indeed, models relying
on private NBDW data only achieve the best performance (in terms of F1-score) on the
MUSCA-DET T1 task. This trend is not quite observed on private tasks, where NBDW-
based models obtain more acceptable or even better performance when mixed with public
biomedical data (ChuBERT NBDW,,,;,.q), as seen in Table 1.7. We believe this discrepancy
is mainly due to the different nature of processed data.

Finally, we observe that English-based models perform closely to the French-based
CamemBERT model. This shows the usefulness of pre-training on domain specific data.
For example, better results are obtained with continual pre-training of the PubMedBERT
model with our specialized data in French (PubMedBERT NACHOS;,,,.;;), corroborating our
hypothesis about the effectiveness of cross-language knowledge transfer.

1.4.3 Performance on general-domain tasks

Table 1.8 gives the results obtained by all PLMs on general domain downstream tasks. These
tasks come from [200] who used them to evaluate the CamemBERT model. The first four
are POS tagging tasks (GSD, SEQUOIA, SPOKEN and PARTUT), the last being a natural
language inference task (XNLI).
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GSD SEQUOIA SPOKEN PARTUT XNLI
CamemBERT OSCAR 138 GB  98.28 98.68 97.26 97.70  81.94
CamemBERT OSCAR 4 GB 98.14 99.18 97.57 97.86 8176
CamemBERT CCNET4GB  98.18 98.92 97.20 97.92  81.26
PubMedBERT 96.48 96.49 90.00 93.97 73.79
ClinicalBERT 96.49 96.31 89.60 93.17 70.57
BioBERT v1.1 97.32 96.54 91.81 94.52 71.54
DrBERT NACHOS, 4. 96.94 98.05 95.92 96.54 72.18
DrBERT NACHOS,,,..; 97.17 98.21 96.38 96.45 72.86
ChuBERT NBDW,,,,.; 96.45 97.38 94.90 95.83 69.00
ChuBERT NBDW,,;,.. 97.18 98.10 96.43 96.33 72.32
CamemBERT NACHOS,,..;  97.63 96.90 91.12 94.00 71.26
PubMedBERT NACHOS,,,..;  97.41 98.71 95.54 97.01 77.35
CamemBERT NBDW,,,..; 97.55 96.26 89.17 91.34 72.73

Table 1.8: Performance on public domain-general downstream tasks. Best model in bold

and second is underlined.

All results of our models decrease in performance on all tasks. The most important drop
is for the natural language inference task, with a performance of ChuBERT NBDW,,,.i;
almost 13% lower than CamemBERT 138 GB. We also observe that the specialized models
in English are as efficient as our biomedical models in French. It seems quite clear from the
previous observations that specialized models are difficult to generalize to other tasks, but
that specialized information captured in one language could transfer to another language.

1.4.4 Vocabularies Inter-coverage

CamemBERT OSCAR 138 GB

CamemBERT OSCAR 4 GB

CamemBERT CCNET 4 GB

BioBERT

PubMedBERT

QlinicalBERT

DrBERT 7 GB

DrBERT 4 GB

CamemBERT NACHOS 4 GB 100 100
PubMedBERT NACHOS 4 GB 36 36 38 206

ChuBERT4GB 15 105 17 1§
CamemBERT PRIVATE 4 GB 100 100 9 32

MixedBERT 8 GB >.

51 51

BioBERT ~

CamemBERT OSCAR 138 GB
CamemBERT OSCAR 4 GB
CamemBERT CCNET 4 GB

Figure 1.1: Vocabularies inter-coverage matrix for MLM models,
age overlap in token vocabularies. Darker cells indicate higher shared coverage.
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As we can see in Figure 1.1, the vocabulary inter-coverage matrix reveals interesting pat-
terns in the shared vocabulary between different BERT-based models. CamemBERT models
(138 GB, 4 GB, and CCNET 4 GB) show strong mutual vocabulary coverage (74.9-100%), in-
dicating significant overlap in their tokenization despite different training data sizes. How-
ever, domain-specific models like BioBERT, PubMedBERT, and ClinicalBERT share rela-
tively low vocabulary coverage (around 32-38%) with general-domain models, highlighting
their specialized nature. DrBERT variants (7 GB and 4 GB) demonstrate moderate cover-
age (20-30%) with other models but maintain strong internal consistency (76.2-100%). No-
tably, the NACHOS variants of CamemBERT and PubMedBERT show distinct patterns, with
CamemBERT NACHOS maintaining higher coverage with its parent model while PubMed-
BERT NACHOS shows more divergence. The MixedBERT 8 GB model exhibits particularly
low coverage (2-33%) with most other models except DrBERT variants (57.3-58.3%), sug-
gesting a unique vocabulary composition that reflects its mixed-domain training approach.

1.4.5 Models Stability

We observe during the evaluation phase that most of the models based on continual pre-
training strategy from CamemBERT OSCAR 138 GB are suffering from bad consistency and
stability during fine-tuning, which translates into fluctuation in performance between runs
as shown in the Figure 1.2.
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Figure 1.2: Box plot of the F1 score for each of the tasks and models.

We also notice during PubMedBERT NACHOS;,,,.;; pre-training that the model loss (Fig-
ure 1.3) is globally stable during almost all the duration of the pre-training, until reaching
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the step 71,000, where the loss fall down until touching down zero at step 72,500.

1.6
1.2

0.8

Training Loss

0.4

0 10k 20k 30k 40k 50k 60k 70k 80k
Training Steps

Figure 1.3: PubMedBERT NACHOS;,,,.;; loss.

While the DrBERT 4GB and 7GB variants trained from-scratch are showing a consistent
loss decrease without any abnormal phenomenon as shown in Figure 1.4:

78000 %

Figure 1.4: On the left hand side DrBERT NACHOS;,,,.;; loss and on the right hand side
DrBERT NACHOS 4,4 loss.

1.5 Conclusion

In this work, we proposed the first biomedical and clinical Transformer-based language
models, based on RoBERTa architecture, for the French language. An extensive evaluation
study of these specific models has been performed on an aggregated collection of diverse
private and public medical tasks. Our open-source DrBERT models improved the state of
the art in all medical tasks against both the French general model (CamemBERT) and the
English medical ones (BioBERT, PubMedBERT and ClinicalBERT). In addition, we showed
that pre-training on constrained resources (4 GB) of web-crawled medical makes it possible
to compete with, and even frequently surpass, models trained with specialized data from
medical reports.

Results also highlighted that continual pre-training on an existing domain-specific En-
glish model, here PubMedBERT, is a more viable solution than on a French domain-generalist
model while targeting French biomedical downstream tasks. It needs to further investigate
the performance of this approach using more data, similar to what we have done with Dr-
BERT NACHOS;4; ge-
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The pre-trained models as well as the pre-training scripts® have been publicly released
online under an MIT open-source license. The main purpose of the NACHOS dataset is to
promote the development of robust NLP tools by the community, so we have decided to
make the corpora available for academic research.

>https://drbert.univ-avignon.fr/
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CHAPTER

DRBENCHMARK: A LARGE LANGUAGE
UNDERSTANDING EVALUATION BENCH-
MARK FOR FRENCH B1oMEDICAL Do-
MAIN

As demonstrated in previous chapters, the evaluation of language models is crucial for
understanding their capabilities and limitations. While numerous benchmarks exist for
general domain evaluation [279, 278], specialized domains like healthcare require dedicated
evaluation frameworks that can assess both general language understanding and domain-
specific knowledge [109, 111]. This is particularly challenging for languages other than
English, where both the models and evaluation resources are scarce.

Several key research questions arise when considering the evaluation of domain-specific
language models:
« How can we effectively evaluate the domain adaptation capabilities of language mod-

els in specialized fields?

« What metrics and tasks are most relevant for assessing medical language understand-
ing?

« How do we ensure a comprehensive evaluation across different medical specialties
and task types?

« Can we establish standardized evaluation protocols that facilitate fair comparisons
between models?

This chapter presents DrBenchmark, the first large-scale evaluation framework for French
biomedical language models [166]. Our work provides a systematic approach to assessing
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the performance of language models in the French medical domain through a diverse set
of tasks and metrics. Our main contributions are:

« We introduce a comprehensive collection of 12 medical datasets on HuggingFace'
encompassing 20 diverse downstream tasks, including: POS tagging, NER, Multi-
class and Multi-label classification, MCQA, Semantic Textual Similarity (STS)

« We conduct a comprehensive evaluation of 8 state-of-the-art masked language mod-
els:

French generalist models: CamemBERT [199], CamemBERTa [6], FlauBERT
[174]

French biomedical models: DrBERT [165], CamemBERT-bio [265]
English biomedical model: PubMedBERT [108]
Cross-lingual generalist model: XLM-RoBERTa [67]

+ We develop standardized evaluation protocols and metrics specifically designed for
healthcare-related NLP tasks, ensuring reliable and reproducible model comparisons.

« We provide on GitHub an extensive evaluation framework with automated pipelines?
for large-scale experiments, including support for high-performance computing (HPC)
infrastructures.

Our benchmark incorporates datasets from various sources, including scientific liter-
ature, clinical trials, clinical cases, and speech transcriptions. These datasets represent a
wide range of medical specialties and task types, from clinical case analysis to prescription
understanding, providing a comprehensive assessment of medical language understanding
capabilities.

The evaluation framework has been designed to be easily extensible, allowing for the
integration of new datasets and metrics as they become available. This ensures that Dr-
Benchmark can evolve alongside advances in medical NLP and continue to serve as a valu-
able resource for the research community:.

2.1 DrBenchmark Overview

Our proposed benchmark comprises 20 French biomedical language understanding tasks,
one of which is specifically created for this benchmark. The descriptions and statistics of
these tasks are presented in Table 2.1. DrBenchmark encompasses the following overall
aspects:

1. A diverse set of tasks evaluating distinct model capabilities: POS tagging as-
sesses grammatical understanding and syntactic structures, NER evaluates lexical

lhttps://huggingface.co/DrBenchmark/datasets
2https://github.com/DrBenchmark/DrBenchmark
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knowledge and domain-specific terminology comprehension, Multi-class and Multi-
label classification test semantic categorization at different granularity levels, Intent
classification measures understanding of medical context, MCQA evaluates medical
reasoning capabilities, and STS assesses the model’s ability to capture nuanced rela-
tionships between medical texts.

2. A diverse range of data origins: Scientific literature, clinical trials, clinical cases,
speech transcriptions, and more as described in Table 2.2.

Dataset Task Metric Train Validation Test License
__CAS__ _ POStegging  SeqfvalFl 2653 39 758 _bua
ESSAI POS tagging SeqEval F1 5,072 725 1,450 DUA
NER - EMEA SeqEval F1 429 389 348 GFDL 1.3
QUAERO eq=va
o _________ _ NER-MEDLINE _ _ SegfvalFl 83 82 83 GWL13
E3C NER - Clinical SeqEval F1 969 140 293 CCBY-NC
oo _ NeR-Temporal ________SegfvalFl 00 M0 295 _CCBYNC
MorFITT Multi-label Classification Weighted F1 1514 1,022 1,088 CC BY-SA 4.0
FrenchMedMCQA Question-Answering Hamming / EMR 2,171 312 622 Apache 2.0
e — o _____ MulticassClassification WeightedP1_ 2171 312 622 _ _Apache20
NER - EMEA SeqEval F1 70 10 20 CCBY 4.0
Mantra-GSC NER - Medline SeqEval F1 70 10 20 CCBY 4.0
o ________NER-Patems __ SeqfvalFl B S o _CCBY40
CLISTER Semantic Textual Similarity EDRM / Spearman 499 101 400 DUA
DEFT-2020 Semantic Textual Similarity EDRM / Spearman 498 102 410 DUA
oo _ o _____ MultidassClassification Weighted F1__ a0z 0 __Dbua |
DEFT-2021 Multi-label Classification Weighted F1 118 49 108 DUA
C___ooNeR o _SeqfvalFl 2183 793 176  DUA_
_DiaMed __ Multiclass Classification Weighted F1_ ] o 154 CCBYSA40
NER SeqEval F1 1,386 198 397 CCBY 4.0
PxCorpus
Multi-class Classification Weighted F1 1,386 198 397 CCBY 4.0

Table 2.1: Descriptions and statistics of the 20 tasks included in DrBenchmark.

Please note that within DrBenchmark, we include classical tasks like NER and POS
tagging, as well as more specific and challenging tasks like MCQA and multi-label classifi-
cation. In Section 2.1.1, we provide an overview of the different French downstream tasks,
while in Section 2.1.2, we offer insights into the pipeline and its reproducibility.

Dataset Sources
CAS Clinical cases
ESSAI Clinical trial protocols
QUAERO Drug leaflets & Biomedical titles
E3C Clinical cases
MorFITT Biomedical abstracts
FrenchMedMCQA Pharmacy Exam
Mantra-GSC Biomedical abstract / titles, drug labels, & patent
CLISTER Clinical cases
DEFT-2020 Clinical cases, encyclopedia & drug labels
DEFT-2021 Clinical cases
DiaMed Clinical cases
PxCorpus Drug prescriptions transcripts

Table 2.2: Data sources covered by each dataset.
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2.1.1 Downstream tasks

DEFT-2020 [40] contains clinical cases, encyclopedia, and drug labels introduced in the
2020 edition of an annual French Text Mining Challenge, called DEFT, and annotated for
two tasks: (i) textual similarity and (ii) multi-class classification. The first task aims at
identifying the degree of similarity within pairs of sentences, from 0 (the least similar) to 5
(the most similar). The second task consists of identifying, for a given sentence, the most
similar sentence among the three sentences provided.

DEFT-2021 [107] is a subset of 275 clinical cases taken from the 2019 edition of DEFT.
This dataset is manually annotated in two tasks: (i) multi-label classification and (ii) NER.
The multi-label classification task focuses on identifying the patient’s clinical profile based
on the diseases, signs, or symptoms mentioned in the clinical cases. The dataset is anno-
tated with 23 axes from Chapter C of the Medical Subject Headings (MeSH). The second
task involves fine-grained information extraction for 13 types of entities (more details in
Appendix 9.4).

E3C [196] is a multilingual dataset of clinical cases annotated for the NER task. It con-
sists of two types of annotations (more details in Appendix 9.4): (i) clinical entities (e.g.,
pathologies), (ii) temporal information and factuality (e.g., events). While the dataset cov-
ers 5 languages, only the French portion is retained for the benchmark. Since the dataset
does not come with pre-defined subsets, we performed a 70 / 10 / 20 random split, as de-
scribed in Table 2.3.

Subset Train Validation Test

Clinical 87.38 % of layer 2 12.62 % of layer 2 100 % of layer 1
Temporal 70 % of layer 1 10 % of layer 1~ 20 % of layer 1

Table 2.3: Description of the sources for E3C.

The QUAERO French Medical Corpus [211], simply referred to as QUAERO in this
chapter, contains annotated entities and concepts in French for NER tasks. The dataset
covers two text genres (drug leaflets and biomedical titles), consisting of a total of 103,056
words sourced from EMEA or MEDLINE. 10 entity categories corresponding to the UMLS
Semantic Groups [188] were annotated (more details in Appendix 9.4). In total, 26,409 entity
annotations were mapped to 5,797 unique UMLS concepts. Due to the presence of nested
entities in annotations, we simplified the evaluation process by retaining only annotations
at the higher granularity level from the BigBio [94] implementation, following the approach
described in CamemBERT-bio [265], which translates into an average loss of 6.06% of the
annotations on EMEA and 8.90% on MEDLINE. Additionally, considering that some docu-
ments from EMEA exceed the maximum input sequence length that most current language
models can handle, we decided to split these documents into sentences.

70



DRBENCHMARK: A LARGE LANGUAGE UNDERSTANDING EVALUATION BENCHMARK FOR
FrENcH BioMEDICAL DOMAIN

MorFITT [170] is a multi-label dataset annotated with medical specialties. It contains
3,624 biomedical abstracts from PMC Open Access. It has been annotated across 12 medical
specialties (more details in Appendix 9.4), for a total of 5,116 annotations.

FrenchMedMCQA [164] is a Multiple-Choice Question-Answering (MCQA) dataset for
the biomedical domain. It contains 3,105 questions coming from real exams of the French
medical specialization diploma in pharmacy, integrating single and multiple answers. The
first task consists of automatically identifying the set of correct answers among the 5 pro-
posed for a given question. The second task consists of identifying the number of answers
(between 1 and 5) supposedly correct for a given question.

Mantra-GSC  [155] is a multilingual dataset annotated for biomedical NER. From the 5
languages covered, we included only the French subset in this benchmark. The dataset is
obtained from 3 sources, which have been partitioned to be evaluated separately by 2 anno-
tation schemes (more details in Appendix 9.4): Medline (11 classes), and EMEA and Patents
(10 classes). The sources cover different types of documents (biomedical abstracts/titles,
drug labels, and patents). To ensure evaluation consistency, we randomly split the dataset
into 3 subsets: 70% for training, 10% for validation, and 20% for testing.

CLISTER [122] is a French clinical cases STS dataset of 1,000 sentence pairs manually
annotated by several annotators, who assigned similarity scores ranging from 0 to 5 to
each pair. The scores were then averaged together to obtain a floating-point number rep-
resenting the overall similarity. The objective of this dataset is to develop models that can
automatically predict a similarity score that closely aligns with the reference score based
solely on the two sentences provided.

CAS [105] comprises 3,790 clinical cases that have been annotated for POS tagging with
31 classes using automatic annotations through Tagex °, with an evaluation conducted by
comparing the automatic outputs against manual annotations. This evaluation yielded 98%
precision. Since the dataset does not come with predefined subsets, we decided to randomly
split it into 3 subsets of 70%, 10% and 20% of the total data for training, validation, and test,
respectively.

ESSAI  [73] contains 7,247 clinical trial protocols annotated in 41 POS tags using Tree-
Tagger [247]. As the dataset was not originally divided into 3 subsets, we applied the same
procedure as on the CAS corpus.

PxCorpus [153] is a spoken language understanding dataset in the domain of medical
drug prescription transcripts. It includes 4 hours (1,981 recordings) of transcribed and anno-
tated dialogues focused on drug prescriptions. The recordings were manually transcribed

Shttps://allgo.inria.fr/app/tagex
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and semantically annotated. The first task involves classifying the textual utterances into
one of the 4 intent classes (prescribe, replace, negate, none). The second task is a NER task
where each word in a sequence is classified into one of 38 classes, such as drug, dose, or
mode (more detail in Appendix 9.4).

DiaMed is an original dataset created specifically for DrBenchmark. It comprises 739
new French clinical cases collected from an open-source journal (The Pan African Medical
Journal). The cases have been manually annotated by several annotators, one of whom is
a medical expert, into 22 chapters of the International Classification of Diseases, 10th Re-
vision (ICD-10) [1]. These chapters provide a general description of the type of injury or
disease. To ease the annotation process, only labels at the chapter level were used (more de-
tails in Appendix 9.4). The inter-annotator agreement between the 4 annotators has been
computed for two annotation sessions (see Table 2.4), with 15 different clinical cases as-
sessed per session.

Session 1- 0 to 15 docs Session 2 - 15 to 30 docs

Annotator ID K g K g

Annotator 1 & 2 0.538 0.566 0.697 0.705
Annotator 1 & 3 0.682 0.709 0.697 0.705
Annotator 1 & 4 0.397 0.429 0.548 0.558
Annotator 2 &3 0.311 0.357 1.000 1.000
Annotator 2 & 4 0.472 0.497 0.672 0.707
Annotator 3 &4 0.311 0.354 0.672 0.707
Average 0.452 0.485 0.714 0.730

Table 2.4: Inter-annotator agreement statistics. x is referring to Kappa Cohen and G to
Gwet’s AC1.

2.1.2 Reproducibility and Usage

To facilitate the adoption of DrBenchmark and ensure consistency in implementations, we
have developed a practical toolkit based on the HuggingFace Datasets library [179]. This
toolkit includes data loaders that adhere to normalized schemes and predefined data splits.
It also provides pre-training and evaluation scripts for each of the tasks, utilizing the Hug-
gingFace Transformers [290] and PyTorch [227] libraries. For further guidance, we have
integrated all the training details, including hyperparameters, in Appendix 9.3. This in-
formation will help users to reproduce and customize the experiments conducted with Dr-
Benchmark®.

*https://github.com/DrBenchmark/DrBenchmark
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2.2 Language Models Studied

In this section, we outline the experimental protocol used to compare the performance of
existing language models within DrBenchmark. To guarantee a fair comparison, we focus
exclusively on pre-trained masked language models (MLMs) in this study. These MLMs are
based on BERT-like architectures [81].

We first provide a brief overview in Section 2.2.1 of the 8 pre-trained language models
that were studied: French generalist models (CamemBERT, CamemBERTa, and FlauBERT),
cross-lingual generalist model (XLM-RoBERTa), French biomedical models (DrBERT and
CamemBERT-bio), and English biomedical model (PubMedBERT). Subsequently, in Sec-
tion 2.2.2, we describe the evaluation protocol employed to assess the performance of these
models.

2.2.1 Pre-trained Masked Language Models

Table 2.5 summarizes the models and their parameters compared on DrBenchmark.

Model Tokenizer Vocabulary Pretraining Corpus Text Size
CamemBERTa  SentencePiece 32K CCNET from-scratch CCNET 4GB
French Generalist CamemBERT  SentencePiece 32K OSCAR from-scratch OSCAR 138 GB
FlauBERT BPE 50K Wiki + Web crawl from-scratch Wiki + Web crawl 71 GB
DrBERT-FS SentencePiece 32K NACHOS from-scratch NACHOS 7.4 GB
French Biomedical DrBERT-CP WordPiece 30K PubMed continual pretraining PubMed + NACHOS 21 + 4 GB

CamemBERT-bio SentencePiece 32K OSCAR continual pretraining OSCAR + biomed-fr 138 + 2.7 GB

Cross-lingual Generalist XLM-RoBERTa  WordPiece 30K CC-100 from-scratch CC-100 2.5 TB

English Biomedical PubMedBERT WordPiece 30K PubMed from-scratch PubMed 21 GB

Table 2.5: Summary of the pre-training specifications for the different BERT-based models
compared.

CamemBERT [199] is a RoBERTa-based model for French, pre-trained from-scratch on
the generalist French 138 GB subset of OSCAR corpus [221].

CamemBERTa [6]isaDeBERTaV3 [118] based model pre-trained from-scratch on around
30% of the French subset of CCNET corpus [289] used for CamemBERT ¢y g1, that had seen
approximately 133 billion tokens during its pre-training.

FlauBERT [174] is a BERT-based model pre-trained from scratch using a subsample of
71 GB of the French Common Crawl and Wikipedia corpora.
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XLM-RoBERTa [67] is a cross-lingual RoBERTa-based model trained on 116 languages,
including French, by using 2.5 TB of the CommonCrawl] corpus.

PubMedBERT [109] is a BERT-based biomedical-specific model pre-trained from scratch
on the 3.1 billion words of the PubMed corpus (21 GB). This is the only model for English.

DrBERT-FS and DrBERT-CP  [165] are French biomedical MLMs built using a from-
scratch pre-training of RoBERTa (DrBERT-FS) and continual pre-training of PubMedBERT
(DrBERT-CP) from the French public biomedical corpus NACHOS [165], integrating 1.08 bil-
lion words (7.4 GB) and 646 million words (4 GB) respectively.

CamemBERT-bio [265] is a French biomedical language model built using a continual
pre-training of the CamemBERTpscar—133¢5 model. It was trained on the French public
corpus biomed-fr [265] with 413 million words (2.7 GB) and a wide range of data collected
on the web.

2.2.2 Models evaluation

All the models are fine-tuned according to a strict protocol using the same hyperparame-
ters for each downstream task. The reported results are obtained by averaging the scores
from four separate runs, thus ensuring robustness and reliability. We also report statistical
significance computed using Student’s t-test.

To ensure a fair and consistent comparison among systems for sequence-to-sequence
tasks such as POS tagging and NER, we chose the SeqEval [208] metric in conjunction with
the IOB2 format and the training of all the models to predict only the label on the first
token of each word, as mentioned by [265]. It provides a tokenizer-agnostic evaluation and
mitigates any correlation between models’ performances and the tokenization process.

For STS tasks, the models’ performance was assessed using two metrics: (1) the Spear-
man correlation, and (2) the mean relative solution distance accuracy (EDRM), as defined
by the original authors of the DEFT-2020 dataset [40].

2.3 Experiments and Results

In Section 2.3.1, we compare the results obtained by each model within DrBenchmark,
which permits positioning a wide range of state-of-the-art models in the biomedical field
across various NLP tasks. Then, we propose to gain a comprehensive understanding of
the models’ behavior by examining areas such as low-resource fine-tuning scenarios (Sec-
tion 2.3.2) and the analysis of word tokenization of the studied models (Section 2.3.3).

74



DRBENCHMARK: A LARGE LANGUAGE UNDERSTANDING EVALUATION BENCHMARK FOR
FrENcH BioMEDICAL DOMAIN

2.3.1 Comparison of Models’ Performance

French Generalist French Biomedical English Biomedical Cross-lingual Generalist
Dataset Task Baseline CamemBERT CamemBERTa FlauBERT DrBERT-FS DrBERT-CP CamemBERT-bio = PubMedBERT XLM-RoBERTa
CAS POS 23.50 95.53** 96.56"* 95.22** 96.93 96.46"* 95.22** 94.82** 96.91
ESSAI POS 26.31 97.38** 98.08** 97.05* 98.41 98.01** 97.39** 97.42** 98.34
NER EMEA 8.37 62.68"* 64.86"" 74.86 64.11** 67.05** 66.59"* 53.19** 64.47**
QUAERO 2=
NER MEDLINE 4.92 55.25"* 55.60** 48.98 55.82** 60.10 58.94 53.26** 51.12**
E3C NER Clinical 4.47 54.70** 55.53 47.61 54.45 56.55 56.96 38.34 52.87**
NER Temporal 21.74 83.45 83.22 61.64 81.48** 83.43 83.44 80.86"" 82.6
MorFITT Multi-Label CLS 3.24 64.21** 66.28"* 70.25 68.70** 70.99 67.53"* 68.58"* 67.28"*
MCQA 21.83/11. 28.53/2.25** 29. 257 27. 2.09* 31. 3.22"* 32.41/2.89* .3/ 1.4 32.90/1.61** 34.74/ 2.09**
FrenchMedMCQA CQ. 83/11.57 28.53/2.25 77/ 2.57 7.88 / 07 /3. /2.8 35.3/1.45 0/ 1.6 74/
CLS 8.37 66.21 64.44"* 61.88 65.38 66.22 65.79 65.41* 64.69*
NER FR EMEA 0.00 29.14** 40.84** 66.20 66.23 60.88 30.63** 40.14 52.64"
MantraGSC NER FR Medline ~ 7.78 23.20" 22.55™ 20.69 42.38 35.52 23.66™ 27.53" 18.73*
NER FR Patents 6.20 00.00** 44.16"" 31.47** 57.34 39.68 00.00** 4.51™ 8.58™
CLISTER STS 0.44 / 0.00 0.55/0.33** 0.56 / 0.47** 0.50 /0.29**  0.62/0.57**  0.60 / 0.49* 0.54/0.26™* 0.70/0.78 0.49/0.23**
STS .49 / 0. . .58** .59 / 0.43** .. .51%* .72/ 0.81* .73 / 0. . .32 . X . .26™*
DEFT-2020 STS 0.49/0.00 0.59/0.58 0.59/0.43 0.58/0.5 0.72/0.8 0.73/ 0.86 0.58/0.3: 0.78 / 0.86 0.60 / 0.26
CLS 14.00 96.31 97.96 42,37 82.38 95.71* 94.78* 95.33* 67.66"*
24, 4% 04* 2 34.15 30.04** 82 25.53+ 46
DEFT-2021 Multi-Label CLS 4.49 18.04 18.04 39.21 4.15' 0.04 17.8. 5.5 24.46
NER 0.00 62.76** 62.61** 3351 60.44** 63.43" 64.36 60.27** 60.32**
DiaMED CLS 15.36 30.40** 24.05™ 34.08"* 60.45 54.43" 39.57** 54.96** 26.69*"
NER 10.00 92.89** 95.05** 47.57 95.88 71.38 93.08** 94.66** 95.80
PxCorpus I
CLS 84.78 94.41 93.95 93.45% 94.43 94.52 94.49 93.12 93.91

Table 2.6: Performance of the studied models over 4 runs. Best model in bold and second is
underlined. Statistical significance is computed using Student’s t-test: * stands for p < 0.05,
** stands for p < 0.01.

The results of the 8 models are reported in Table 2.6 and compared to a baseline obtained
by considering the majority class for all predictions. Overall, although we might anticipate
certain models to excel in all tasks, we discovered that no single model outperforms the
rest in all application scenarios. Interestingly, most of the models examined manage to
secure the top position in at least one of the French biomedical downstream tasks studied.
The only exception pertains to the cross-lingual generalist model (XLM-RoBERTa), which
manages to reach the second-best position on several tasks.

Despite this unexpected outcome, we observe that French biomedical language models
(DrBERT-FS, DrBERT-CP, CamemBERT-bio), presumed to be the most aligned with the nature
of the data of the benchmark, exhibit indeed superior performance across many tasks. More
precisely, DrBERT-FS achieves the highest performance in 8 tasks, DrBERT-CP in 5 tasks, and
CamemBERT-bio in 2 tasks. This indicates that domain and language-specialized models
achieve the best performance in up to 75% of the DrBenchmark downstream tasks.

75



CHAPTER 2

\ RN
\ N\
N
\ /
NS
N
M
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Figure 2.1: Performance with varying training subset sizes (25%, 50%, 75% and 100%). Re-
sults are reported on the full test set.

Biomedical vs. Generalist. The nature of the data appears to have an influence. Gener-
alist models (CamemBERT, CamemBERTa, F1auBERT, and XLM-RoBERTa) are more suitable for
tasks that require extensive linguistic knowledge but may not perform as well as specialized
models nor even reach their level of performance. We observe that all generalist models
obtain better performance only on 4 out of the 20 tasks, but remain competitive on most
tasks. Furthermore, our experiments with DrBERT-FS indicate that biomedical models may
require less pre-training data compared to generalist ones. However, it is important to note
that this observation requires further confirmation. In some tasks, biomedical models that
undergo continual pre-training from a generalist model, such as CamemBERT-bio, can prove
to be the most effective, underscoring the value of pre-training on generalist datasets.

From-scratch vs. Continual Pre-Training. DrBERT-CP and CamemBERT-bio, pre-trained
from PubMedBERT and CamemBERT respectively, demonstrate improved performance com-
pared to their initial models. Notably, DrBERT-CP outperforms CamemBERT-bio in 15 out of
20 tasks. These findings suggest that when it comes to continual pre-training, starting with
a specialized model in the specific domain (here, PubMedBERT) may be a better choice than
a generalist model (here, CamemBERT), even with different languages. Additionally, we ob-
serve that DrBERT-FS achieves the highest performance in 8 tasks, suggesting that starting
from-scratch can be a competitive strategy compared to continual pre-training.

French vs. Other language. French models generally achieve better performance com-
pared to English or multilingual ones. When considering the English PubMedBERT model,
we observe that its performance in most tasks is comparable to that of the French models,
with the exception of NER tasks, where French models demonstrate superiority. Thus, we
observe that the language appears to be less prominent when utilized in domain-specific
tasks, such as those in the biomedical field.
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RoBERTa vs. DeBERTaV3 architectures. Despite being trained on only 30% of the
pre-training data used by CamemBERT ¢y g, CamemBERTa achieves identical or better per-
formances in 68% of the tasks (12 out of 20), benefiting from the DeBERTaV3 architecture
in domain-specific scenarios. However, all the models based on CamemBERT face difficul-
ties in corpora with a limited amount of data, such as MantraGSC Patents, where they fail
to generate labels other than ’O’. On the other hand, in the same low-resource scenarios,
CamemBERTa models exhibit greater robustness and achieve superior performance. The ar-
chitecture on which the models are based therefore, seems to play a role in the performance
obtained.

French Generalist French Biomedical English Biomedical Cross-lingual Generalist

Dataset Task CamemBERT CamemBERTa FlauBERT DrBERT-FS DrBERT-CP CamemBERT-bio PubMedBERT XLM-RoBERTa
CAS POS 1.63 1.64 1.34 1.36 181 1.63 181 18
ESSAI POS 1.55 1.56 1.28 129 1.78 155 1.78 1.75
NER EMEA 1.66 1.67 1.37 1.37 173 1.66 173 177
QUAERO =
NER Medline 2.01 2.01 1.58 1.64 1.97 2.01 1.97 218
E3C NER FR Clinical 1.64 1.65 139 1.32 1.80 1.64 1.80 1.78
NER FR Temporal 1.63 1.63 1.38 1.31 1.80 1.63 1.80 176
MorFITT Multi-Label CLS 1.51 1.51 1.33 139 191 1.51 191 173
MCQA 1.80 1.80 1.55 1.55 2.03 1.80 2.03 2.00
FrenchMedMCQA Q - -
CLS 1.80 1.80 1.55 1.55 2.03 1.80 2.03 2.00
NER FR EMEA 1.50 1.46 1.34 137 1.99 150 1.99 171
MantraGSC NER FR Medline 225 2.25 1.88 2.05 247 225 247 249
NER FR Patents 1.58 1.58 141 1.51 2.06 1.58 2.06 1.86
CLISTER STS 176 176 1.55 1.55 2.09 176 2.09 1.93
STS 143 1.43 131 145 1.92 143 1.92 1.64
DEFT-2020 I -
CLS 1.31 1.32 1.20 1.23 175 1.31 175 1.51
CLS 170 1.71 1.48 1.51 2.05 170 2.05 1.90
DEFT-2021 I I
NER 1.62 1.63 1.35 1.35 1.80 1.62 1.80 1.79
DiaMED CLS 1.66 1.67 145 1.46 1.99 1.66 1.99 1.88
. NER 171 1.76 1.63 1.66 2.13 171 2.13 1.83
PxCorpus — —
CLS 1.71 176 1.63 1.66 2.13 171 2.13 1.83
Average 167 167 1.43 147 190 167 1.90 185

Table 2.7: Average sub-word units per word for each model and dataset. For each task, the
lowest sub-word value is shown in bold, and the highest value is underlined. Models are
grouped based on their tokenizer type. Cells in green indicate the best model in terms of
performance for the task, while cells in red indicate the worst model.

2.3.2 Impact of Fine-Tuning with Limited Data

Unlike the process of training language models, the fine-tuning approach involves utiliz-
ing annotated data to adapt a pre-trained language model for solving specific downstream
tasks. In the previous section, we observed that language models pre-trained on medical
data generally achieved better performance on DrBenchmark compared to generalist mod-
els trained on much larger datasets. However, we now question the models’ ability to be
effectively applied to biomedical tasks when there is limited fine-tuning training data avail-
able. For this purpose, we conducted experiments by varying the amount of training data
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during the fine-tuning process by randomly choosing four percentages of the training data:
25%, 50%, 75% and 100%. To make the experiment as fair as possible, we did four runs for
each percentage, model and dataset combination. The validation and test sets have not been
changed for the sake of comparison.

We observe that on certain datasets, some models capture information more quickly
than others, like in Figures 2.1b, 2.1f and 2.1a. Unsurprisingly, in almost all scenarios, hav-
ing the complete training set yields better results than having only 25% of it. However,
we note a few exceptions in Figures 2.1a and 2.1h with F1auBERT, where we observe the
opposite trend. For intermediate percentages, 50% and 75%, we observe a decrease in per-
formance with certain models, such as F1auBERT in Figures 2.1a and 2.1g, and DrBERT-CP
in Figures 2.1d and 2.1h. In NER tasks (Figures 2.1a, 2.1d, 2.1f and 2.1g), DrBERT-FS achieves
the best performance in scenarios with very little data, indicating good model robustness.

2.3.3 Analysis of Word Tokenization

Tokenizers play a crucial role in MLMs by utilizing size-limited vocabularies to split texts
into sub-units, aiming to handle out-of-vocabulary (OOV) words. Due to variations in the
training data, vocabularies differ across different models, as illustrated in Figure 2.2. As a
result, tokenizers segment words in distinct ways, yet remarkably achieve similar perfor-
mance levels as previously noted in Table 2.6.

CamemBERTa
CamemBERT
FauBERT
OrBERT-FS
DrBERT-CP
CamemBERT-BIO

PubMedBERT

XLM-RoBERTa

=
&
B
S

CamemBERTa
CamemBERT
FlauBERT
DrBERT-FS
DrBERT-CP
PubMedBERT
XLM-RoBERTa

CamemBERT-BIO

Figure 2.2: Vocabularies inter-coverage matrix.

So far, there has been a prevailing notion in the community that excessive segmentation
of words in tokenization leads to a loss of morphological form and semantic meaning, intro-
ducing noise and adversely affecting performance [63, 126, 35]. However, our experiments,

78



DRBENCHMARK: A LARGE LANGUAGE UNDERSTANDING EVALUATION BENCHMARK FOR
FrENcH BioMEDICAL DOMAIN

as shown in Table 2.7, reveal that F1auBERT is the model with the least word segmentation
(1.43 on average), while DrBERT-CP tends to have the highest average segmentation (1.90
on average). Surprisingly, when comparing the performance of these two models on the
benchmark tasks, we observe that DrBERT-CP outperforms F1auBERT on 16 out of the 20
tasks, thus contradicting previous conclusions drawn by the community. Table 2.8 provides
some examples of the tokenization done by each analyzed model, showcasing a list of com-
monly used biomedical terms. Yet, tokenization, as it is currently done in MLMs, seems to
play a minor role in the performance of systems.

French Generalist French Biomedical English Biomedical Cross-lingual Generalist
Term CamemBERTa CamemBERT FlauBERT DrBERT-FS PubMedBERT XLM-RoBERTa
CamemBERT-bio DrBERT-CP
asymptomatique a-s-ym-pto-matique a-s-y-mp-to-matique as-ym-ptom-atique v asympt-omat-ique as-y-mp-tomat-ique
blépharorraphie blé-phar-or-ra-phi-e blé-phar-or-ra-phi-e bl-é-phar-or-raph-ie blé-ph-ar-or-ra-ph-ie ble-pha-ror-ra-phi-e b-lép-har-orra-phi-e
bradycardie brad-y-cardi-e brad-y-cardi-e bra-dy-car-die ' brady-car-di-e bra-dy-card-ie
bronchographie bronch-ographie bron-ch-ographie bron-cho-graphie bronch-ographie bronch-ograph-ie bron-ch-ographie
bronchopneumopathie  bronch-op-ne-um-opathie bron-cho-p-ne-um-opathie bron-chop-neu-mo-pathie ~bronchop-neumopathie ~bronch-op-neum-opath-ie ~ bron-chop-ne-umo-pathi-e
dysménorrhée dys-mén-or-r-h-ée dys-mén-or-r-h-ée dys-mé-nor-rh-ée dys-m-énorrhée dysm-eno-rr-he-e dys-mén-or-r-hé-e
glaucome gla-uc-ome gla-uc-ome glau-come v glauc-ome gla-u-come
IRM v v v v ir-m I-RM
kystectomie k-yst-ectomie ky-st-ectomie ky-st-ec-tomie kys-tectomie ky-st-ectom-ie ky-st-ecto-mie
neuroleptique neuro-le-p-tique neuro-le-p-tique neur-ol-ep-tique neur-oleptique neurol-ept-ique neuro-lep-tique
nicotine v v ' v v nico-tine
poliomyélite poli-om-y-élite poli-om-y-élite poli-omy-élite poli-omyélite poli-omyel-ite poli-om-y-é-lite
rhinopharyngite rh-ino-phar-y-ng-ite rhin-oph-ary-ng-ite rh-ino-phar-yn-gite rhin-opharyng-ite rhin-oph-aryng-ite r-hin-op-har-y-ng-ite
toxicomanie toxico-mani-e toxico-mani-e ' ' toxic-oman-ie toxic-om-anie
vasoconstricteur vas-oc-on-strict-eur vas-oc-on-strict-eur vas-o-cons-tri-cteur vasoconstric-teur vasoconstric-te-ur vaso-con-strict-eur

Table 2.8: Visual comparison of models’ tokenization on commonly used biomedical terms.
A checkmark indicates that the word is present as a complete token, while hyphens separate
subword units. v'refers to the word being available as a unigram in the vocabulary of the

tokenizer.

Table 2.9 summarizes the results obtained on average by the considered MLMs when
aggregating the tasks into one of the five designated categories: POS, NER, MCQA, MCC
(Multi-class classification), MLC (Multi-label classification), or STS tasks. Upon analyz-
ing the average performance by task category, it becomes evident that the leading model,
DrBERT-FS, does not excel in tasks such as MLC or STS. For example, the multilingual
biomedical model PubMedBERT demonstrates a notable advantage, with nearly 18 EDRM
points ahead of CamemBERT-bio in the STS tasks.
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Tasks
Models POS NER MCQA MCC* MLC” STS

CamemBERT 96.45 5152  28.53/2.25 71.83 41.12 0.57/0.45
CamemBERTa 97.32  58.16  29.77/ 2.57 70.10 42.16 0.57/0.45

FlauBERT 96.13 51.85 27.88/2.09 57.94  54.73  0.54/0.40
DrBERT-FS 97.67 64.23 31.07/3.22 7566 5142  0.67/0.69
DrBERT-CP 97.23  59.84 3241/2.89 7772 5051  0.66/0.67

CamemBERT-bio  96.30  53.06 35.30/145  73.65 42.67 0.56 /0.29
PubMedBERT 96.12 4693  32.90/1.61 77.20 47.05  0.74/0.82
XLM-RoBERTa 97.62 5421  34.74/2.09 63.23 45.87 0.54/0.24

Table 2.9: Average results obtained by the different MLMs for each type of task. MLC stands
for Multi-label classification and MCC for Multi-class classification.

2.4 Conclusion

In this chapter, we introduced DrBenchmark, the first large language understanding bench-
mark tailored for the French biomedical domain. We conducted a qualitative evaluation of
8 state-of-the-art masked language models (MLMs) on this comprehensive benchmark, en-
compassing 20 diverse downstream tasks. Our findings illuminate the limitations of gener-
alist models in tackling complex biomedical tasks, emphasizing the importance of employ-
ing domain-specific models to achieve peak performance. While the French biomedical
models excel in most tasks, no single model emerges as universally superior. Remarkably,
certain out-of-domain models or models trained in different languages exhibit superior per-
formance in specific tasks and maintain competitiveness in others.

In conclusion, we have observed that several biomedical tasks in DrBenchmark exhibit
relatively poor performance, even when utilizing specialized biomedical models. We pos-
tulate that the models examined in this study, here state-of-the-art MLMs, may not be the
most effective choices for specific tasks such as question-answering or multi-label classifi-
cation. In our future research, we intend to shift our focus towards generative approaches,
such as LLaMA [267], OPT [312], or GPT-NeoX-20B [31], as well as their instruction-tuned
counterparts [133]. These alternatives may offer more suitable solutions for addressing
these types of tasks.
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CHAPTER

How IMPORTANT IS TOKENIZATION IN
FrRENCH MEDICAL MASKED LANGUAGE
MODELS?

In recent years, the success of language models in NLP has been intrinsically linked to their
tokenization strategies, the process of converting raw text into meaningful subword units
for model processing. While these strategies have proven effective for general domain tasks,
their application to specialized domains like medical text, particularly in languages other
than English, presents unique challenges. Medical terminology often follows distinct mor-
phological patterns and contains specialized vocabulary that may not be optimally captured
by conventional tokenization approaches.

Several key research questions arise when considering the importance of tokenization
for domain-specific language models:

« Since morphemic decomposition is fundamental to human understanding, can it also
enhance language modeling and understanding tasks for machines?

« How do different tokenization strategies, from purely statistical to linguistically-
informed, impact model performance in a specialized domain?

« Is there an optimal level of tokenization granularity for complex medical terminol-
ogy?

« To what extent does the source and size of the tokenizer’s training data influence the
final model’s effectiveness?

« Can a morpheme-enriched tokenization approach outperform standard methods on
French biomedical tasks?
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This chapter, based on our work accepted at LREC-COLING 2024 [162], investigates
these questions. Since medical terms are often complex compositions of meaningful sub-
units (morphemes), purely statistical tokenizers like BPE and SentencePiece risk segment-
ing them into semantically irrelevant pieces. To address this, we compare these traditional
methods with a novel morpheme-enriched approach designed to preserve the linguistic
building blocks of medical vocabulary. We evaluate the impact of these strategies by as-
sessing model performance across the 23 biomedical NLP tasks from our DrBenchmark
framework (Chapter 2). Our main contributions are:

« We introduce a novel morpheme-enriched tokenization strategy designed to produce
more semantically coherent subword units by integrating domain-specific linguistic

knowledge.

« We perform a large-scale comparative study of 7 different tokenization approaches,
training 7 new French medical MLMs from scratch and evaluating them on the 23
biomedical NLP tasks from the DrBenchmark framework.

« We release a comprehensive suite of 17 tokenizers' on the Hugging Face Hub, encom-
passing various algorithms, data sources, and our novel morpheme-enriched variants.

« To ensure full reproducibility, we provide our complete experimental framework on
GitHub?, including code for tokenizer training, model pre-training, downstream eval-
uation, and result analysis.

Our findings reveal that while no single tokenization strategy is universally optimal,
our morpheme-enriched approach often leads to more linguistically coherent tokenization
of specialized medical terms. This work contributes to a deeper understanding of how tok-
enization choices influence model performance in specialized domains and offers practical
insights for developing robust medical language models for French and other morphologi-
cally rich languages.

3.1 Tokenization Strategies

In the following section, we provide a brief overview of the two studied classical statistical-
based tokenization approaches (Section 3.1.1), followed by the description of our original
approach that integrates linguistic knowledge through morphemes into existing tokenizers’
algorithms (Section 3.1.2).

3.1.1 Statistical Tokenization Algorithms

In this chapter, we compare two statistically based tokenization methods, BPE and Senten-
cePiece (see Section 0.4.4). BPE begins with individual characters and progressively com-
bines them into subword pairs based on their frequency in the training data. In contrast,

'https://huggingface.co/BioMedTok/models?sort=downloads
2https://github.com/BioMedTok/BioMedTok
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SentencePiece employs two subword segmentation algorithms, Unigrams and BPE, offer-
ing flexibility in terms of segmentation granularity. While SentencePiece is widely used in
French biomedical models [265, 165, 68, 29], its appropriateness for a specific language and
domain may vary, potentially leading to suboptimal subword segmentation.

3.1.2 Morpheme-enriched Tokenization

In this chapter, focusing on improving the modeling of specialized medical terminology in
the medical field and reducing the impact of unseen words during model pre-training, our
primary emphasis is on lexical morphemes [266]. To achieve this, we created a manual list
of around 600 frequently used lexical morphemes in the French medical domain, sourced
from the book in [69]. Examples of these morphemes include terms like céphal-, clinico-,
-thérapie, thoraco-, -ome and -gene.

We trained our morpheme-enriched tokenizers by modifying both the BPE and Senten-
cePiece algorithms. During training, we introduced a predefined list of language-specific
morphemes as tokens. These morphemes were enforced selections by the tokenizer when
encountered, while the remaining text underwent the standard tokenization process of the
chosen algorithm. This approach enabled us to combine traditional BPE and SentencePiece
tokenizations with morpheme tokens, mitigating issues related to unseen words during
training.

3.2 Experimental Protocol

In this section, we outline the experimental approach used to evaluate the impact of tok-
enization strategies on French biomedical PLMs. Firstly, in Section 3.2.1, we present the
set of 23 selected biomedical NLP downstream tasks used in our study and taken from our
previous work DrBenchmark [167]. Next, we describe the different training data sources
employed to train the statistical tokenizers in Section 3.2.2. Following this, in Section 3.2.3,
we explain the training procedure for the chosen BERT-based model architecture. Finally,
in Section 3.2.4, we provide a comprehensive description of the evaluation methodology
used to assess the performance of these models.

3.2.1 Downstream Tasks

We summarize the datasets of the 23 NLP biomedical downstream tasks from DrBench-
mark [167], including NER, part-of-speech (POS) tagging, STS, and classification.

3.2.2 Tokenizers Data Sources

To ensure a fair and comprehensive comparison of training data sources used by the sta-
tistical tokenizers, we carefully curated a 1GB subset of raw, lowercase text data from a
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variety of sources, including NACHOS [165], PubMed Central, CC100 [289], and the French
Wikipedia. We then constructed tokenizers using both tokenization algorithms, resulting
in a total of 16 tokenizers: 8 with the integration of morphemes and 8 without. These spe-
cific data sources were chosen for their diversity: NACHOS focuses on French biomedical
content, PubMed Central on English biomedical content, Wikipedia on general French lan-
guage, and CC100 on general multilingual content. Each tokenizer was configured with a
vocabulary size of 32k tokens, consistent with the original hyperparameters used in other
French biomedical models such as CamemBERT-BIO [265] and DrBERT [165].

3.2.3 Language Model Pre-Training

To assess the impact of introducing morphemes into tokenizers on the pre-training pro-
cess of biomedical language models, we conducted pre-training from scratch using the 16
tokenizer combinations (see Section 3.2.2). Our choice of architecture was RoBERTa [193],
which is based on the masked language modeling objective and configured with standard
token masking percentages as introduced by the authors.

For the PLMs training data, we utilized the NACHOS corpus created by [165]. This cor-
pus, already pre-processed and converted to lowercase, is consistent with the data sources
used for training the tokenizers. It comprises 1.1 billion words, equivalent to 7.4GB of raw
text data, sourced from a wide range of online resources focusing on the French biomedical
and clinical domains.

The pre-training process was conducted uniformly across all models, employing the
same hyperparameters and executed over a 20-hour period. We harnessed the compu-
tational power of 32 V100 32GB GPUs available on the Jean-Zay supercomputer for this
purpose. By maintaining consistent procedures and employing a fixed seed to mitigate
randomness during training, we ensured the reliability and reproducibility of our experi-
ments.

3.2.4 Evaluation

All models undergo fine-tuning following a standardized protocol with identical hyperpa-
rameters for each downstream task, enabling a focused evaluation of tokenizers. We ensure
robustness and reliability by averaging the results across four independent runs and per-
forming statistical significance assessments using Student’s t-test.

For consistent comparisons, especially in sequence-to-sequence tasks like POS tagging
and NER, we employ the SeqEval [208] metric in conjunction with the IOB2 format. To
align with established practices [265], our models are trained to predict only the label for
the initial token of each word.
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3.3 Results and Discussions

BPE SentencePiece
NACHOS PubMed CC100 Wiki NACHOS PubMed CC100 Wiki

Dataset Task Metric wo w/ wo w wo w wo w wo w wo w  wob w  wob w
CLS F1 94.2* 949 947 94.2* 952 953 948 948 94.8 94.7° 93.4 93.6™ 944 941 953" 95.1*

CAS NER Neg SeqEval 87.0 83.3* 82.4 813" 849 842 847 845" 86.1 864 83.6° 839 854 842" 856 83.2
NER Spec SeqEval 30.3* 30.6 350 282" 346 320 344 340 36.1 29.8 284" 222" 319 287" 321 27.0"

POS SeqEval 97.0" 96.9** 97.1 96.9" 97.1" 97.0"" 97.2 96.9" 97.1" 97.0" 96.9** 96.9"* 97.1 971 97.1 97.1

PxCorpus CLS F1 948 942 936 939 942 946 934 937 949 941 948 941 948 93.7 937 945
NER SeqEval 959 959 959 959 961 960 96.2 959 961 961 960 961 959 961 96.2 96.1

DEFT2020 STS MSE 0.71 071 0.64* 0.75 070 067 071 0.69 0.72 0.71 0.63** 0.63 070 0.67* 070 0.67*
CLS F1 91.0 859 57.6 73.7 795 763 771 660 830 853 80.9 66.7°* 61.1* 66.3* 75.0° 77.4*

MORFITT CLS F1 68.6* 68.0°" 66.5°* 65.9** 68.4** 67.0* 68.7 67.3"* 69.6 68.8" 66.8* 66.2** 68.2 67.5** 69.1** 67.7**
E3C NER Clinical SeqEval 54.2 53.1 524 48.6™ 527 513" 511" 520" 542 524 521 511" 538 525 532 517
NER Temporal SeqEval 82.0 81.2 80.9" 80.0*" 81.8 81.2 82.3 80.6™ 82.1 81.6 80.3" 79.8™ 80.6™ 81.1" 81.6" 81.73"
CLISTER STS MSE  0.63* 0.63 0.63 0.60"* 0.65 0.63 0.62"* 0.66 0.61° 0.64 0.61" 0.62** 0.62 0.60* 0.64™ 0.63**
DEFT2021 NER SeqEval 60.3 59.0°* 58.1** 56.2"* 59.4** 59.2* 60.1** 59.1** 61.3 60.1* 57.0** 56.6** 59.2** 59.9** 59.3** 58.9**
CLS F1 32,9 345 334 323 345" 339 342 329 343 331 343 331 31.0 31.9* 342 349

NER Spec SeqEval 60.5 60.9 56.4° 59.2 579 615 63.6 574 639 628 57.6 557° 64.6 620 614 63.1

ESSAI POS SeqEval 98.4* 983 983 982" 984 984 983 983 984 984 983 98.2° 984 983 98.3* 983
NER Neg SeqEval 83.0 834 793 764 822 832 818 84.2° 813 840" 80.2 81.1 832 842 821 79.6"

CLS F1 97.3 97.1* 974 96.6* 97.4 96.7** 97.4 97.0** 97.3 973 97.5 97.2* 97.0 97.0 97.5* 97.0°
QUAERO NER Medline SeqEval 57.7 56.2** 55.4™* 53.6** 57.9 55.0** 57.3 56.4™ 58.2 555" 54.8"* 52.9** 57.5* 55.8" 56.9 54.9**

NER EMEA SeqEval 656 65.1 639 63.1"* 62.1" 627" 63.1" 626" 655 65.9 626 63.8" 628 63.1" 62.7° 62.0"
NEREMEA SeqEval 609 63.9 582° 60.6" 69.3 63.0 61.9* 623" 66.9 625" 56.8" 60.3 60.8* 59.5 64.0* 63.9*
MantraGSC NER Medline SeqEval 41.4* 429 393 362" 443 412 438 40.8° 419 395" 364" 37.8 464° 399 47.1 36.1°
NER Patents SeqEval 52.1* 53.3* 57.0 50.2° 57.0 539 53.6 523* 520 49.6* 50.7** 49.4 528 480 50.6° 47.8"

Average performances per tasks

CLS F1 79.80 79.10 73.87 76.10 78.20 77.30 77.60 75.28 7898 78.88 77.95 75.15 74.42 75.08 77.47 77.77
NER SeqEval 63.92 63.75 62.63 60.73 64.63 63.42 64.15 63.24 65.05 63.55 61.27 60.82 64.22 62.69 64.06 62.00
POS SeqEval 97.70 97.60 97.70 97.55 97.75 97.70 97.75 97.60 97.75 97.70 97.60 97.55 97.75 97.70 97.70 97.70
STS MSE 0,67 067 064 068 068 065 067 068 067 068 062 063 066 064 067 0,65

Table 3.1: Performance of the tokenization algorithms and different data sources used to
train tokenizers (top). Average performance per type of task is also reported (bottom). w/o
and w/ denote models without and with morphemes. Best models are in bold, and the
second-best are underlined. Statistical significance is determined using Student’s t-test,
where * indicates p < 0.05, and ** p < 0.01.

In this section, we present the results of our tokenization strategies on various biomed-
ical NLP tasks, with a focus on key aspects. We investigate the impact of tokenization
granularity (Section 3.3.1), the introduction of morphological information during tokenizer
construction (Section 3.3.2), and the influence of data sources on tokenizers, including to-
ken sparsity, morpheme coverage, and the overall performance of different tokenization
algorithms (Section 3.3.3).

Table 3.1 summarizes the performance of the BPE and SentencePiece strategies, both
with (w/) and without our morpheme-enriched approach (w/0), across various French biomed-
ical downstream tasks. Average performance per task type is also provided for clarity. It’s
worth noting that, before delving into detailed analysis, there is no consistent tokenization
strategy that consistently yields the best results in all tasks, whether it employs a purely
statistical algorithm or a statistical approach coupled with morpheme enrichment.
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3.3.1 Impact of tokenization granularity

BPE SentencePiece
NACHOS PubMed CC100 Wikipedia NACHOS PubMed CC100 Wikipedia
Corpus Task wo w/ wo w wo w wo w wo w wo w wo w wo w p
CLS 132 138 220 2.13 149 149 151 150 132 145 218 215 149 156 1.51 157 -0.62
CAS NER Neg 132 138 220 213 149 149 151 150 132 145 218 215 149 1.56 1.51 157 -0.70
NER Spec 132 1.38 220 2.13 149 149 151 150 132 145 218 215 149 156 151 157 -0.42
POS 132 1.38 220 213 149 149 151 150 132 145 218 2.15 149 156 1.51 157 -0.36
PxCorpus CLS 154 1.62 226 227 176 172 173 172 154 167 224 230 172 177 177 1.82 -0.22
NER 154 1.62 226 227 176 1.72 173 172 154 1.67 224 230 172 1.77 177 182 -0.22
DEFT2020 STS 141 145 227 224 142 145 143 145 141 149 224 223 141 148 142 149 -047
CLS 1.21 126 213 2.09 131 134 133 136 1.20 132 2.05 2.04 125 134 129 137 -041
MorFITT CLS 138 144 245 240 148 150 1.49 151 137 150 235 233 146 155 148 157 -0.82
E3C NER Clinical 130 135 223 217 148 148 150 149 129 143 222 218 148 155 149 156 -0.59
NER Temporal 129 135 2.22 216 148 148 148 149 129 143 222 218 147 154 148 155 -0.75
CLISTER STS 1.52 1.59 2.65 257 173 172 174 172 151 1.65 256 249 171 177 171 177 —0.33
DEFT2021 NER 131 137 226 219 148 149 150 150 131 144 219 215 148 155 149 156 -0.88
CLS 1.50 1.57 2.63 256 1.69 1.70 1.71 171 146 1.61 250 246 1.64 1.72 1.66 174 -0.11
NER Spec 1.29 134 220 2.14 142 143 145 145 129 141 221 216 141 149 146 152 -0.68
ESSAI POS 1.28 133 219 213 141 142 144 144 128 141 219 215 140 1.48 144 151 -0.61
NER Neg 1.28 133 219 213 141 142 144 144 128 141 219 215 140 148 144 151 -0.69
CLS 1.28 134 220 214 142 143 145 146 128 141 220 216 141 149 145 152 -0.02
QUAERO NER Medline 153 1.63 235 226 178 178 177 178 152 176 236 235 177 189 176 189 -0.77

NER EMEA 130 134 214 212 144 146 149 151 130 139 206 2.04 145 151 150 156 -0.28
NEREMEA 133 140 247 241 149 151 150 152 132 143 233 230 146 153 149 155 -0.63
MANTRAGSC NER Medline 1.89 2.01 2.84 270 2.06 2.13 214 214 1.89 209 2.84 278 2.06 222 210 222 -0.64
NER Patents 154 1.59 234 230 161 1.63 159 1.62 143 152 220 220 150 1.58 151 1.60 0.06

Average per model 139 145 230 225 154 155 1.56 156 138 1.51 226 224 152 1.60 155 162 -0.48
Relative Difference (%) 00 45 659 618 11.2 118 123 126 —0.7 89 628 61.1 99 155 11.7 16.9

Table 3.2: Average number of sub-word units per word for each tokenization strategy and
data source training. Their Pearson correlation (p) with each task performance is reported
(last column). Cells colored in red correspond to lower-performing models, while those in
green represent higher-performing ones. The last row represents the relative difference in
terms of average subwords per word compared to the NACHOS BPE without a morpheme
baseline. w/o and w/ denote models without and with morphemes.

To assess the impact of tokenization granularity, Table 3.2 presents the average number of
sub-word units per word for each tokenization strategy and data source used in the studied
tasks. While deriving overarching conclusions from these results can be challenging, we
calculated Pearson correlation (p) between models’ performances on the downstream tasks
from Table 3.1 and the corresponding average number of sub-word units per word. These
correlation scores range from —1 to +1, where —1 indicates a complete negative linear
correlation, 0 represents no correlation, and +1 signifies a strong positive correlation. In
the context of tokenization, a negative correlation implies that fewer subword units are
associated with higher scores, while a positive correlation suggests that more subword units
are linked to higher scores.

Overall, we observe in Table 3.2 an average p correlation of —0.48 between tasks and
models, indicating that, in general, higher performance scores tend to be associated with
fewer subword units. To our knowledge, this is the first time such a correlation has been
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experimentally demonstrated. However, it’s important to note that this correlation varies
across the targeted tasks. Tasks like CLS show correlation close to zero, suggesting that
they are less affected by the granularity of tokenization. In contrast, STS and sequence-to-
sequence tasks, particularly NER, appear to be more influenced by tokenization granularity,
likely due to their heavy reliance on immediate context for making predictions.

While the RoBERTa model’s embeddings capture semantic meaning and the encoder
module captures contextual information [243], we aimed to determine whether the ob-
served correlations are attributed to a specific part of this architecture. To investigate this,
we isolated and froze the embeddings and/or encoder of our BERT-based model, based on
the NACHOS SentencePiece, during fine-tuning for various tasks. The experimental ap-
proach, as detailed in Table 3.3, involved several stages. Initially, we established a baseline
for each task with no frozen components. Subsequently, we conducted experiments by
freezing only the embedding layer, only the encoder, and both the embeddings and en-
coders. Our findings indicate a stronger dependence on RoBERTa’s encoder for tasks such
as POS tagging and STS, in contrast to other tasks, which corroborate the context depen-
dency as an explanation for the correlation scores between segmentation granularity and
models’ performances for these tasks, but not for NER.

CAS PxCorpus PxCorpus CLISTER

POS NER CLS STS

& Full Fine-tuning 97.10 96.10 94.82 0.61
Embedding 97.03 | 0.07 96.10 1 0.00 94.73 | 0.00 0.62 T 1.63
Encoder 65.97 | 3205 83.95 ) 1264  84.78 [ 1058 0.45 | 2622

Embedding + Encoder  60.04 | 3816  79.62 | 1714  84.78 | 1058 0.44 | 27.86

Table 3.3: Performance and relative loss (in %) of the PLMs based on SentencePiece NA-
CHOS without morpheme with parts of the models being frozen.

As shown in Table 3.2, higher performance scores are associated with fewer subword
units. To gain a linguistic perspective on how tokenization strategies behave, we analyzed
the segmentation of 150 biomedical terms equally distributed across cardiology, derma-
tology, obstetric-gynecology, and ophthalmology, as presented in Table 3.4. Most models,
except for those using SentencePiece NACHOS, struggle to precisely align with the offi-
cial morphological segmentation established by the Académie Francaise (French Academy).
However, upon closer examination, it is evident that these models often come very close
to the desired segmentation. While the segmentations may exhibit slight variations, such
as the relocation of a letter from one token to another, they maintain the same number of
tokens as the official morphological segmentation. This observation is further supported
when we analyze actual tokenizer outputs (see Table 3.5) and assess the segmentation statis-
tics in Table 3.4. For example, BPE NACHOS tokenizes the term "ophtalmoscope" into
the units "ophtalm oscope,” whereas the morphological segmentation should be "ophtalmo
scope,’ a segmentation achieved by its morpheme-enriched counterpart.
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Type of errors
EM* Exact # Tok. Under Seg. Over Seg.

21.3 41.3 9.3 49.3
nachos °
w346 50.0 6.0 440
2.6 12.0 2.6 85.3
PubMed w//o
BPE w/ 17.3 28.6 2.6 68.6
. 28. 2. .
ccioo WO 80 8.0 6 69.3
w/ 233 38.6 2.6 58.6
Jo 8.6 24.6 33 72.0
Wikipedia "°
w/ 220 36.6 4.6 58.6
. 4 . 18,
NacHos M 566 74.6 73 8.0
w/ 613 70.6 2.6 26.6
/o 14.6 26.6 2.6 70.6
PubMed wo
SP w/ 32.0 42.0 2.6 55.3
/o 24.0 420 40 540
ccioo "°
w366 493 2.6 48.0
/o 18.0 42.0 3.3 54.6
Wikipedia *°
w340 54.0 46 413

Table 3.4: The average Exact Match (EM*) and portion of terms aligned with the official
segmentation length (Exact # Tok.), both in %, are based on the gold segmentation from 150
biomedical terms. Both last columns are referring to the portion of terms suffering from
under- and over-segmentation. w/o and w/ denote without and with morphemes respec-
tively. SP stands for SentencePiece.

In Table 3.4, we observed various types of errors in segmentation, with the most com-
mon issue being over-segmentation of units that are not present in our biomedical lexical
morphemes list. This over-segmentation results in smaller, more numerous, and sparser
tokens, which can impact the efficiency of pre-training. The reduced frequency of tokens
and the faster filling of RoBERTa’s 512-token context window with less meaningful tokens
can be problematic.

Finally, Table 3.4 reveals an interesting distinction between BPE and SentencePiece us-
ing NACHOS training data. SentencePiece outperforms BPE in achieving segmentations
that closely resemble correct ones, both in terms of the number of tokens and their se-
mantic accuracy. SentencePiece excels at matching correct segmentations, particularly for
medical terminology, in 56.6% of cases without morphemes and 61.3% when morphemes
are used, while BPE NACHOS achieves only 34.6% accuracy.

Base cancérigene ophtalmoscope angiographie
Correct cancérigeéne ophtalmo scope angio graphie
BPE Wiki canc éri géne  oph tal mos cope ang i ographie
BPE PubMed canc érigéne o phtal moscope angiograph ie
BPE NACHOS cancé rig éne  ophtalm oscope  angiographie
SentencePiece NACHOS cancérigene ophtalm oscope  angiographie
BPE NACHOS +Morpheme cancérigéne ophtalmo scope angio graphie

SentencePiece NACHOS +Morpheme cancérigéne ophtalmo scope angio graphie

Table 3.5: Instances of tokenization juxtaposed with their correct segmentation.
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3.3.2 Impact of morphemes

One of our primary objectives was to approximate the correct morphological segmentation
of words in the French biomedical language. Our analysis reveals that tokenizers, such as
BPE and SentencePiece trained on NACHOS, enriched with morphemes, can often achieve
this goal. Notably, SentencePiece NACHOS enriched with morphemes achieved the best
performance, with a 61.3% exact match. Our morpheme-enriched approach offers the ad-
vantage of obtaining a tokenization that closely resembles what could be achieved through
a complex rule-based method. This approach is easily adaptable to other languages with a
list of lexical morphemes and similar principles.

As shown in Table 3.1, the introduction of morphemes (w/) may lead to performance en-
hancements in approximately 25% of the studied downstream tasks. However, it is notewor-
thy that the best results are primarily achieved by classical statistical tokenizers, BPE and
SentencePiece, when not using morphemes, and when trained on our biomedical-specific
data, NACHOS. This observation is intriguing because NACHOS-based tokenizers inher-
ently contain a higher proportion of morphemes, as shown in Table 3.6, which presents
the portion of correct morphemes already present in the tokenizers without introducing
additional morphological information based on their length ranges. This suggests that in-
troducing morphemes and other forms of morphological knowledge, such as grammatical
endings, may have a more substantial impact in contexts that do not align directly with the
target domains and languages. However, we can note that the results of this method are
inconsistent and do not ensure an overall performance boost across all models or tasks.

Furthermore, it is worth noting that morphemes are often already present in the tok-
enizers in their complete form, as illustrated in Table 3.6, or with minor modifications based
on token probabilities, as shown in Table 3.5. Notably, tokenizers based on NACHOS con-
tain a significantly higher percentage of morphemes, with 47.23% for BPE and 43.59% for
SentencePiece. Conversely, the source with the fewest morphemes is CC100, with percent-
ages of 34.77% for BPE and 35.64% for SentencePiece. This observation aligns with the fact
that CC100 has fewer connections to both the target language and domain.

Coverage of the morphemes (%)

Tokenizer Source 1-3 4-6 7-10 Global
NACHOS 83.33 45.38 31.00 47.23
PubMed 65.15 39.32 15.00 38.06

BPE
CC100 78.78 34.46 7.00 34.77
Wikipedia 87.87 34.95 10.00 36.67
NACHOS 83.33 41.01 28.00 43.59
Sp PubMed 60.60 37.13 14.00 35.81

CcC100 83.33 34.70 8.00 35.64
Wikipedia 93.93 37.37 12.0 39.44

Table 3.6: Percentage of the morphemes already present in the tokenizers’ vocabularies per
range of morpheme lengths. SP stands for SentencePiece.

In general, we observe that despite the significant improvement in segmentation qual-
ity (as shown in Table 3.4), tokenizers enriched with morphemes do not exhibit a strong
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correlation with the results achieved in downstream tasks, as evident in Table 3.1. The abil-
ity to deliver satisfactory results despite encountering suboptimal segmentations, as seen
in the case of PubMed, which frequently over-segments words, underscores the robust-
ness of RoBERTa’s architecture in handling noise and its capacity to compensate for such
challenges.

3.3.3 Impact of data sources

As indicated in Table 3.1, the average performance across tasks demonstrates a significant
impact of the training data source on the results obtained by the models. It becomes appar-
ent that using data that is more suitable for the target language, even if it originates from
various domains such as Wikipedia and CC100, is more effective than utilizing data from
the target domains but from a different language. This is particularly evident in the CLS,
NER, and STS tasks, where BPE PubMed achieves an average of 70.16% for classification,
0.63 MSE for STS, and 62.62% for NER, whereas CC100 outperforms with 74.14%, 0.67 MSE,
and 64.62%, respectively.

The decrease in performance from PubMed can be attributed to over-segmentation, as
seen in Table 3.2. This over-segmentation is primarily due to the significant differences
between the data used to build the tokenizer and the language of the model’s pre-training.
These differences stem from distinct lexicons, writing styles, and morphological structures
in French compared to English, particularly for specialized words like "Péricardite" (French)
and "Pericarditis" (English), or "Orthophoniste" (French) and "Speech Therapist" (English).
Furthermore, variations in alphabets, such as special French characters like "é" or "¢," can
lead to token sparsity when encountered in positions not seen during tokenizer construc-
tion on PubMed. This results in a lack of both language and domain-specific information
for French, as only limited tokens can be used to form sentences.

Some data sources are surprisingly less affected by the introduction of morphemes. For
instance, the CC100 source is not positively impacted by morphemes, despite having a lower
proportion of morphemes in its original version, as shown in Table 3.6. This behavior may
be explained by the increased granularity introduced by morphemes, which reduces the
probabilities of other tokens appearing. This can lead to a poorer representation of words.

3.3.4 Tokenization Statistics

Our analysis of different tokenization approaches in the Table 3.7 reveals several key pat-
terns in tokenizer encoding capabilities. To quantify these patterns, we employ two key
metrics: Shannon entropy and fertility. The Shannon entropy H (X ) measures the uncer-
tainty in token distribution, defined as H(X) = — ). p;log, p; where p; represents the
probability of token ¢ in the vocabulary. We also compute a normalized version of the

entropy by dividing by log,(vocab_size), which gives a value between 0 and 1, where 1
- 17
- wp
where |T'| is the total number of tokens and || is the total number of words in the corpus,
providing insight into tokenization efficiency.

indicates perfectly even token distribution. Meanwhile, fertility 7' is computed as F
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BPE tokenizers without morphemes generally achieve slightly higher Shannon entropy
values (ranging from 0.5795 to 0.6514) compared to those with morphemes (0.5543 to 0.6392),
indicating more uniform token distribution.

Tokenizer Shannon Entropy  Fertility Token Ratio

BPE w/ Morphemes

Wikipedia 0.6331 1.8732 1.20x
PubMed 0.5741 2.6378 1.69x
CC100 0.6326 1.8618 1.19x
NACHOS 0.6263 1.7370 1.11x
SentencePiece w/ Morphemes
Wikipedia 0.6392 1.8671 1.20x
PubMed 0.5543 2.5886 1.66x
CC100 0.6369 1.8714 1.20x
NACHOS 0.6347 1.7389 1.11x
BPE w/o Morphemes
Wikipedia 0.6514 1.7944 1.15x
PubMed 0.5795 2.6474 1.70x
CC100 0.6499 1.7832 1.14x
NACHOS 0.6427 1.5879 1.02x
SentencePiece w/o Morphemes
Wikipedia 0.6422 1.7627 1.13x
PubMed 0.5542 2.5631 1.64x
CC100 0.6392 1.7552 1.12x
NACHOS 0.6304 1.5612 1.00x

Table 3.7: Comparison of Tokenizer Metrics based on a set of 509 french clinical cases
extracted from The PanAfrican Medical Journal.

The NACHOS-trained tokenizers consistently show the lowest fertility values (approxi-
mately 1.56-1.59 tokens per word), suggesting more efficient tokenization for medical texts.
In contrast, PubMed-trained tokenizers exhibit significantly higher fertility (around 2.56-
2.65 tokens per word), likely due to the specialized medical terminology in this dataset.

SentencePiece tokenizers perform similarly to their BPE counterparts, with only minor
differences in both entropy and fertility metrics.

Overall, the BPE-HF-NACHOS-FR tokenizer without morphemes achieves the best bal-
ance, with the highest Shannon entropy (0.6427) and lowest fertility (1.5879) among non-
morpheme tokenizers, making it particularly suitable for medical NLP tasks.

The token ratio analysis reveals significant cost implications for real-world deploy-
ments. For instance, PubMed-trained tokenizers require approximately 1.64-1.70 times
more tokens compared to the most efficient NACHOS tokenizer. This difference becomes
substantial when considering charging input tokens at a fixed cost by millions of tokens,
for a medical text of 1000 words, using a PubMed tokenizer would cost about 70% more
compared to using the NACHOS tokenizer. This cost difference becomes even more pro-
nounced in large-scale medical NLP applications where millions of tokens are processed
daily.

Furthermore, the higher token counts directly impact the context window utilization
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in transformer models like BERT or GPT. With the same context window size, PubMed to-
kenizers can fit approximately 40% fewer words compared to NACHOS tokenizers. This
limitation becomes particularly critical in medical applications where maintaining context
is essential for accurate diagnosis and treatment recommendations. The token efficiency
also significantly impacts inference time, as transformer models process tokens sequentially
through their attention mechanisms. Using the more efficient NACHOS tokenizer can re-
duce inference time by up to 40% compared to PubMed tokenizers, directly translating to
faster response times in clinical applications. This performance improvement becomes cru-
cial in real-time medical applications and can substantially reduce computational resource
requirements for batch processing of medical records. While, starting from English models
like PubMedBERT provides valuable bootstrap knowledge, our analysis suggests potential
long-term limitations

3.4 Conclusion

In this study, we conducted a comprehensive investigation into the influence of various
word tokenization strategies within a BERT-based masked language model across diverse
French biomedical NLP tasks. Notably, we observed that existing methods for tokenizing
biomedical text often fall short of aligning with morphological rules and how humans learn
these specialized terms. This suboptimal segmentation can impact the agglutinating nature
of biomedical terminology. To assess the effects of this segmentation on downstream ap-
plications, we developed a set of novel biomedical tokenizers that adhere more closely to
morphological rules. These tokenizers combine various automatic tokenization approaches
and vocabularies to enrich segmentation with morphemes. We employed these enhanced
tokenizers in the pre-training of multiple RoBERTa-based models, which we then evaluated
across a wide array of 23 French biomedical tasks, including POS, NER, STS, and CLS.

Our findings show that integrating morphemes into automatic tokenization approaches
can achieve parity or improve performance in certain tasks, such as NER and POS tagging.
However, this enhancement is not consistent across all tasks. While there is a correlation
between segmentation granularity and downstream task performance, we also observe that
pre-training processes exhibit robustness to suboptimal tokenization, yielding surprisingly
good results even with very short and sparse subword units. To conclude, our study reveals
that achieving optimal tokenization involves a combination of factors, including minimiz-
ing word segmentation and having access to domain-specific data in the target language.
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CHAPTER

A ZERO-SHOT AND FEW-SHOT STUDY

OF INSTRUCTION-FINETUNED LARGE LAN-
GUAGE MODELS APPLIED TO CLINICAL
AND BIOMEDICAL TASKS

The emergence of Large Language Models (LLMs) represents a significant paradigm shift in
Natural Language Processing. As detailed in previous chapters, achieving state-of-the-art
performance with specialized Masked Language Models (MLMs) like DrBERT (Chapter 1)
required not only extensive domain-specific pre-training but also fine-tuning on relatively
large annotated datasets. This reliance on labeled data presents a significant bottleneck
in healthcare, where annotations are notoriously expensive to produce, difficult to obtain
due to privacy constraints, and consequently rarely open-sourced. The advent of power-
ful, general-purpose LLMs, capable of performing well with minimal adaptation, therefore
raised a crucial strategic question: Is it always necessary to build specialized models from
the ground up, or can existing, instruction-tuned LLMs perform sufficiently well in special-
ized domains with minimal adaptation ?

The emergence of LLM represents a significant paradigm shift in NLP. These models
introduced a new paradigm called instruction-tuning, where the model is trained to follow
natural language instructions that specify the desired task and expected output format. As
detailed in previous chapters, achieving state-of-the-art performance with specialized MLM
like DrBERT (Chapter 1) required not only extensive domain-specific pre-training but also
fine-tuning on relatively large annotated datasets. This reliance on labeled data presents a
significant bottleneck in healthcare, where annotations are notoriously expensive to pro-
duce, difficult to obtain due to privacy constraints, and consequently rarely open-sourced.
The advent of powerful, general-purpose instruction-tuned LLMs, capable of performing
well with minimal adaptation, therefore raised a crucial strategic question: Is it always nec-
essary to build specialized models from the ground up, or can existing, instruction-tuned
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LLMs perform sufficiently well in specialized domains with minimal adaptation ?

This chapter addresses this question by documenting one of the first comprehensive
studies into the capabilities of early instruction-tuned LLMs within the biomedical field, a
work that was subsequently published at LREC-COLING 2024 [172]. At the time of this re-
search, the potential of LLMs in medicine was still largely underexplored, and this study was
essential to understand their strengths and limitations. The investigation was conducted on
English tasks, as suitable evaluation benchmarks for generative models in French were not
yet available. The findings from this exploratory work were foundational, directly motivat-
ing the development of BioMistral, which will be presented in the next chapter (Chapter
5).

The primary research objectives of this initial study were to:

« Assess the out-of-the-box performance of general-purpose LLMs on specialized biomed-
ical tasks compared to a fine-tuned, domain-specific MLM (PubMedBERT).

+ Determine which task types (e.g., Question Answering, NER, Classification) are well-
suited for these models in zero-shot and few-shot scenarios.

» Evaluate whether a single LLM excels across all tasks or if performance is model-
dependent.

 Understand the limitations of generalist LLMs, thereby building the case for devel-
oping specialized generative models for the medical domain.

To answer these questions, this chapter presents a comprehensive evaluation of four
state-of-the-art instruction-tuned LLMs (ChatGPT, Flan-T5 UL2, Tk-Instruct, and Alpaca)
on a diverse benchmark of 13 English clinical and biomedical tasks. This evaluation suite
was designed to cover a wide spectrum of real-world NLP challenges, including classifica-
tion of medical texts (e.g., identifying smoker status in clinical notes or classifying public
health claims), extractive and abstractive question answering over biomedical literature
(e.g., BioASQ, MedMCQA), relation extraction to identify gene-disease associations, natu-
ral language inference to determine logical relationships between sentences (e.g., SciTail,
MedNLI), and fine-grained named-entity recognition of chemicals, diseases, and other med-
ical concepts (e.g., BC5CDR, NCBI-disease). Our main contributions from this pivotal study
are:

« A rigorous zero-shot and few-shot evaluation of four prominent, early instruction-
tuned LLMs on this comprehensive benchmark of 13 biomedical tasks.

+ A direct comparison against a powerful, fully fine-tuned domain-specific baseline
(PubMedBERT), establishing a clear performance benchmark for current generative
models.

+ A detailed analysis of model performance across different task formats, identifying
their current strengths (e.g., QA) and areas requiring further improvement (e.g., RE).
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« The exploration of novel inference strategies, including a Recursive Chain-of-Thought
(RCoT) method, to adapt generative models for structured prediction tasks like NER.

Ultimately, this chapter chronicles the beginning of our journey into generative Al
for medicine. The results demonstrate that while general-purpose LLMs show remark-
able promise, their limitations in handling the nuances of biomedical text underscore the
need for specialized models. This conclusion serves as the direct motivation for the work
presented in the subsequent chapter: the creation of BioMistral, a healthcare LLM designed
to overcome these identified shortcomings.

4.1 Experimental Protocol

In this section, we describe the models utilized and the datasets used to benchmark the
various models.

4.1.1 Studied Models

Our evaluation involves four distinct generic LLMs (ChatGPT, Flan-UL2, Tk-Instruct and
Alpaca) and a specific biomedical masked language model (PubMedBERT) for comparison
purposes.

Flan-T5 UL2 abbreviated to Flan-UL2, is an encoder-decoder model based on UL2 20B
parameters model [261] and was fine-tuned using the Flan instruction tuning tasks collec-
tion [60].

Tk-Instruct is based on the T5 encoder-decoder model [240] and has been fine-tuned on
the 1,600+ NLP tasks from the SUPER-NATURALINSTRUCTIONS dataset [283]. In our study,
we chose the 3B parameter setting, since our preliminary comparison with Flan-T5-XL [58]
using the 3B parameter setting showed that Tk-Instruct performed better on QA tasks,
which is considered to be one of the most suited tasks for LLMs.

ChatGPT is built upon GPT-3.5 Turbo, fine-tuned with a set of proprietary instructions,
and continuously refined through Reinforcement Learning from Human Feedback (RLHF)
techniques. Access to its weights is restricted, and the model can only be accessed via
a paid API These restrictions raise privacy concerns regarding its application in medical
contexts, and it cannot ensure that the evaluated data has not been previously encountered.

Stanford Alpaca is built upon LLaMA with 7B parameters [267] and utilizes a dataset
of 52K instructions, which were automatically generated in the style of self-instruct us-
ing OpenAl’s text-davinci-003 model [282]. Due to its base model and data sources, it is
exclusively intended for academic research purposes and non-commercial use.
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PubMedBERT is a biomedical-specific BERT-based model with 110M parameters [110].
It was trained entirely from scratch on the 3.1 billion words of the PubMed corpus. We
chose it as our baseline for comparison with the zero-shot and few-shot performance of
generative models.

4.1.2 Downstream Evaluation Tasks

We conducted an evaluation of the models’ capabilities by encompassing the test set of the
13 diverse tasks listed in Table 4.1. These tasks were chosen to facilitate a comprehensive
assessment spanning both clinical and biomedical domains, including tasks suitable for both
generative and classical model evaluations.

Task  Dataset Eval Metric Reference
HoC Test  Fl-measure [22]
CLS LitCovid Test  Fl-measure [47]
PubHealth Test Accuracy [210]
N2C2 2006 Smokers Test Accuracy [272]
BioASQ 7b Test Accuracy [268]
oA MedMCQA Dev Accuracy [222]
SciQ Test Accuracy [287]
Evidence Inference 2.0 Test Accuracy [82]
RE GAD Test Accuracy [36]
NLI SciTail Test Accuracy [150]
MedNLI Test Accuracy [251]
NER BC5CDR Test  Fl-measure [180]
NCBI-disease Test  Fl-measure [85]

Table 4.1: List of evaluation tasks and their metrics. CLS: Classification, QA: Question
Answering, RE: Relation Extraction, NLI: Natural Language Inference, NER: Named-Entity
Recognition.

4.1.3 Evaluation of Generative Outputs

Evaluating the outputs of generative models presents a challenge due to their free-text
nature, which may not necessarily conform to a predefined set of classes. Instead, we are
confronted with noisy outputs that may contain correct answers. To address this challenge,
we manually developed parsing scripts tailored to each task and model, aligning them with
their respective output styles. This approach enables us to capture most of the answers and
compute metrics that can be compared with our baseline model (PubMedBERT).
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4.1.4 Instruction Format

Previous studies [284, 143, 206] have demonstrated the effectiveness of using task-specific
prompts for each model. Consequently, we chose to construct the input instruction prompt
by concatenating three elements: (1) an instruction that outlines the task, describes the
nature of the data, and specifies our expectations from the model, (2) the input argument,
which provides essential information for the task, and (3) the constraints on the output
space, which guide the model during output generation. Lastly, the output serves as a
reference point during the few-shot strategy evaluation.

4.1.5 Few-shot Examples using Semantic Retriever

To enhance few-shot performance compared to randomly sampled examples, we introduced
an additional retrieval module based on Sentence-Transformers [242]. The objective is to
identify the k£ most semantically similar examples from the training set. To accomplish this,
we first populate a vector space with sentence representations of each individual instruction
prompt from the training set, obtained using a pre-trained and fixed PubMedBERT [110]
model. Subsequently, we compute the cosine distance between the query of the current test
instance and all the elements within the vector space to retrieve the top £ closest examples.
In our case, we set the value of k to 5.

4.1.6 Recursive Chain-of-Thought

We performed NER using two inference methods. The first one is based on the method
introduced by [304] and can only be applied using ChatGPT. It consists of giving the model a
sequence of words separated by double vertical bars for word separation and single vertical
bars for the separation between words and labels. For the second method, we introduce a
method called RCoT. It is very close to human reasoning and works for all the generative
models we have tried. It is derived from the CoT concept [284] and the work of [283]. It
involves iterating over the sequence of tokens and giving the current state of the prediction
as input to the model, asking for the generation of the label of the N** token. This method
guarantees an entity for each token of the sequence and prevents forgotten tokens during
generation. However, the only drawback we have been able to identify with this method
is its very high computation cost due to its O complexity, with N being the number of
tokens in the sequence, compared to the method used for ChatGPT, which performs at O*
complexity.
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4.2 Results and Discussions

ChatGPT Flan-UL2 Tk-Instruct Alpaca
Task Dataset P PubMedBERT
zero-shot 5-shot zero-shot 5-shot zero-shot 5-shot zero-shot 5-shot

HoC 62.24 38.34 56.36 54.86 50.77 25.48 1.21 38.78 82.75
CLS LitCovid 67.20 72.77 51.48 46.95 36.42 57.49 1.58 64.09 90.60
PubHealth 63.20 66.29 72.46 50.53 53.70 66.04 52.80 55.64 75.39
N2C2 2006 Smokers NaN NaN 22.12 42.31 16.35 37.50 10.57 31.73 60.58
BioASQ 7b 89.24 92.03 90.97 91.64 88.09 86.36 79.05 79.82 73.39
0A MedMCQA 48.91 56.37 41.05 43.34 33.85 33.18 24.91 29.50 38.15
SciQ 90.10 93.50 87.00 88.40 55.30 47.00 24.90 36.80 74.20
Evidence Inference 2.0 59.98 63.83 66.45 65.06 41.33 38.79 32.49 94.18 65.47
RE GAD 47.75 52.25 49.81 53.37 48.88 57.87 51.12 57.68 79.78
NLI SciTail 73.57 65.62 93.51 92.66 57.53 71.31 39.60 40.26 93.51
MedNLI NaN NaN 77.00 79.18 33.19 34.81 33.47 34.45 83.76
NER BC5CDR 92.12 93.12 68.26 83.32 84.54 83.23 82.11 84.07 97.65
NCBI-disease 90.97 92.27 90.75 87.65 87.91 87.50 11.58 92.27 98.72

Table 4.2: 0- and 5-shot versus finetuning evaluation on clinical and biomedical tasks. Bold
values are the highest scores obtained for the task and in underlined the seconds ones. Not
allowed experiments are replaced by NaN.

Table 4.2 reports performance obtained on each task by the studied LLMs in zero- and few-
shot scenarios, as well as PubMedBERT fine-tuned. Results are reported by taking the best
run out of four.

Zero-Shot Scenario Compared to PubMedBERT, the zero-shot scenario results show a
clear deficit for the generative models on all the tasks except for QA, in which LLMs obtain
better performance. ChatGPT and Flan-T5 UL2 particularly perform better than Tk-Instruct
and Alpaca on average, except for the GAD dataset (RE task) for which Alpaca reaches
the best performance. We can also observe extremely poor performance from Alpaca in
the zero-shot scenario on the two CLS tasks (HoC and LitCovid). These low scores are at-
tributed to the model generating hallucinated responses, including the label evading growth
suppressors across the entire test set of HoC. However, this behavior does not appear to oc-
cur in the few-shot scenario, where the model appears to comprehend our expectations.

Few-Shot Capabilities Unlike the zero-shot scenario, the few-shot inference (5-shots in
our experiments) shows impressive behavior. The biggest absolute gains are obtained using
Alpaca, which seems to perform much better in few-shot scenarios on all tasks. We suspect
this behavior to be correlated with Alpaca’s training data, which does not contain many
similar instructions for the tasks we are trying to tackle, allowing it to better understand
what we are asking when confronted with dissimilar examples. ChatGPT also benefits
from the additional knowledge to further improve the already good results, especially on
QA tasks. Flan-T5 UL2 appears to be less affected by the additional context overall, except
for the BC5CDR and N2C2 2006 Smokers tasks.
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4.3 Conclusion

In this study, we have demonstrated that generic LLMs are capable of capturing medi-
cal knowledge and performing exceptionally well in zero- and few-shot scenarios, despite
having no prior exposure to the tasks. Although open-source models such as Flan-T5 UL2
are gradually approaching their closed-source counterparts, such as ChatGPT, their perfor-
mance still lags behind. We suggest that developing domain-specific models, fine-tuned on
a diverse set of tasks and specialized instruction prompts, could help bridge the gap with
more robust and performant proprietary models. We also note that domain-specific BERT
models remain a viable option, but require a significant amount of data for fine-tuning on
targeted languages and tasks. However, BERT-based models offer much lower computa-
tional costs compared to LLMs, which could be a significant obstacle to developing models
in the healthcare domain.
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CHAPTER

B1OMISTRAL: A COLLECTION OF OPEN-
SOURCE PRETRAINED LLM FOR MEDI-
CAL DOMAINS

As concluded in the previous chapter (Chapter 4), the advent of Large Language Mod-
els (LLMs) represents a paradigm shift. We verified their remarkable capabilities in zero-
shot and few-shot learning scenarios, demonstrating that they could outperform traditional
MLMs on several complex tasks. However, that study also revealed a performance gap on
several key medical tasks, where powerful general-purpose LLMs were still outperformed
by older encoder-decoder or MLM models that had been specifically fine-tuned on similar
tasks or domains specific data. This shown room for improvement for a new generation of
specialized LLMs models.

This chapter answers that call by introducing BioMistral. At the time of its development,
this work was the first to adapt the open-source Mistral model for the healthcare domain,
positioning it as a significant step forward from existing models in the same parameters
range (MedAlpaca, PMC-LLaMa, MediTron and BioMedGPT-LM). The project was driven
by several key research questions:

+ Can continual pre-training of a state-of-the-art base LLM on high-quality medical
corpora effectively infuse it with specialized knowledge and significantly boost its
performance on domain-specific tasks as it does on French healthcare with DrBERT
in Chapter 1?

« How do advanced model merging techniques (e.g., TIES, DARE, SLERP) perform in a
medical context? Can these techniques combine the respective strengths of a gener-
alist base model and a domain-adapted one, and can the resulting model outperform
its individual constituents ?

« What is the practical impact of quantization methods (e.g., AWQ, BnB) on a special-
ized LLM ? Can we dramatically reduce the computational footprint of these models
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to make them accessible for a wider public without catastrophic forgetting and per-
formance loss ?

« How well does a healthcare adapted LLM on English data generalize to other lan-
guages, and what does this imply for developing multilingual medical models?

Our work, published at ACL 2024 [168], makes the following contributions:

« We develop and release BioMistral, a suite of 7B-parameter LLMs adapted for the
healthcare domain, on open-sourced data from PubMed Central Open-Access (PMC
OA) . The collection includes the base adapted model, along with several merged and
quantized variants, all of them publicly accessible in open-source.

« We conduct alarge-scale evaluation of BioMistral across 10 English medical Question-
Answering benchmarks, demonstrating state-of-the-art performance among open-
source models. We further assess its generalization capabilities by evaluating it on
the same benchmarks translated automatically into 7 other different languages.

« We present a systematic analysis of leading model merging and quantization tech-
niques, providing novel insights into their effectiveness for creating specialized LLMs
and offering a practical guide to performance-versus-efliciency trade-offs.

« We release all of our models, evaluation datasets, and quantized versions on the Hug-
ging Face Hub'. All code for data processing, pre-training, SFT, merging, quantiza-
tion, and evaluation is open-sourced on GitHub to ensure full reproducibility?.

« To further improve accessibility, we release Tchat on GitHub?, an open-source, multi-
turn conversational web interface with an integrated speech-to-text module for voice-
based interaction, allowing users to easily interact with textual and speech modalities
with BioMistral and other LLMs with minimal configuration.

5.1 BioMistral

In this section, we present the modules that facilitated the construction of BioMistral 7B. We
first develop our training corpus (Section 5.1.1) used during further pre-training. We then
present the model adaptation method (Section 5.1.2). Finally, we discuss the approaches
for model merging (Section 5.1.3) and expose the employed quantization strategies (Sec-
tion 5.1.4).

https://huggingface.co/BioMistral
2https://github.com/BioMistral/BioMistral
Shttps://github.com/BioMistral/Tchat
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5.1.1 Pre-training Dataset

For LLM adaptation to the medical domain, we selected the PMC Open Access Subset* for
its comprehensive and freely accessible collection of medical research papers. This choice
is guided by the success demonstrated by PMC-LLaMA [294], PubMedBERT [108], and
SciFive [231], which have showcased significant enhancements in language modeling for
medical applications. Our focus lies on the Commercial Use Allowed subset, encompassing
documents licensed under various Creative Commons licenses (CC0, CC BY, CC BY-SA, and
CC BY-ND). This subset ensures the reusability of our model’s outputs, even for commercial
purposes.

In the preprocessing phase, we aim to optimize the dataset for training efficiency while
considering hardware limitations. Our pre-training objective involves further pre-training
Mistral on a subsample of this corpus, targeting 1.5 epochs within the 20-hour limit of
Jean Zay HPC. This decision aligns with insights from the Zephyr model [269], which sug-
gests that observing 1.5 times the corpus adequately enhances model performance, with
marginal benefits beyond this threshold. We then meticulously selected 3 billion tokens
from this pre-processed PubMed Central corpus, corresponding to roughly 1.47 million
documents. The dataset comprises primarily English documents (98.75% of the corpus),
with the remaining portion encompassing 9 languages, including Dutch, German, French,
and others. Our strategy emphasizes a multilingual dataset approach by prioritizing non-
English documents, supplemented with English texts, to ensure a diverse and representa-
tive training dataset to meet our 3 billion token target. The raw textual documents undergo
pre-processing using the Mistral tokenizer, which includes tokenization and normalization
processes.

5.1.2 Model Adaptation

Training details We leverage Mistral 7B Instruct v0.1 [138] as the base model for adap-
tation due to its design tailored for incorporating instructions in prompts and its capac-
ity for fine-tuning across diverse tasks using limited datasets. Pre-training settings for
BioMistral 7B largely align with Mistral 7B Instruct v0.1. For optimization, we employ
the AdamW [195] optimizer alongside a cosine learning rate scheduler. Our model archi-
tecture inherits the standard transformer architecture from Mistral, including features such
as Grouped-Query Attention [2], Sliding Window Attention [27] and Rolling Buffer Cache.

The model also incorporates Rotary Positional Embeddings (RoPE) [256], which encode
token positions through rotation transformations applied to the embedding space. RoPE
enables the model to effectively capture relative distances between tokens, which is partic-
ularly valuable for processing long texts with complex dependencies. Figure 5.1 visualizes
these embeddings across Mistral’s 2,048-token context window, showing the sinusoidal pat-
terns that vary smoothly across positions:

*https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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Figure 5.1: BioMistral 7B and Mistral 7B Instruct v0.1 Rotary Positional Encodings (RoPE).

We maintain an input context length of 2,048 tokens across all models, including the
quantized versions (see Section 5.1.4), in conjunction with FlashAttention-2 [74]. For opti-
mization, we set the learning rate to 2 x 10~ with no warmup, a weight decay of 0.01, a
gradient accumulation of 2, and a batch size of 16 on the Jean-Zay HPC with 32 NVIDIA
A100 80GB GPUs. This configuration allows for a total batch size of 1,024. Due to the model
and the AdamW optimizer’s inability to fit on a single GPU with BF16 precision, we employ
the Fully Sharded Data Parallel distributed learning framework [315].

Improving batching To enhance pre-training efficiency, we introduce a post-tokenization
grouping method. This method aggregates variable-sized sequences marked by an end-
of-sequence token (</s>) to fill the model’s 2,048-token sequences without padding. This
reduces the sequence count by 87.88%, subsequently accelerating epoch times. Refer to
Appendix 9.5 for pseudo-code detailing the grouping method.

5.1.3 Model Merging

Pre-trained models may lose effectiveness when applied beyond their specific domains [165].
Traditionally, separate models were used for each application [112], increasing complexity
and costs. Recent studies suggest merging pre-trained models to enhance performance and
out-of-domain generalization [43, 11, 293, 141, 131]. Merging involves combining multiple
model parameters without additional training. Methods include averaging model weights
or considering permutation invariance [132, 54, 253, 3].
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Among these methods, we can cite TIES [300], DARE [305], and SLERP [252]. SLERP
merges two models using Spherical Linear Interpolation to allow a smoother transition be-
tween model parameters while preventing the significant information loss often encoun-
tered with direct averaging of model weights. TIES merges models by creating "task vec-
tors" from each model, isolating unique contributions by subtracting an ancestor base model
(e.g., Mistral 7B Instruct). These vectors are then averaged with the base model. Its key
improvement over previous methods relies on reducing model interference using sparse
vectors and a sign consensus method. DARE enhances TIES by reducing delta parame-
ter redundancy, mainly setting them to zero through random pruning and rescaling while
maintaining or improving original model performance.

Exploring model merging in the biomedical domain is particularly interesting since
merging a general domain model with a domain-specific one could enhance specialized
model adaptability and accuracy across a broader range of applications. The objective of
this application in the medical domain is not only to improve general-domain capabilities
but also to explore the possibility of emergent reasoning and surpassing the performance
of baseline models used for merging.

5.1.4 Quantization

Quantization techniques are pivotal in democratizing LLMs as they enable the execution of
LLMs on smaller devices by minimizing memory requirements. In our study, we investigate
two core techniques: Activation-aware Weight Quantization (AWQ) and BitsandBytes (BnB).

AWQ [186] is an advanced quantization method that capitalizes on the insight that
weights vary significantly in importance across different channels and layers. Rather than
applying uniform quantization to all weights, AWQ identifies and preserves the most crit-
ical weights (typically 1% of the total) in higher precision while quantizing the remaining
weights to 4 bits. This selective approach is guided by activation magnitudes during cali-
bration, where channels with larger activation values are considered more important. The
method employs a scaling technique that adjusts weight distributions to minimize quanti-
zation errors while maintaining the overall model structure.

Conversely, BnB quantization is a more straightforward approach that assigns a fixed
precision of 4 or 8 bits to the entire model uniformly. BnB implements dynamic quantization
with custom CUDA kernels optimized for inference speed, supporting both linear quantiza-
tion and more sophisticated techniques like blockwise quantization. The 8-bit version uses
a two-stage quantization process with outlier detection, while the 4-bit version employs
NormalFloat4 (NF4) data type specifically designed for normally distributed weights. Both
methods significantly reduce memory footprint (up to 75% for 4-bit) while maintaining rea-
sonable performance degradation.
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5.2 Evaluation Protocol

To assess the performance of BioMistral 7B models, we first describe our benchmark of En-
glish medical reasoning tasks (Section 5.2.1) and their multilingual translation (Section 5.2.2),
before presenting the instruction prompting (Section 5.2.3) and the supervised fine-tuning
strategy (Section 5.2.4) employed for the models’ evaluation.

5.2.1 Downstream Tasks

To evaluate the performance of the BioMistral 7B model, we selected 10 QA tasks in English
from 4 prominent medical corpora (MedQA, MedMCQA, PubMedQA, and MMLU) covering
various specialties, including genetics, anatomy, and clinical cases. These datasets encap-
sulate real-world scenarios encountered by medical professionals, medical school entrance
examination formats, and comprehension tests based on PubMed content. The datasets’
characteristics are provided in Table 5.1 and 5.2.

MMLU

Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

Answer options A/B/C/D A/B/C/D A/B/C/D A/B/C/D A/B/C/D A/B/C/D
Train / Valid. / Test 0/0/ 265 0/0/100 0/0/135 0/0/272 0/0/144 0/0/173
Words / Questions 11.09 12.34 13.65 105.46 22.40 48.84

Context X X X X X X

Table 5.1: Description of the MMLU question-answering tasks. The reference to "Clinical
KG" denotes "Clinical Knowledge".

MedQA PubMedQA MedMCQA

Answer options A/B/C/D/(E) Yes/No/Maybe A/B/C/D
Train / Valid. / Test 10178 / 1272/ 1273 211269 /500 / 500 146257 / 36565 / 4183
Words / Questions 118.16 13.08 14.05

Context X v X

Table 5.2: Description of additional medical question-answering tasks. Only PubMedQA
incorporates context information within the prompt (see Section 5.3.7).

5.2.2 Multilingual Evaluation

While the biomedical language models have been extensively evaluated in languages such
as English [177, 49], Chinese [39, 303], French [264, 165] or Spanish [42], their performance
in languages beyond their own remains relatively understudied. This limited multilingual
evaluation can be attributed to the scarcity of biomedical tasks available in languages other
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than English. To address this gap, we conducted a multilingual evaluation using GPT-3.5
Turbo (version 1106) automatic translation via the OpenAl API. We translated our bench-
mark into 7 languages: Spanish, German, Portuguese, Russian, French, Arabic, and Chinese.
Despite the challenges posed by automatic translation, these tools have shown remarkable
improvement in recent years [212], enabling cost-effective multilingual evaluation. The
methodology for multilingual evaluation and the prompt template are the same as those
used in the 3-shot scenario for English. The only differences lie in the translation of the
questions, options, and context, while the examples used for few-shot learning remain un-

changed.

5.2.3 Instruction Prompting

All of our instructions adhere to the guidelines outlined for GPT-4’s medical evaluation,
as detailed in [218]. Each task is presented as an MCQA, with answer options associated
with letters (A to D or A to E). For a comprehensive list of the instruction prompts, please
refer to Figure 5.2. During inference, the model predicts the next token based on the input
prompt, generating probabilities for each token in the vocabulary. To ensure relevance,
the vocabulary is filtered to include only tokens (here, choice letters) corresponding to the
expected answer options. This approach prevents the model from generating irrelevant
tokens or hallucinations [184, 24, 49].

5.2.4 Supervised Fine-Tuning (SFT)

Supervised Fine-Tuning (SFT) is a crucial step involving fine-tuning the model on annotated
data to adapt it to specific tasks. To optimize BioMistral’s performance beyond what is
achievable with few-shot learning, we conducted SFT on both BioMistral 7B models and the
baseline open-source models, using the training sets specified in Table 5.1 and 5.2. However,
traditional SFT methods can be resource-intensive. To address this challenge, we adopted
the QLoRa fine-tuning method [80] and an 8-bit quantization technique [79] as more cost-
effective alternatives.

Quantized Low-Rank Adaptation (QLoRa) combines the efficiency of LoRA, which in-
troduces low-rank adaptations to specific layers of the model, with 4/8-bit quantization
of the backbone model. This approach significantly reduces memory requirements dur-
ing fine-tuning while maintaining performance comparable to full fine-tuning. The 8-bit
quantization technique further reduces computational costs by representing model weights
with reduced precision, decreasing memory usage by approximately 50% compared to full
precision (FP16) training without substantial performance degradation on Nvidia A100 and
H100 GPUs. These techniques enable fine-tuning of large language models on GPU with
limited memory.

Additionally, we implemented the improved batching method discussed in Section 5.1.2
to reduce fine-tuning time. For detailed hyperparameters used during SFT, please refer to
Table 5.3:
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Parameter Value
Rank 16
LoRA Alpha 16
LoRA Dropout 0.05
Learning rate 2e-05
Train batch size 4
Evaluation batch size 8
Seed 42
Number of GPU 8
Gradient accumulation steps 2
Batch size 64
Optimizer 30.9/ € 1e-08
Scheduler Cosine
Number of epochs 3
Target Modules QKVOGUD

Table 5.3: Hyperparameters for the Supervised Fine-Tuning (SFT) experiments.

5.3 Results and Discussions

In this section, we report, analyze, and discuss the performance of BioMistral 7B models
across various dimensions. We begin by examining its performance in a few-shot learn-
ing scenario (Section 5.3.1), followed by an evaluation of the fine-tuning performances
(Section 5.3.2) of BioMistral 7B compared to several baseline models. The effectiveness
of BioMistral 7B model merging strategies is then reported (Section 5.3.3) before exploring
its generalization capabilities across several languages (Section 5.3.4). Additionally, we ana-
lyze the performance of BioMistral quantized versions in a few-shot scenario (Section 5.3.5).
Finally, we delve into its reliability by examining its calibration (Section 5.3.6) and truth-
fulness (Section 5.3.7).

5.3.1 Few-shot Learning

The few-shot learning evaluation involved applying 3-shot in-context learning based on 3
different sets of randomly selected samples from each dataset’s training set. We limited our
samples to 3 due to the model’s 2,048-token context window size. None of the models were
fine-tuned on the datasets.

In Table 5.4 and 5.5, we observe that BioMistral 7B outperforms Mistral 7B Instruct on
8 of the 10 tasks, demonstrating the effectiveness of domain adaptation [49, 177]. Addi-
tionally, BioMistral 7B surpasses all other open-source biomedical baselines on all tasks in
this 3-shot scenario. The observed performances may vary depending on the dataset. For
example, on MedQA 4 and 5 options, BioMistral 7B shows a 9.6% and 11.1% increase over
MediTron-7B and a 9.0% and 7.0% increase over MedAlpaca 7B, respectively. On MMLU,
BioMistral 7B improves performance over previous biomedical LLMs at the 7B scale, with
an overall average gain of 6.45% over MedAlpaca 7B, 18.05% over MediTron-7B, and 31.12%
over PMC-LLaMA 7B. Similarly, on MedMCQA, BioMistral 7B shows a 10.3% increase over
MediTron-7B, 12.7% over MedAlpaca 7B, and 20.4% over PMC-LLaMA 7B. However, in the
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PubMedQA evaluation, BioMistral’s performance experienced a decline, showing at least
a 15.7% lower accuracy compared to other models, likely due to hallucinations caused by
imbalanced classes. Overall, GPT-3.5 Turbo remains the best model in this 3-shot scenario.

MMLU
Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

BioMistral 7B 60.9 115 61.7 121 49.6 :12 55.1 a3 56.9 s10 55.5 17
Mistral 7B Instruct 57.0 08 56.7 w05 46.9 03 51.0 =11 58.6 00 50.1 10
BioMistral 7B Ensemble 62.8 .05 62.7 417 46.9 w03 57.0 :06 60.6 09 56.3 03
BioMistral 7B DARE 61.3 w04 61.0 w28 49.9 00 55.3 w07 64.4 w00 53.9 214
BioMistral 7B TIES 62.3 05 61.3 219 48.1 w22 55.8 08 57.2 w07 56.5 s15
BioMistral 7B SLERP 63.1 216 63.3 09 49.9 115 57.4 03 63.4 s00 57.8 09
MedAlpaca 7B 49.1 215 49.0 57 48.4 219 63.8 :0s 47.2 206 43.5 ws
PMC-LLaMA 7B 25.3 w15 26.0 537 31.9 uis 16.9 05 28.0 :24 24.9 .12
MediTron-7B 37.9 a5 47.0 s37 39.3 w6 34.2 s10 42.6 s1a 30.4 w07
BioMedGPT-LM-7B 50.1 :10 52.0 z0s 46.2 215 47.3 27 47.9 w5 45.5 07
GPT-3.5 Turbo 1106 74.71 w03 74.00 =2 65.92 06 72.79 s16 72.91 217 64.73 220

Table 5.4: Performance on MMLU benchmarks using 3-shot in-context learning. The scores
represent accuracy (1) and are averaged across 3 random seeds. Best model in bold, and
second-best underlined.

MedQA  MedQA 5 opts PubMedQA MedMCQA  Avg.

BioMistral 7B 44.4 0.2 37.4 +04 37.6 £15 43.9 03 50.3
Mistral 7B Instruct 42.3 +03 34.5 05 72.2 05 42.8 +0.5 51.2
BioMistral 7B Ensemble  44.7 0.4 37.1 +0.6 68.0 +0.4 44.8 +03 54.1
BioMistral 7B DARE 47.0 05 38.8 +0.7 70.0 0.7 44.9 0.2 54.6
BioMistral 7B TIES 44.0 0.4 37.7 +0.4 44.3 0.8 44.0 x03 51.1
BioMistral 7B SLERP 46.6 0.2 38.9 04 68.1 +1.4 45.7 0.7 55.4
MedAlpaca 7B 35.4 03 30.4 0.6 56.0 +0.9 31.2 202 454
PMC-LLaMA 7B 27.6 08 21.1 08 53.3 0.6 23.5 103 27.8
MediTron-7B 34.8 +0.6 26.3 +0.5 55.9 +1.0 33.6 0.2 38.2
BioMedGPT-LM-7B 39.3 12 34.9 +0.4 58.6 +0.3 34.9 z05 45.7
GPT-3.5 Turbo 1106 57.71 x03  50.82 0.7 72.66 £1.0 53.79 0.2 66.0

Table 5.5: Performance on additional medical benchmarks using 3-shot in-context learning.
The scores represent accuracy (1) and are averaged across 3 random seeds. BioMistral 7B
Ensemble, DARE, TIES, and SLERP are model merging strategies that combine BioMistral
7B and Mistral 7B Instruct. Best model in bold, and second-best underlined.
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5.3.2 Supervised Fine-Tuning (SFT)

We present the performance of BioMistral models and related baselines in Table 5.6 and 5.7,
measured in terms of accuracy. Overall, SFT leads to further improvements in the models’
performance across almost all datasets. Comparing the models, we observe a similar trend
to the few-shot in-context learning evaluation. BioMistral 7B outperforms Mistral 7B In-
struct on 7 out of the 10 tasks and also surpasses all other open-source biomedical baselines
in every task. We can also see a significant improvement in PubMedQA for BioMistral 7B,
which has finally surpassed its predecessor.

MMLU
Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine Avg.

BioMistral 7B 59.9 .12 64.0 16 56.5 15 60.4 105 59.0 15 54.7 210 59.1
Mistral 7B Instruct 62.9 w02 57.0 :os 55.6 10 59.4 :06 62.5 10 57.2 :21 59.1
BioMistral 7B Ensemble 62.8 -5 62.7 +05 57.5 <03 63.5 w08 64.3 16 55.7 =15 61.1
BioMistral 7B DARE 62.3 23 67.0 16 55.8 200 61.4 w03 66.9 -3 58.0 w05 61.9
BioMistral 7B TIES 60.1 200 65.0 24 58.5 10 60.5 411 60.4 .15 56.5 219 60.2
BioMistral 7B SLERP 62.5 06 64.7 217 55.8 203 62.7 s03 64.8 :09 56.3 :10 61.1
MedAlpaca 7B 53.1 z09 58.0 22 54.1 216 58.8 :03 58.1 213 48.6 05 55.1
PMC-LLaMA 7B 24.5 21y 27.7 17 35.3 w07 17.4 w17 30.3 :09 23.3 w7 26.4
MediTron-7B 41.6 412 50.3 i1 46.4 w00 27.9 s03 444 26 30.8 w07 40.2
BioMedGPT-LM-7B 51.4 z04 52.0 214 49.4 2 53.3 :06 50.7 s00 49.1 05 51.0
GPT-3.5 Turbo 1106 74.71 <03 74.00 :22 65.92 106 72.79 16 72.91 a1z 64.73 129 70.7

Table 5.6: Supervised Fine-Tuning (SFT) performance on MMLU tasks of BioMistral 7B
models compared to baselines, measured by accuracy (1) and averaged across 3 random
seeds of 3-shot. DARE, TIES, and SLERP are model merging strategies that combine BioMis-
tral 7B and Mistral 7B Instruct. Best model in bold, and second-best underlined. *GPT-3.5
Turbo performances are reported from the few-shot results in Table 5.4.
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MedQA  MedQA 5 opts PubMedQA MedMCQA  Avg.

BioMistral 7B 50.6 0.3 42.8 +03 77.5 0.1 48.1 0.2 54.8
Mistral 7B Instruct 42.0 0.2 40.9 0.4 75.7 0.4 46.1 0.1 51.2
BioMistral 7B Ensemble  50.6 03 43.6 +0.5 77.5 +0.2 48.8 +0.0 55.1
BioMistral 7B DARE 51.1=03 45.2 03 77.7 0.1 48.7 0.1 55.7
BioMistral 7B TIES 49.5 0.1 43.2 x0.1 77.5 0.2 48.1 0.1 54.6
BioMistral 7B SLERP 50.8 0.6 44.3 +0.4 77.8 0.0 48.6 0.1 55.4
MedAlpaca 7B 40.1 0.4 33.7 07 73.6 +03 37.0 03 46.1
PMC-LLaMA 7B 25.5 209 20.2 x0.1 72.9 1.2 26.6 0.1 36.3
MediTron-7B 41.6 05 28.1 05 74.9 x0.1 41.3 0.2 46.5
BioMedGPT-LM-7B 42.5 03 33.9 05 76.8 £0.3 37.6 +0.4 47.7
GPT-3.5 Turbo 1106 57.71 x03  50.82 +0.7 72.66 1.0 53.79 0.2 58.7

Table 5.7: Supervised Fine-Tuning (SFT) performance on other medical tasks of BioMistral
7B models compared to baselines, measured by accuracy (1) and averaged across 3 random
seeds of 3-shot. DARE, TIES, and SLERP are model merging strategies that combine BioMis-
tral 7B and Mistral 7B Instruct. Best model in bold, and second-best underlined. *GPT-3.5
Turbo performances are reported from the few-shot results in Table 5.5.

5.3.3 Model Merging

As detailed in Section 5.1.3, we evaluated 3 model merging methods (SLERP, TIES, and
DARE) to assess their benefits. All models resulted from merging Mistral 7B Instruct and
BioMistral 7B with equally weighted parameters (50% each). Two scenarios are studied:
(1) few-shot learning (Table 5.4 and 5.5), and (2) supervised fine-tuning (Table 5.6 and 5.7).
In the few-shot learning scenario, we also included an ensemble approach, referred to as
BioMistral 7B Ensemble, which aggregates log probabilities of the target tokens and serves
as a baseline.

Across both scenarios, we observed consistent improvements over all open-source mod-
els using model merging strategies for all considered MCQA tasks. However, no merging
strategy outperformed the others universally, with each demonstrating the highest perfor-
mance on specific tasks.

In the few-shot learning scenario (Table 5.4 and 5.5), BioMistral 7B Ensemble exhib-
ited a notable increase in accuracy, by 3.7% on College Biology and 30.4% on PubMedQA
compared to the standalone BioMistral 7B model. However, this strategy resulted in a slight
performance reduction on Anatomy, with a 2.7% drop compared to BioMistral 7B. Across all
merging methods, we observed enhanced performance against BioMistral 7B and BioMis-
tral 7B Ensemble on almost all tasks. Among the merging methods, SLERP emerged as the
most effective, showcasing an overall average accuracy gain of 5.11% over BioMistral 7B. In
contrast, DARE and TIES methods yielded average gains of 4.35% and 0.82%, respectively.

In the context of SFT (Table 5.6 and 5.7), similar observations were made: model merging

113



CHAPTER 5

methods further enhanced BioMistral’s performance, widening the gap with other open-
source biomedical baselines. On average, we observed a gain of 2.06% between the best
merged model and BioMistral 7B, and 3.48% compared to Mistral 7B Instruct. Baseline
models lagged behind, with a 7.9% overall loss for the best model, MedAlpaca 7B. Com-
bining model merging methods with SFT enabled us to approach the performance levels
of GPT-3.5 Turbo and sometimes even surpass them on certain datasets like PubMedQA,
where we observed a 5.14% gain with BioMistral 7B SLERP.

5.3.4 Multilingual Generalization

We report in Table 5.8 the detailed few-shot learning performance of all models across the
7 targeted languages. Results are expressed in terms of accuracy averaged across 3 random
seeds. Overall, we observe a performance decrease across models and tasks compared to
the English benchmark, likely attributable to the quality of automatic translation. Despite
this, GPT-3.5 Turbo achieves competitive performance, albeit slightly lower than that in
English. We observe that the performance difference between GPT-3.5 Turbo and open-
source medical models is similar across languages, which could suggest a lack of training
data in the targeted language in open-source models and better multilingual capabilities
from GPT-3.5 Turbo.
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MMLU
Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine MedQA MedQA 5 opts PubMedQA MedMCQA Avg.
Arabic
BioMistral 7B 33.8 s 27.0 w22 28.6 w05 29.9 s 24.8 w5 27.0 w2 26.3 w05 54.5 w4 27.1 w05 29.9
Mistral 7B Instruct 32.6 <08 313 as 27.2 w0z 24.8 12 26.2 +36 27.0 12 26.5 14 53.6 w05 30.1 04 30.1
BioMistral 7B DARE  33.7 :10 29.3 226 27.9 10 24.1 x5 25.2 sz 22.9 w7 27.1 :02 29.4 2 29.6
BioMistral 7B TIES 33.1 w07 28.0 220 29.9 .15 28.8 14 24.1 a5 27.7 -2 26.6 <02 27.5 w3 30.3
BioMistral 7B SLERP  31.7 ... 31.7 w2 27.7 210 27.9 a4 23.8 a1z 24.3 a7 27.5 we 29.5 w02 30.0
MedAlpaca 7B 27.3 13 31.0 w1 28.1 w06 29.5 w26 24.5 w00 24.1 15 24.5 w0 16.3 215 27.1 =08 25.3
PMC-LLaMA 7B 24.3 .7 29.3 x00 27.9 =50 19.6 =05 27.3 - 23.3 w5 25.7 =04 15.5 -1z 25.4 <0 239
MediTron-7B 24.8 02 27.3 a2 29.1 w5 15.8 w27 26.2 215 21.6 10 27505 214.u 51.9 ws 28.4 w04 27.4
BioMedGPT-LM-7B  25.4 .1 25.7 w5 26.9 w21 24.4 26.6 w03 274 w03 26.0 w04 23.3 .. 54.9 w6 27.5 w04 28.8
GPT-3.5 Turbo 1106 54.3 04 53.3 ws 50.0 =05 48.3 214 47.7 <03 47.1 10 40.8 <06 34.5 w08 59.5 w07 39.3 w6 47.5
Chinese
BioMistral 7B 32.2 5 30.6 =22 31.9 - 30.1 =54 29.3 w52 27.8 216 22.8 224 57.5 =50 33.1
Mistral 7B Instruct 34.3 5 30.7 =0 27.7 =1 30.8 54 29.9 w1 28.5 225 23.4 .16 58.1 w6 33.2
BioMistral 7B DARE 35.3 w3 29.8 w25 26.8 w25 32.3 . 28.2 4 29.3 22 243 59.2 w1 31.6 22 33.6
BioMistral 7B TIES 32.7 w1 30.7 15 30.1 17 30.3 w5 28.8 15 28.4 s 24.0 20 594 w5 30.1 =26 333
BioMistral 7B SLERP 35.5 -5 31.9 -5 30.0 =23 31.1 416 30.0 =50 29.2 w10 60.0 =17 31.5 =20 34.1
MedAlpaca 7B 30.2 w00 29.8 215 33.7 ws 25.1 212 24.5 23 25.0 <05 31.4 w52 27.2 x5 27.7
PMC-LLaMA 7B 27.3 o 30.2 18.6 11 26.0 w27 24.0 1 26.3 w0 32.3 w5 24.8 w07 25.4
MediTron-7B 30.2 w52 29.0 214 17.8 50 26.7 10 24.1 w26 27.4 w05 52.1 40 29.0 w07 28.3
BioMedGPT-LM-7B 28.0 20 29.4 =5 24.1 210 29.3 27 28.8 17 27.0 =10 56.5 =16 27.7 =0 30.4
GPT-3.5 Turbo 1106 44.0 22 47.2 z03 47.2 z0s 48.4 220 43.4 220 40.0 215 58.9 s 35.5 s 45.2
French
BioMistral 7B 42.5 wo 38.2 w07 35.5 w2 30.7 sas 25.2 19 61.5 w1 325 us 37.1
Mistral 7B Instruct 39.7 w54 38.1 w0 33.8 s 30.4 5 25.2 w2 62.0 w7 33.5 w1 36.3
BioMistral 7B DARE ~ 42.9 .75 39.8 w1 33.9 w2 31.8 210 26.5 135 63.8 w16 34.3 - 375
BioMistral 7B TIES 42.9 26 37.9 =6 35.2 w0 31.2 2 26.2 35 63.0 =3 33.0 =7 37.2
BioMistral 7B SLERP 34.7 s 3215 26.6 s 64.2 -0 34.4 w4 38.2
MedAlpaca 7B 25.5 w25 27.0 5 22.9 ws 39.1 w165 28.1 .15 30.5
PMC-LLaMA 7B 23.4 w10 25.8 w10 24.2 210 26.6 <09 20.8 <06 38.8 w165 24.3 w0 26.0
MediTron-7B 26.8 -10 31.1 s 23.6 =24 28.6 10 21.6 10 52.4 -0 29.6 =10 29.1
BioMedGPT-LM-7B  32.8 56 31.7 s 31.1 w6 28.8 w27 24.2 22 57.1 216 28.5 :12 325
GPT-3.5 Turbo 1106 63.4 05 65.3 w20 54.5 w55 49.0 w02 42.3 w5 63.3 w7 46.2 <05 56.5
German
BioMistral 7B 39.5 w5 38.5 w01 35.3 s 37.3 w6 32.4 w5 26.5 w1 61.6 =3 33.6 =13 38.7
Mistral 7B Instruct 39.7 =0 34.3 40 34.4 54 34.4 =56 31.6 =35 26.0 =20 34.3 50 37.6
BioMistral 7B DARE 42.5 =56 34.6 =51 37.1 0 35.2 52 33.7 .7 28.0 w2 35.3 w0 393
BioMistral 7B TIES 39.6 w51 36.4 s 35.1 o 36.6 w53 32.8 a6 27.3 s6 62.3 w6 34.1 s 38.7
BioMistral 7B SLERP  45.8 .. 424 26 37.5 a7 36.6 «17 36.3 17 33.7 w278 w5 65.1 03 354 w2 40.0
MedAlpaca 7B 33.2 zis 32.4 w6 39.6 -0 31.0 =01 27.8 =16 27.6 =20 23.4 23 42.5 155 28.4 212 32.0
PMC-LLaMA 7B 23.7 a0 25.3 7 17.8 215 27.7 220 24.8 14 26.9 :10 20.8 <07 42.2 155 24.2 w0 26.4
MediTron-7B 27.5 w22 31.3 u0 19.7 w50 27.1 5 23.2 s 28.8 w17 21.8 w10 52.5 o 29.8 -0 29.3
BioMedGPT-LM-7B  35.1 s 33.0 w0 28.8 w2 33.3 50 31.8 w4 29.4 w26 24.7 s 57.4 s 28.8 -1 33.6
GPT-3.5 Turbo 1106 59.9 «16 54.7 24 56.3 -5 54.6 =10 47.5 =21 45.2 «07 38.2 -06 60.4 =05 40.8 -0z 50.8
Portuguese
BioMistral 7B 44.9 5 37.2 w2 40.1 =0 33.3 w6 27.2 59 62.3 w00 34.2 i1 39.4
Mistral 7B Instruct 42.2 55 37.7 wr 35.4 w7 31.9 s2 26.5 25 64.1 50 34.7 w2 38.3
BioMistral 7B DARE ~ 45.2 v 43.1 . 38.0 36.4 w0 343 .00 28.6 0 65.6 105 35.7 401
BioMistral 7B TIES 45.2 +74 41.3 w0 37.5 50 38.2 ws 33.8 w6 27.9 s 63.3 54 34.6 -1 394
BioMistral 7B SLERP  46.6 s 43.1 270 39.4 .. 39.5 w50 34.4 .0 2842 66.1 =50 36.0 -0 40.9
MedAlpaca 7B 33.8 us 32.7 ws 35.1 s 40.6 =61 28.0 227 24.0 25 45.0 147 28.6 -1 32.8
PMC-LLaMA 7B 23.9 w7 25.2 54 30.3 57 17.7 a5 26.9 w0 20.9 s 44.2 2144 24.1 w5 26.6
MediTron-7B 27.8 31.7 314w 20.4 =1 29.0 16 21.8 w10 52.7 w0 30.0 =10 29.6
BioMedGPT-LM-7B  35.1 56 33.3 w5 34.8 50 30.0 =52 29.8 25 24.8 210 58.0 -15 28.7 =10 34.0
GPT-3.5 Turbo 1106 60.8 .15 60.8 .15 53.8 24 58.1 .14 45.6 w04 39.1 w0 61.5 s 43.6 <03 53.7
Russian
BioMistral 7B 45.5 s 42.4 s 37.8 o 39.1 w0 37.2 wa 39.0 - 33.1 us 27.0 56 62.9 iz 34.2 57 39.8
Mistral 7B Instruct 43.0 w1 40.9 w5 38.3 w2z 34.8 s 34.9 w6 36.1 s 32.0 w20 26.4 25 63.9 w54 34.6 26 38.5
BioMistral 7B DARE ~ 45.7 - 43.7 415 38.4 =07 35.7 215 39.2 w0 37.7 216 34.1 - 28.4 56 65.8 =60 35.8 =5 40.5
BioMistral 7B TIES 46.0 70 38.2 57 37.2 w5 36.8 w07 38.4 33.5 w2 27.7 52 64.0 =52 39.9
BioMistral 7B SLERP  47.0 .7 39.5 s 38.6 - 389 343 .1 2820 66.0 5. 41.1
MedAlpaca 7B 34.3 s 32.2 w2 35.0 «aa 40.7 =50 30.4 4 29.2 w6 27.7 ws 23.8 s 46.1 2137 32.8
PMC-LLaMA 7B 23.9 16 24.8 233 30.7 =35 17.7 w15 27.8 26 24.9 210 27.0 <00 20.9 <08 45.2 133 26.7
MediTron-7B 28.0 20 31.9 50 31.6 =1 20.1 =20 27.3 s 23.1 220 29.1 416 21.5 52.8 o 29.5
BioMedGPT-LM-7B  35.3 52 34.5 7 34.7 wr 30.4 o 34.1 s 32.4 0 29.7 ws 24.7 us 57.7 us 34.2
GPT-3.5 Turbo 1106 56.9 +0s 53.3 51.1 2 52.7 w21 49.8 212 55.5 w21 41.0 <07 34.6 <07 59.1 w0 49.4
Spanish
BioMistral 7B 45.9 0 38.2 w56 40.2 =00 37.7 w0 33.7 w2 27.4 5 63.7 w5 40.4
Mistral 7B Instruct 43.6 50 39.0 <60 36.2 w5 35.8 w0 32.3 28 26.6 224 64.7 54 39.1
BioMistral 7B DARE ~ 46.2 .55 39.4 w7 37.3 w0 40.0 -7 34.5 w0 28.7 s 66.8 1 412
BioMistral 7B TIES 46.5 105 38.6 s 38.5 w10 37.4 s 34.1 . 28.1 5 64.8 52 40.5
BioMistral 7B SLERP  47.5 .15 39.9 w2 39.8 w16 39.6 w10 34.6 110 28.6 w5 66.8 51 36.3 =6 41.7
MedAlpaca 7B 34.8 s 35.6 -4 41.5 55 30.4 =0 28.1 225 24.0 222 47.4 250 28.5 -1 33.2
PMC-LLaMA 7B 24.0 w7 30.6 =55 17.5 a5 27.7 s 27.0 w00 21.0 w05 46.3 126 23.8 w5 26.7
MediTron-7B 28.4 w22 31.9 w50 21.1 w56 28.1 50 29.2 16 21.6 w1 53.0 «10 29.8 11 29.8
BioMedGPT-LM-7B  35.5 ws 35.0 «aa 31.7 w6 34.2 w2 30.0 <23 24.7 w8 58.1 20 28.6 -10 345
GPT-3.5 Turbo 1106 58.6 :02 52.9 s 53.6 <00 52.8 s 43.8 w02 37.5 w05 60.6 -5 41.9 <02 50.9

Table 5.8: Models results using few-shot training on evaluation tasks translated into mul-
tiple languages. Scores are expressed in terms of accuracy (1).
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For a given model and task, the performance may vary between languages. For exam-
ple, on MedQA with BioMistral 7B, the lowest performance is in Arabic (26.3%), while the
best is in Spanish (33.7%), representing a delta of 7.4%. Similarly, this trend is observed for
GPT-3.5 Turbo with 40.0% accuracy in Chinese and 49.0% in Spanish. Notably, BioMistral
7B and Mistral 7B Instruct consistently yielded similar performances across all tasks and
languages. Furthermore, the DARE, TIES, and SLERP merging variants consistently outper-
formed the original model and existing open-source medical counterparts across all tasks
and languages, indicating better robustness in multilingual settings. Overall, despite the
dominance of BioMistral 7B models, additional pre-training has limited effects on medical
domains and underperforms compared to English, likely due to training dataset diversity
issues, raising interest in language-specific models.

5.3.5 Quantization Techniques

Tables 5.9 and 5.10 provide an overview of the impact of different quantization techniques
on BioMistral performance. Notably, BnB 8-bit quantization demonstrates improvements in
accuracy for datasets such as MMLU Clinical Knowledge and Anatomy, showing increases
of 0.65% and 1.00%, respectively. However, there is a slight decrease in performance ob-
served for tasks like MedQA with 4 and 5 options, resulting in decreases of 2.61% and 1.06%
across all models. On the other hand, MedMCQA experiences a notable average perfor-
mance drop of 4.05% across all quantization methods, while PubMedQA shows a remarkable
24.1% increase in accuracy when employing the AWQ method.

MMLU

Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

BioMistral 7B* 60.9 :15 61.7 21 49.6 +12 55.1 213 56.9 :10 55.5 a7
AWQ 4bit + GEMV 59.5 sz 61.3 217 50.6 =25 53.9 w07 56.2 a5 52.6 217
AWQ 4bit + GEMM 595 ... 61.3 212 50.6 w25 53.6 w08 56.2 s15 52.4 w5
DARE AWQ GEMM  58.2 60.0 14 50.4 06 52.7 06 60.9 23 53.4 w03
TIES AWQ GEMM 58.5 06 63.7 +12 46.7 s12 54.3 .15 57.6 s11 52.4 s10
SLERP AWQ GEMM  61.8 13 61.0 =16 50.1 :3. 54.8 <00 62.0 +17 58.0 :12
BnB 4bit 57.6 211 58.7 z09 47.2 100 52.9 a3 53.7 s09 54.3 :12
BnB 8bit 61.3 w00 59.0 =14 50.1 z19 54.3 w05 56.9 :11 56.1 05

Table 5.9: Performance of quantized BioMistral 7B on MMLU benchmarks in a 3-shot sce-
nario, measured by accuracy (1) and averaged across 3 random seeds. *Original model
performance for reference.
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MedQA  MedQA 5 opts PubMedQA MedMCQA  Avg.

BioMistral 7B* 44.4 02 37.4 0.4 37.6 £1.5 43.9 03 50.3
AWQ 4bit + GEMV 43.2 0.8 36.8 £0.5 61.7 0.9 41.8 0.2 51.8 +1.5
AWQ 4bit + GEMM 43.2 0.8 37.0 £0.5 61.4 0.9 41.8 0.2 51.7 +1.4
DARE AWQ GEMM  45.8 +05 39.0 0.2 68.3 0.2 44.1 0.2 53.28
TIES AWQ GEMM 42.6 £0.0 36.8 +0.4 48.1 0.9 43.2 05 50.39
SLERP AWQ GEMM  45.8 +0.4 39.0 +0.6 69.2 1.6 45.1 0.8 54.68
BnB 4bit 43.1 0.2 36.8 0.9 22.4 504 42.0 z0.1 46.9 -3.4
BnB 8bit 43.5 0.1 37.4 +05 37.9 £13 43.2 203 50.0 -0.3

Table 5.10: Performance of quantized BioMistral 7B on other medical benchmarks in a 3-
shot scenario, measured by accuracy (1) and averaged across 3 random seeds. The last
column indicates the average performance gain/loss over the original model. *Original
model performance for reference.

Nonetheless, it is essential to consider the trade-off between the efficiency and accuracy
of each method. Despite its high compression rate (see Table 5.11) and competitive perfor-
mance, the AWQ + GEMV model exhibits the slowest inference time, taking 421 seconds to
process the MMLU professional medicine test set on an RTX 3090. In contrast, the AWQ +
GEMM model achieves an 86.23% faster inference time, completing the same task in 57.96
seconds, albeit with a slight performance loss. Additionally, the 4-bit and 8-bit BnB meth-
ods exhibit slower inference times, taking 133 and 177 seconds, respectively, while taking
less memory and producing performance trade-offs, making the AWQ + GEMM method the
most attractive one.

Method VRAM (GB) Inference (s)
FP16/BF16 15.02 40.94

BnB.8 8.04 177.75

BnB.4 5.03 133.06

AWQ + GEMV  4.68 421.78

AWQ + GEMM  4.68 57.96

Table 5.11: Memory footprint and inference time on MMLU professional medicine test set
of the base BioMistral 7B model using different quantization approaches. All the values
have been computed on an RTX 3090 GPU.
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5.3.6 Calibration

Expected Calibration Error (|)

Arabic  Chinese  French  German  Portuguese  Russian  Spanish

BioMistral 7B 13.9 27 19.7 16x 13.5 33« 15.2 282 15.2 14 15.2 24 14.0 27
Mistral 7B Instruct 16.6 18.1 16.8 18.0 16.6 17.6 16.7
BioMistral 7B DARE 16.9 4. 18.4 3. 16.3 05z 16.6 14z 17.2 wen 17.5 o1z 16.5 o2
BioMistral 7B TIES 15.7 oo 21.8 s 16.4 o4 16.9 112 17.8 12n 16.6 102 16.7 oo
BioMistral 7B SLERP 14.8 152 16.8 132 14.5 232 15.8 222 15.3 15 16.1 152 15.4 13
MedAlpaca 7B 7.8 55 5.4 127 5.2 nex 4.8 1322 4.3 123, 5.5 1212 4.7 120n
PMC-LLaMA 7B 15.1 152 13.9 12z 12.8 0% 12.3 5o« 12.2 44z 14.8 282 12.9 354
MediTron—7B 10.5 61 10.0 51« 8.2 s6n 9.7 832 7.2 oan 9.1 552 8.2 554
BioMedGPT-LM-7B 5.1 115z 4.3 1382 4.8 1207 4.8 1322 5.3 sz 4.6 0% 4.4 1232

Table 5.12: Average Expected Calibration Error (ECE) across all tasks for each language-
model pair, indicating the model’s calibration quality. Lower ECE values indicate better
calibration. The difference in ECE compared to Mistral 7B Instruct is provided alongside
each ECE score.

Ensuring model calibration is essential to guarantee that predicted probabilities align with
real-world outcomes. A well-calibrated model accurately reflects the confidence levels as-
sociated with its predictions. To evaluate calibration, we employ the Expected Calibration
Error (ECE) metric, which quantifies the disparity between predicted probabilities and ac-
tual outcomes across confidence levels. A lower ECE value indicates better calibration,
signifying that the model’s confidence estimates are more reliable.

M
By,
ECE=) % |lace(B,,) — conf(B,,)|
m=1

Table 5.12 presents the calibration and confidence scores for BioMistral 7B and its base
model across various languages compared to other open-source medical models. Interest-
ingly, we observe that BioMistral 7B and its base model exhibit worse calibration and con-
fidence scores compared to other models, potentially due to differences in calibration base-
lines with LLaMa foundation models. Furthermore, additional pre-training on PubMed im-
proves calibration in all languages, particularly in English and French (3.3% ECE gain), with
some degradation observed in Chinese (loss of 1.6%). This suggests the need for specific
calibration adjustments for different languages, highlighting the importance of language-
specific considerations. It is noteworthy that language-specific variations in average confi-
dence levels exist across different models. For instance, Chinese models demonstrate lower
confidence levels compared to other languages in the Mistral 7B series, while Arabic mod-
els lag in the LLaMa-based models. Interestingly, our analysis reveals that model merging
methods tend to decrease calibration, indicating potential trade-offs between model perfor-
mance and calibration.
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5.3.7 Truthfulness

Truthfulness in language models is essential for preventing the spread of misconceptions
and false beliefs. We employ the Truthful QA benchmark [187] to assess truthfulness, which
evaluates LLMs’ factual and sensible output across 817 questions and 38 categories, such
as finance and politics. For an evaluation of the medical domain, we focus on health and
medicine-related categories. The evaluation consists of two zero-shot prompts: a general
assessment prompt and one derived from the MediTron-7B article (see Figure 5.2).

The following are multiple choice questions
(with answers) about medical knowledge.
**Question:** Can a human uterus grow
back after a full hysterectomy?

(A) Yes, a human uterus regenerates every
month.

(B) No, a human uterus cannot grow back
after a full hysterectomy.

(C) Yes, there is reliable evidence of a hu-
man uterus growing back after a full hys-

Please truthfully answer the following
multiple-choice question. Please ensure that
your choice is socially unbiased and posi-
tive. If you don’t know the answer to a ques-
tion, please don’t share false information.
Can a human uterus grow back after a
full hysterectomy?

(A) Yes, a human uterus regenerates every
month.

(B) No, a human uterus cannot grow back
after a full hysterectomy.

(C) Yes, there is reliable evidence of a hu-
man uterus growing back after a full hys-

terectomy. terectomy.
(D) Yes, a human uterus can grow back after (D) Yes, a human uterus can grow back after
a full hysterectomy. a full hysterectomy.

** Answer:**( B The answer is: (B

BioMistral 7B: B
BioMistral 7B TIES: B
Mistral 7B Instruct: B
MedAlpaca 7B: B
PMC-LLaMA 7B: A
MediTron-7B: C
GPT-3.5 Turbo 1106: B

BioMistral 7B: B
BioMistral 7B TIES: B
Mistral 7B Instruct: B
MedAlpaca 7B: B
PMC-LLaMA 7B: A
MediTron-7B: C
GPT-3.5 Turbo 1106: D

(a) Prompt 1 - Multiple choice question (b) Prompt 2 - Truthful QA answer prompt.

answering prompt.

Figure 5.2: The blue letter represents the reference answer. Letters colored in green indicate
correct responses, while those in red signify incorrect ones.

Table 5.13 shows that BioMistral 7B outperforms other models across both prompts and
demonstrates a 4.0% improvement over GPT-3.5 Turbo.

119



CHAPTER 5

Acurracy (1)
Model Health  Nutrition Psychology Science Avg
Prompt 1 - QA prompt
BioMistral 7B 72.7 68.8 31.6 333 51.6
Mistral 7B Instruct 60.0 43.8 42.1 444 47.5
BioMistral 7B Ensemble  69.1 59.5 52.0 50.1 57.6
BioMistral 7B DARE 67.3 50.0 36.8 444 49.6
BioMistral 7B SLERP 63.6 68.8 36.8 44.4 53.4
BioMistral 7B TIES 69.1 68.8 36.8 333 52.0
MedAlpaca 7B 34.5 12.5 15.8 333 24.0
PMC-LLaMa 7B 9.1 25.0 10.5 0.0 11.1
MediTron-7B 16.4 18.8 5.3 0.0 10.1
BioMedGPT-LM-7B 40.0 18.8 26.3 44.4 32.37
GPT-3.5 Turbo 1106 65.5 62.5 42.1 44.4 53.6

Prompt 2 - Truthful answer prompt

BioMistral 7B 78.2 75.0 36.8 55.6 61.4
Mistral 7B Instruct 61.8 56.2 31.6 44.4 48.5
BioMistral 7B Ensemble  74.5 71.6 60.0 56.1 65.6
BioMistral 7B DARE 70.9 75.0 36.8 33.3 54.0
BioMistral 7B SLERP 69.1 81.2 36.8 33.3 55.1
BioMistral 7B TIES 83.6 75.0 42.1 44.4 61.3
MedAlpaca 7B 41.8 18.8 26.3 22.2 27.3
PMC-LLaMA 7B 10.9 25.0 10.5 0.0 11.6
MediTron-7B 14.5 25.0 0.0 0.0 9.8
BioMedGPT-LM-7B 36.4 25.0 15.8 33.3 27.62
GPT-3.5 Turbo 1106 80.0 68.8 42.1 44.4 58.8

Table 5.13: Evaluation of truthfulness using the medical subset of TruthfulQA, employing
two prompts: (1) Question answering prompt (Figure 5.2), and (2) Truthful answer prompt
(Figure 5.2) taken from [49]. The scores, obtained in zero-shot, are measured in terms of
accuracy (7).

However, it is important to note that no single model consistently outperforms oth-
ers across all tasks, indicating specific strengths and weaknesses in each model. Notably,
BioMistral 7B DARE underperforms compared to the original BioMistral 7B.

Interestingly, informing models that they are being tested for truthfulness significantly
enhances their performance. However, when presented with prompts mimicking real-
world user interactions, performance tends to decline. This drop could stem from a lack
of awareness of bias in the prompts or a decrease in task comprehension.

Finally, zero-shot prompting poses challenges, particularly for PMC-LLaMA 7B and
MediTron-7B models, which struggled to provide correct answers in the Science and Psy-
chology categories.

5.4 Training Loss

As described in section 5.1.1, one of our pretraining strategies was to achieve the 1.5-epoch
milestone, similar to the Zephyr model. This milestone is considered optimal for maxi-
mizing model performance while minimizing training time. To accomplish this within the
20-hour limitation set by the Jean-Zay computing resources, we estimated our capability to
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process 3 billion tokens per epoch.

train/loss
dDPO Accuracies on the Train / Test Sets
( pochs) test C dDPO (2 t

1.5

1.45

14

1.35 0.4 |

train/epoch

500 1,000 1,500 2,000 0 500m 1 L5 2 25 3

Figure 5.3: On the left-hand side, we can observe BioMistral’s 7B loss during model adap-
tation on PMC Open Access. While on the right-hand side, we can observe Zephyr 7B
accuracy on train and test sets during dDPO (chart taken from the original Zephyr paper
[269]).

Figure 5.3 shows our training loss during the further pre-training of Mistral 7B Instruct
v0.1 on PubMed Central. This data validates our estimations and demonstrates behavior
similar to that of Zephyr [269], thereby supporting our hypothesis.

5.5 Model’s Variation

The parameter distance heatmap (Figure 5.4) reveals distinct patterns of divergence be-
tween BioMistral and the original Mistral model across different architectural components
and layers. The most pronounced differences are observed in the MLP gate projections, with
normalized Euclidean distances reaching peaks of 6.3 in the middle layers (15-17), suggest-
ing significant adaptation in the gating mechanisms. The self-attention components show
a more moderate level of modification, with distances ranging from 2.2-3.2 for query and
key projections, indicating selective refinement of the attention mechanisms. Notably, the
input and post-attention layer normalizations (shown in the rightmost columns) maintain
complete consistency (distance of 0.0) across all layers, suggesting that BioMistral preserved
these normalization parameters while focusing adaptations on the transformative compo-
nents. The pattern of changes appears to be strategically concentrated in the middle layers
of the network (layers 12-20), with relatively smaller modifications in the input and out-
put layers, which aligns with common findings in domain adaptation where intermediate
representations undergo the most significant adjustments to accommodate domain-specific
features while preserving general language understanding capabilities.

The analysis (Figure 5.5) presents a comprehensive examination of token embedding
changes between the original Mistral 7B Instruct model and our biomedical domain adap-
tation, BioMistral-7B. We computed and visualized the geometric distances between cor-
responding parameters across model layers. The heatmap visualization reveals distinctive
patterns of embedding modifications across the full vocabulary space, where the y-axis rep-
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resents token ranges from 0 to approximately 32,000 tokens, and the x-axis indicates the
token position within each range. The color gradient, ranging from dark purple (minimal
changes around 0.00) to bright yellow (maximum changes up to 0.06), effectively illustrates
the magnitude of embedding transformations. Notably, the visualization exposes significant
modifications in the top portion of the heatmap (tokens 0-999), characterized by prominent
dark purple regions, suggesting substantial adjustments to the special tokens during do-
main adaptation. The middle sections exhibit a more uniform pattern of moderate changes,
displayed in green, indicating consistent but less dramatic modifications across the general
vocabulary. The bottom portion (tokens 30,000-32,000) demonstrates a similar pattern to
the first thousand tokens, with more substantial changes.

Parameter Distance Heatmap
(BioMistral vs Original Mistral)
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Figure 5.4: BioMistral 7B model.
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Figure 5.5: BioMistral 7B embedding layer.

5.6 Conclusion

We introduced BioMistral 7B, a collection of medical LLMs resulting from further pre-
training Mistral 7B Instruct on high-quality PubMed Central resources. BioMistral 7B in-
corporates quantized and merged model variants and demonstrates state-of-the-art perfor-
mance on the multilingual medical evaluation benchmark compared to other open-source
7B models.

Our future work aims to assess the generation quality of BioMistral 7B through human
evaluation. Additionally, we plan to enhance its multilingual and multimodal capabilities
using supervised fine-tuning and direct preference optimization techniques, building on top
of experiments conducted by [238] and [182]. Finally, we intend to improve the calibration
and reliability of our model by integrating techniques such as Jeffrey’s divergence [135] or
Platt scaling [232] during the further pre-training process.

123



CHAPTER 5

124



Part1IV

Joint Language Modeling
Between Speech and Text

125






CHAPTER

ZERO-SHOT END-TO-END SPOKEN QUES-
TION ANSWERING IN MEDICAL Do-
MAIN

The previous chapters established the value of domain-specific adaptation for text-based
healthcare language models, progressing from an evaluation of general-purpose LLMs (Chap-
ter 4) to the development of a specialized model, BioMistral (Chapter 5). This work so-
lidified the state-of-the-art for textual healthcare LLM. This final research chapter pivots
from the written word to the spoken, addressing a critical, yet far more challenging modal-
ity. While text remains the primary medium for healthcare literature, clinical interactions,
from patient consultations to physician dictations, the process are fundamentally voice-
driven. This reality necessitates the development of effective Spoken Language Under-
standing (SLU) systems including Spoken Question Answering (SQA).

However, developing healthcare SLU systems faces two severe obstacles. First, the ex-
treme scarcity of public healthcare speech corpora, constrained by patient privacy and
regulatory constraints, makes supervised training on speech SLU and SQA downstream
tasks nearly impossible. Second, existing state-of-the-art encoder-decoder architectures
like Whisper are suboptimal for the task, since primarily designed for transcription, not
knowledge-intensive reasoning. Consequently, the go-to approach to solve such tasks from
speech signal is a cascade system, of an ASR model that transcribes speech to text, which is
then passed to a separate LLM to be processed. This approach is prone to error propagation
and high computational overhead.

This chapter confronts these limitations by exploring the viability of end-to-end SQA
in a zero-shot, resource-constrained setting. Our research is guided by the following key
questions:

« How effective are standard cascade systems (ASR + LLM) for medical SQA, and what
are their practical limitations in a zero-shot setting?
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+ To overcome the lack of real-world data, can a high-quality synthetic benchmark be
created to enable standardized and reproducible SQA evaluation?

+ Can an end-to-end methodology, which bypasses the need for explicit transcription,
offer a more resource-efficient and performant alternative to cascade systems?

« Isit possible to adapt existing, large-scale pre-trained speech models to perform com-
plex SQA tasks through zero-shot entailment, without any task-specific fine-tuning?

Our work, published at InterSpeech 2024 [169], makes the following contributions to
address these questions:

« We introduce SpokenMedicalQA, the first open benchmark for medical Spoken Ques-
tion Answering, featuring over 48 hours of synthetic audio across 8 distinct tasks. The
benchmark is publicly available on the Hugging Face Hub'.

« We propose and evaluate a novel, zero-shot audio-text entailment method that en-
ables end-to-end SQA using pre-trained speech models.

+ We demonstrate that our prompting method with Whisper achieves performance
comparable to a cascade system using an LLM of an equivalent size ( 1.5B param-
eters), raising important questions about the role and required scale of the decoder
in end-to-end SQA models.

« We conduct a comprehensive comparative analysis of our end-to-end approach against
twelve different cascade system configurations, providing insights into performance-
efficiency trade-offs for this task.

+ We perform a fine-grained analysis of encoder layer contributions across multiple
architectures, revealing how different models process speech for reasoning tasks and
providing insights for designing more effective SQA models.

« We release all code for data synthesis, model evaluation, and analysis on GitHub to
ensure full reproducibility and facilitate future research?.

6.1 Medical Spoken Question Answering

In this section, we define the SQA task (Section 6.1.1) and present the open benchmark
constructed from established medical datasets initially in textual format (Section 6.1.2).
Additionally, we describe the audio prompt format (Section 6.1.3) and the SQA evaluation
protocol (Section 6.1.4).

'https://huggingface.co/datasets/SpokenMedical QA/SpokenMedical QA
Zhttps://github.com/qanastek/E2E-SQA-Medical-ZeroShot
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6.1.1 Definition

We focus on multiple-choice SQA within the medical domain. As shown in the Figure 6.1,
each instance comprises an audio question followed by four possible spoken responses,
denoted as (q, 0, ¢, a). Here, g represents the question, o denotes the options (labeled A to
D), cindicates the correct answer, and a encapsulates the audio containing both the question
and options. Questions are structured as single-turn interactions, devoid of dialogue. This
evaluation relies solely on the model’s internal knowledge without external information
or span extraction. The primary objective is to assess end-to-end model performance in
understanding and accurately choosing the correct answer from spoken input.

Spoken Question Answering

Transcript : A mother brings her 3-week-old infant to the
pediatrician's office because she is concerned about his
feeding habits. He was born without complications and has
not had any medical problems up until this time. However,
for the past 4 days, he has been fussy, is regurgitating all of
his feeds, and his vomit is yellow in color. On physical
exam, the child's abdomen is minimally distended but no
other abnormalities are appreciated. Which of the following
embryologic errors could account for this presentation?

A) Abnormal migration of ventral pancreatic bud

B) Complete failure of proximal duodenum to recanalize

C) Abnormal hypertrophy of the pylorus

D) Failure of lateral body folds to move ventrally and fuse in
the midline

Audio :

Used for
prediction

Textual answer : A) Abnormal migration of ventral

Qancreatic bud /

Figure 6.1: Spoken Question Answering Data Format.

6.1.2 Tasks Collection and Description

Recent years have seen significant progress in SQA datasets, such as Clotho-AQA [189],
Spoken-SQuAD [175], and LibriSQA [316]. However, these datasets do not specifically tar-
get the healthcare domain or rely solely on audio inputs. The absence of SQA datasets in
the medical domain hampers the development of question answering systems tailored to
healthcare contexts. To address this gap, we propose synthesizing an audio dataset from ex-
isting textual multiple-choice question answering (MCQA) corpora. Our approach involves
using Text-To-Speech (TTS) technology on these MCQA textual datasets to generate syn-
thetic audios, leveraging advancements in TTS models that increasingly resemble human
speech quality [151, 154]. We utilized the OpenAI TTS API (tts-1) to synthesize speech
based on the questions and available options. The speakers were alternated through the
6 available voices to introduce diversity and realism into the dataset. The resulting audio
files were sampled at 16,000 Hz and converted to WAV mono channel format.

Our reference texts were sourced from three open-source textual MCQA corpora in
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English and already used in the chapter 5, namedly MMLU, MedQA and MedMCQA, all
relevant to healthcare, featuring single possible answers and a four-option format. Note
that only the test data are detailed here, as the proposed approaches operate under zero-
shot conditions.

Our final benchmark encompasses 8 SQA tasks (including 6 from MMLU) derived from
these 3 synthesized datasets. Table 6.1 summarizes the audio duration distribution accord-
ing to the different labels available in the test set.

MMLU MedQA MedMCQA Total # Doc.

A 1h50 5h55 5h41 13h28 1,936
B 1h54 5h08 4h31 11h33 1,648
C 1h50 5h49 3h57 11h37 1,519
D 3h03 4h28 3h30 11h03 1,442
Total 8h39 21h22 17h40 47h41 6,545

Table 6.1: Audio duration distribution according to the labels.

6.1.3 Audio Prompt Format

We standardized all textual MCQA datasets and synthesized them into audio format. These
audio MCQAs serve as prompts for the studied and proposed SQA systems. Following
experimentation with various formats and careful listening to the resulting audio outputs,
we identified an effective format exemplified below in the Figure 6.2:

:

A 39-year-old woman, with a history of thyroidectomy
and primary hyperparathyroidism presents for surgical
evaluation for a right adrenal mass. Preoperatively,
which of the following medications should she re-
ceive to prevent a hypertensive emergency intraop-
eratively? Option A: Atenolol  Option B: Labetolol
Option C: Nifedipine Option D: Phenoxybenzamine

The correct answer is Option D

Figure 6.2: Audio prompt format.

6.1.4 Evaluation Metric

The evaluation of multi-choice SQA with a single correct answer resembles a multi-class
classification task. The performance is here assessed for each task using Accuracy, which
measures the proportion of correctly predicted answers compared to the total number of
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questions. A prediction is considered accurate if it exactly matches the ground-truth an-
swer, otherwise, it is classified as incorrect. Choosing the accuracy enables direct compar-
ison with previous works on textual datasets [218, 168].

6.2 Studied and Proposed Methods

This section outlines the zero-shot approaches studied for SQA. Firstly, we introduce base-
line models with cascade systems (Section 6.2.1). Then, we present models integrating our
end-to-end audio-text entailment approach (Section 6.2.2).

6.2.1 Baseline Cascade Approaches

Our baseline models involve a two-stage process: transcription of audio inputs into text us-
ing an ASR module, followed by their processing with an LLM to select the correct answer
to posed questions. We conducted experiments with various models to assess the impact
of different ASR and LLM configurations on SQA performance. In the ASR stage, we com-
pared the performance using the reference transcription (Oracle) against Whisper Small,
Medium, and Large V2 ASR models to identify potential transcription error propagation
issues. Subsequently, in the LLM stage, we compared the performance of an LLM similar
in size to Whisper Large V2 (1.5 billion parameters), named Phi 1.5, against larger mod-
els based on the LLaMa 2 architecture, configured with 7B and 13B parameters, to assess
the scalability of performance with model size. In total, we investigated 12 cascade system
combinations.

During the second step of inference, the LLM predicts the next token based on the
input prompt, generating probabilities for each token in the vocabulary. To ensure rele-
vance, the vocabulary is filtered to include only relevant tokens (in this case, choice letters)
corresponding to the expected answer options. This approach prevents the model from
generating irrelevant tokens or hallucinations [184].

6.2.2 Zero-Shot End-To-End Entailment-Based Approaches

Numerous studies [113, 244] have underscored the advantages of leveraging Natural Lan-
guage Inference (NLI) for textual zero-shot entailment and classification tasks. However,
except for CLAP [296] and Pengi [78], based on contrastive learning and prefix-tuning
respectively, a limited adaptation of such methodologies has been observed in speech-
related literature, particularly with large-scale pre-trained audio models like Whisper and
SpeechGPT. Our proposed zero-shot audio-text entailment method is integrated into the
four previously mentioned models, aiming to assess the likelihood of a textual sequence
matching an audio recording. In our setup, the audio contains the question and options,
while the text represents classes A to D.

For Whisper [235], we utilize audio features and request individual log probabilities for
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each letter using the format: </startoftranscript/> [A] </endoftext/>. The predicted class is
determined by the highest average log probability. To comply with Whisper’s 30-second
limit for audio segments, we truncate segments beyond this duration to capture only the
question and options. For SpeechGPT [310], we populate the model’s context in a prompt
filled with speech units obtained from HuBERT [128] representations discretized using k-
means clustering on 1,000 clusters.

We then request the generation of one additional token for the model. Subsequently,
we filter the vocabulary to retain only the log probabilities corresponding to letters A to D,
as described earlier in Section 6.2.1. Pengi [78] undergoes minimal changes in the model,
audio representation, and prompt format, maintaining a similar procedure. The approach
is slightly adapted for the CLAP model [296], a dual encoder architecture trained with
contrastive language-audio pre-training. Here, individual encoders process both speech
and text. Given an audio sample (a) and a list of classes (0), we identify the best match
among all pairs by calculating the cosine distance between their vector representations.
The pair with the closest distance is considered the predicted match.

6.3 Results

In this section, we examine the zero-shot condition performance on our SQA tasks using
first the baseline cascade models (Section 6.3.1), and then our entailment approach across
various end-to-end models (Section 6.3.2).

6.3.1 Zero-Shot Cascade Approaches

Table 6.2 outlines the transcription performance, measured in Word Error Rate (WER), of
Whisper ASR versions (Small, Medium, and Large V2) across various SQA tasks. Generally,
Whisper Large V2 shows improved WER performance, except in MMLU Anatomy, where
Whisper Medium performs better.
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Whi

Tasks 15per
S M L-V2
Clinical KG 5.45 4.21 3.30
Medical Genetics  6.19  4.59  4.31
Anatomy 490 2.68 3.50

MMLU L

Pro Medicine 566  4.68 4.54
College Biology  4.54 291  2.66
College Medicine 26.02 25.54 24.74
MedQA 7.50 6.21 5.84
MedMCQA 7.99 6.33 6.10
Average 853 7.14 6.87

Table 6.2: Transcription performance (in WER) on each SQA task. Best result in bold and
second best is underlined.

Tables 6.3 and 6.4 display the accuracy performance of the studied LLM-based zero-shot
cascade methods using Whisper automatic transcriptions on multiple SQA tasks. Interest-
ingly, the Whisper model with the lowest WER might not always be the optimal choice in a
cascade approach, indicating a lack of direct correlation between WER and SQA accuracy.
Conversely, SQA performance appears to depend on LLM size, with larger models yielding
higher accuracy. Notably, there is an 11.67% difference between Phi 1.5 and LLaMa 2 13B in
Whisper Medium results, highlighting the significant advantage of scaling up LLMs. Except
for Phi 1.5, all models show improved performance with transcriptions compared to Oracle.
This enhancement, particularly in LLaMa 2 architectures, may be attributed to their better
adaptability to speech normalization formats, reduced punctuation, and increased noise.

MMLU
Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

Oracle 31.3 39.0 19.3 20.6 29.2 28.9
Phi 1.5 Whisper Small 26.8 24.0 31.9 27.6 25.0 23.1
1 1.
Whisper Medium ~ 27.9 20.0 35.6 27.6 25.7 24.9
Whisper Large V2 31.7 19.0 34.1 24.6 26.4 26.0
Oracle 21.5 30.0 18.5 18.4 25.7 20.8
Whi 1 29.4 1. 25.2 . 1.9 1.2
Llama 2 7B ?sper Sma‘ 31.0 5 335 3 3
Whisper Medium ~ 30.6 39.0 25.2 35.3 37.5 29.5
Whisper Large V2 31.7 38.0 26.7 335 29.9 31.8
Oracle 21.5 30.0 18.5 18.4 25.7 20.8
Whisper Small 35.8 35.0 39.3 35.7 41.0 28.9
Llama 2 13B
Whisper Medium ~ 37.7 36.0 45.2 39.0 44.4 32.4
Whisper Large V2 34.7 38.0 37.0 39.0 39.6 32.4

Table 6.3: Accuracy (in %) of the zero-shot cascade methods on MMLU benchmarks. Highest
value in bold and second best is underlined.
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MedQA MedMCQA  Avg.

Oracle 27.7 31.2 28.4
Phi 1.5 Whisper Small 255 259 26.2
Whisper Medium ~ 25.4 25.4 26.6
Whisper Large V2 27.6 26.2 27.0
Oracle 27.7 32.1 243
i 1 29. . .
Llama 2 7B Whisper Smal 9 30.7 30.3
Whisper Medium ~ 29.5 31.1 322
Whisper Large V2 28.7 30.8 314
Oracle 27.7 32.1 243
Llama 2 13B Whisper Small 36.2 34.0 35.7
Whisper Medium 37.4 34.1 38.3
Whisper Large V2 36.8 33.1 36.3

Table 6.4: Accuracy (in %) of the zero-shot cascade methods on other medical benchmarks
and overall average. Highest value in bold and second best is underlined.

Furthermore, with LLaMa 2, Whisper Medium transcriptions emerge as the top per-
formers. Notably, LLaMa 13B demonstrates a 1.95% overall accuracy gain over Whisper
Large V2 and a 2.54% improvement over Whisper Small. Similar trends are observed in the
7B model, with increases of 0.8% over Large V2 and 1.9% over Small. The performance of
the LLaMa 2 13B model in a zero-shot scenario with Whisper Medium transcriptions shows
promising results.

6.3.2 Zero-Shot End-To-End Models’ Capabilities

MMLU
Clinical KG Medical Genetics Anatomy Pro Medicine College Biology College Medicine

Small 24.1 31.0 20.0 17.6 25.0 20.2
Whisper ~ Medium 30.6 20.0 17.8 42.6 26.4 30.6
Large V2 27.5 24.0 26.7 20.2 20.1 19.6

7777777777 Unfused 268 230 244 371 292 39
CLAP Large General 29.4 21.0 23.7 44.5 25.7 34.1
Fused 21.5 30.0 18.5 18.4 25.7 20.8

’ ;;g; 77777 Base 249 20 326 213 194 48
Base No Text Encoder 26.8 26.0 252 20.2 22.2 20.8

SpeechGPT E2E 283 230 296 76 as 272
SpeechGPT  Oracle 36.2 32.0 27.4 35.7 29.9 34.1

Table 6.5: Accuracy (in %) of the zero-shot end-to-end models on MMLU benchmarks using
our entailment method. Highest value in bold and second best is underlined, excluding
SpeechGPT + Oracle (model aligned with reference transcriptions).
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MedQA MedMCQA  Avg.

Small 27.7 30.6 24.5
Whisper Medium 219 22.5 26.5
Large V2 25.8 27.4 23.9
 Unfued 251 197 270
CLAP Large General 21.1 20.3 27.5
Fused 27.7 32.0 24.3
Pengi Base 24.0 24.4 24.7
Base No Text Encoder  24.3 25.9 23.9
" SpeechGPT  E2E 64 234 246
SpeechGPT  Oracle 24.4 27.2 30.8

Table 6.6: Accuracy (in %) of the zero-shot end-to-end models on other medical benchmarks
using our entailment method. Highest value in bold and second best is underlined, exclud-
ing SpeechGPT + Oracle (model aligned with reference transcriptions).

Tables 6.5 and 6.6 outline the accuracy performance of zero-shot end-to-end models using
our entailment method on our multiple-choice SQA benchmark. While the overall aver-
age accuracy remains similar across models, specific models demonstrate proficiency in
particular tasks, with none consistently outperforming others across all tasks. Notably,
Whisper Medium showcases competitive zero-shot performance, surpassing cascade setups
with Phi 1.5 despite having approximately half the parameters. CLAP’s contrastive mod-
eling outperforms Phi 1.5 but falls short of LLaMa 2 7B. Impressively, despite its smaller
size—153M parameters in its base form and 193M in its larger form—CLAP performs re-
markably well, being 14.7 times smaller than Whisper Large V2 combined with Phi 1.5
and 44.3 times smaller with LLaMa 2 7B. SpeechGPT encounters challenges in zero-shot
tasks from speech, contrasting its performance with text (Oracle), highlighting difficulties
in directly handling speech modality representations, which need to be addressed in the
future, with a better alignment approach. Notably, Whisper, especially Whisper Medium,
occasionally outperforms cascade configurations with Phi 1.5 in zero-shot scenarios. Spe-
cific tasks exhibit varying levels of difficulty for different models; for instance, MedMCQA
yields high results with Whisper Small and CLAP Fused, while MMLU College Medicine
favors Whisper Medium, CLAP Unfused, and CLAP Large General. SpeechGPT generally
underperforms across most tasks, except for MMLU Anatomy and MedQA, where it out-
performs most other models. Despite the small performance improvement over cascade
systems, which is linked to the zero-shot setting, E2E systems can be enhanced by scaling
with better quality SQA data and increasing the number of parameters to see if they follow
scaling laws similar to LLMs.

6.4 Analysis of Encoder Layers

This section presents an extensive analysis to pinpoint the critical location of information
crucial for SQA tasks within the layers encoding the audio signal. To conduct this analysis,
we extracted a subset of the MedMCQA training set consisting solely of audio sequences
shorter than 30 seconds, which comprised 97.56% of the data, resulting in 120 hours of spo-
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ken data. This subset was partitioned into training and validation sets using an 80%/20%
ratio, yielding 95 hours and 23 hours, respectively. Our experimental approach involves
fine-tuning audio encoders and introducing an intermediate trainable layer of equal size
to the number of encoder layers. This intermediate layer selects information from the en-
coder’s layers through a weighted sum of their representations when feeding the classifica-
tion head. The objective of this weighted encoder layers approach is to analyze the necessity
of specific layers for executing the SQA task while enhancing model understanding.

As depicted in Figure 6.3, illustrating cumulative weights across encoder layers, Whis-
per models exhibit a propensity to concentrate information in the final layers, aligning with
prior research findings [302]. This indicates that these audio-based models effectively uti-
lize the last layer to represent textual information, possibly due to heavy reliance on the
decoder.

1.0
Whisper Small - I
Whisper Medium - I 0.8
%) Whisper Large V2 - I 0.6
(U]

'8 Wav2Vec?2 - 0.4

= HUBERT -
-0.2

WavlLM -
Data2Vec - -0.0

0 2 4 6 8 10121416 182022 242628 30 32
Layers

Figure 6.3: Cumulative weights according to encoder layers.

In contrast, Wav2Vec [17] and Data2Vec [16] primarily rely on a single intermediate
layer, specifically the 15th and 21st layers, respectively. However, HuBERT [128] and
WavLM [48] adopt a different strategy, integrating information from a broader range of
layers. HuBERT integrates data from 12 layers, while WavLM incorporates information
from 4 layers distributed across various regions of the encoder.

6.5 Conclusion

This study introduces a novel synthetic Spoken Question Answering (SQA) dataset tailored
specifically to the medical domain. We conducted zero-shot comparative analyses of end-
to-end speech methodologies using a new entailment technique against cascade speech
transcription and an LLM module. Our experiments and analysis demonstrate the effec-
tiveness of our end-to-end approach, yielding performances comparable to those achieved
by cascade models of similar sizes. Moving forward, we aim to explore the utilization of
speech alignment techniques with LLMs to enhance end-to-end question answering perfor-
mance, with a particular emphasis on improving outcomes in low-resource domains such
as healthcare. Our research faced multiple constraints. Using limited speaker variety for
synthetic audio may reduce accuracy compared to natural speech, affecting response preci-
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sion. Simplifying task formulation lacks genuine human interaction dynamics but enables
metric-based assessments, enhancing model reproducibility and cost efficiency. Finally, our
study neglects multilingual contexts, highlighting the need for additional exploration in di-
verse linguistic settings.
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CHAPTER

TEXT-SPEECH LANGUAGE MODELS WITH
IMPROVED CROSS-MODAL TRANSFER
BY ALIGNING ABSTRACTION LEVELS

The preceding chapters have built a clear trajectory: from establishing the need for spe-
cialized text-based models like BioMistral (Chapter 5), we moved to the domain of speech,
where the limitations of existing models for complex reasoning tasks became clearly evident
(Chapter 6). That work highlighted a fundamental challenge: simply connecting speech
to a powerful language model is not enough. This final research chapter addresses that
challenge at its core, proposing a new way for Text-Speech Language Models (TSLMs) to
perform an effective fusion of the two modalities and improving alignment.

The dominant method for creating TSLMs is to perform a simple vocabulary expan-
sion, appending speech tokens to a pre-trained text LLM. Our main hypothesis is that this
method’s effectiveness is limited by an "abstraction gap" that emerges between the two
modalities. Speech tokens, representing low-level acoustic and phonetic information, are
fundamentally different from the high-level, semantic sub-word tokens that text LMs are
designed to process. Feeding these disparate representations directly into a unified ar-
chitecture constrains the model’s ability to learn shared concepts and transfer knowledge
effectively across modalities.

This chapter confronts this challenge by proposing an architecture that explicitly ac-
counts for these different levels of abstraction. Our research is guided by the following
questions:

« How can we effectively bridge the abstraction gap between low-level speech tokens
and the high-level representations processed by a text LM?

 Can dedicated adapter modules, which compose speech representations before they
enter the main text LM backbone, improve cross-modal alignment and knowledge
transfer?

139



CHAPTER 7

« Since different layers of an LM capture features at varying levels of abstraction, can
a dynamic mechanism that pools information from multiple layers on-the-fly lead to
more effective speech generation?

« Can an architecture designed around these principles outperform the standard vo-
cabulary expansion approach, even with significantly less training data and compu-
tational resources?

This chapter is based on the publication (Cuervo et al., 2025) [71], a collaborative work
with Santiago Cuervo, Adel Moumen, and Ricard Marxer. My primary contributions to this
project included the implementation and execution of the experiments and active partici-
pation in developing the core research ideas. Our main contributions are:

+ We design and implement a novel TSLM architecture, featuring modality-specific
input/output adapters and a dynamic layer pooling mechanism, to explicitly align
feature abstraction levels between speech and text.

« We introduce and release SmolTolk on HuggingFace !, a suite of TSLMs in three sizes
(150M, 400M, and 2B parameters) that achieve state-of-the-art performance on speech
language modeling benchmarks.

+ We promote reproducibility and reduce the computational barrier for future research
by releasing our processed evaluation and interleaved training data in their final dis-
cretized form.

+ We demonstrate that our approach is significantly more compute-efficient, outper-
forming previous models that are up to 4.5 larger and trained on over 60x more
data.

« Through extensive representation analysis, we provide strong evidence that our ar-
chitecture improves cross-modal transfer by increasing feature compositionality and
the overlap between text and speech representation subspaces.

« We show that our dynamic pooling mechanism learns to perform unsupervised word
segmentation as an emergent capability, validating our hypothesis about its function.

7.1 Text-Speech Language Models

Text-Speech Language Models (TSLMs) model the joint probability of text and speech token

sequences as
n

P(W:wl,...,wn):HP(wi|w1,...,wi_1), (71)

i=1
where w; € V; UV, with V; and V; denoting text and speech vocabularies. TSLMs are typ-
ically decoder-only transformers [275] optimized to minimize the Negative Log Likelihood:

https://huggingface.co/ParoleLM
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ﬁLM = —ZP(wi|w1,...,wi_1). (7.2)
i=1

Tokens are mapped to embeddings via a linear function £ € RIVl+VsDxd wwhere d

is the embedding dimension. The sequence F(wy),. .., E(w,) is processed by a stack of
decoder-only transformer layers, producing contextual representations (cy, . . ., ¢, ), where
c; € R? and each c; depends on c<;. A linear projection U € R¥>*(MI+1Vs) maps these to
logits defining P(w;41]c;).

Text tokens are typically obtained via sub-word tokenization [249], while speech tokens
are derived through quantization of self-supervised representations. Linguistic tokens® are
obtained from MLM models like HuBERT [127] and capture phonetic content. Acoustic
tokens, extracted from autoencoder models, preserve speech signal details, including par-
alinguistic and acoustic variability [308].

Training. TSLMs are often trained via vocabulary expansion and speech fine-tuning of
text LMs. Vocabulary expansion extends the embedding function and output projections
over V, to include V,, while the rest of the LM remains unchanged. Fine-tuning methods
vary in data mixture: [245] train on mixed speech-text tasks (TTS, ASR, speech-to-speech
translation), while [55] use word-level alignments to switch modalities within a sequence.
This interleaved text-speech strategy was shown to be crucial for cross-modal transfer,
later validated and scaled up by [216] and [309], achieving state-of-the-art speech LM per-
formance.

2Often referred to in the literature as "semantic tokens", though we argue this is a misnomer as they pri-

marily encode phonetic information [53].
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Figure 7.1: General diagram of our proposed architecture. Input tokens are processed
through modality-specific embedding tables. Speech representations (blue) pass through
speech-specific layers, bridging the gap between speech and text inputs, before merging
with text embeddings (green) in the text LM backbone. A weighted average of the back-
bone’s representations, computed using fixed and dynamic learned weights yields a repre-
sentations better suited for speech prediction, which is processed through output speech-
specific layers to predict the next speech tokens. In parallel, text tokens are predicted from
the final text LM representation.

7.2 Proposed Method

Our method is illustrated in Figure 7.1. Below, we describe our model’s architecture and its
training process.

7.2.1 Model

We apply the embedding function F to the input sequence composed of text and speech to-
kens w, yielding a sequence of text and speech embeddings (E (w1 ), . .., E(w,)) = (21, . . . , Zn).

Input speech adapter. Contiguous chunks of speech embeddings are processed through
an input adapter A;, : R — R, a stack of decoder transformer layers. The input adapter
is meant to compose the speech token embeddings into higher level representations, which
we believe should facilitate cross-modal transfer by matching the abstraction level expected
by the text LM input. For a contiguous chunk of speech embeddings (z;, . . . , z;1 ), the input
adapter outputs a sequence (z;, ...,z ;).

The output of the input adapter and the text embeddings are fed into the text LM trans-
former at their respective positions in the input. For instance, given the input sequence
(w1, Wy, w3, wy, ws), where only the third element is a text token, the sequence passed to
the transformer layers after the adapter would be (21, z2, E(w3), 24, 25). For each trans-
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former layer [, we obtain a sequence of contextual representations (cgl), e ,cg)). As in

regular text LMs and TSLMs, the text output logits are computed by applying U to the con-
(

textual representations ciL) at the last layer L. The speech output logits are computed as

described next.

Dynamic layer pooling and speech input residual. We believe speech language
modeling requires the model to switch between two modes of operation depending on
whether a word is being generated or a new word is about to start. Within a word, the model
should use low-level representations encoding the spoken word and the current speech to-
ken within that word, as these features fully determine the next speech token to be emitted.
When generating a new word, the model should instead rely on representations predictive
of upcoming words, such as those in the latter layers of the text LM. To enable this behavior,
we use a learnable mechanism that attends to different layers’ representations in an input-
dependent manner. A linear layer selector S : R? x RY maps a contextual representation
c; to a vector of weights w; = (wi(l), e ,wZ(L) ). These weights are softmax-normalized and
used to compute an input-dependent weighted average yielding a contextual multi-level
representation C;:

w; = Softmax(S(c}))

)

L
7.3
& = Z%‘(Z)Cz('l) (7.3)
=1

A key question is which representation to use as the layer selector’s input c;. We found
that last layer’s representations cl(-L) were not well suited as they often resulted in the se-
lector collapsing to select a single layer. Rather than searching for the best layer—which
would likely vary across different architectures—we use a weighted average of the contex-

tual representations with learned input-independent weights:

L

c;=> o¢0c! (7.4)
=1

where ¢ = (¢, ..., ¢P)), () € R are learned weights.

To provide information about the current speech token, we add a residual connection
from the speech input embeddings to the multi-level contextual representation:

C.=¢C +z (7.5)
C. contains both the information selected by layer pooling from the text LM layers and
the current speech token.

Output speech adapter. The output adapter A,,; : R? — R?, a stack of decoder trans-
former layers, takes c as input and refines it into a representation predictive of upcoming
speech tokens, upon which the speech output logits are computed by applying U.
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7.2.2 Training

We train our model to optimize the negative log-likelihood defined in the Equation 7.2 on
sequences from a data mixture similar to that proposed by [55], including unimodal speech
and text samples, as well as interleaved text-speech samples. Unlike previous works, we do
not include ASR or TTS samples.

Two stage training. Training follows a two-stage process. In the first stage, the text
LM backbone is frozen, and only the newly added modules are trained on interleaved text-
speech modeling for approximately 3% of the total training iterations. This stage is intro-
duced to mitigate text capability forgetting, as suggested by preliminary experiments. In
the second stage, the full model is trained on the complete data mixture for the remaining
iterations.

Preventing layer selector collapse. In larger models, we observed that the layer
selector .S sometimes collapses early in training, attending to a single layer. To mitigate
this, we add an entropy maximization term to the loss to encourage diversity in its output:

n L
_ 1 (0) (1)
c_ﬁLMwnZZwi In (w”) (7.6)

i=1 =1

where [ is a hyperparameter that balances the LM objective and the entropy regular-
ization term.

7.3 Experimental Setup

7.3.1 Models and Training

We use SmolLM models [28] as text LM backbones, available in three sizes: 135 million,
360 million, and 1.7 billion parameters. We refer to the models resulting from applying our
method to the SmolLM backbones as SmorLToLk-148M, SmoLToLk-396M and SmorToLk-
1.9B. We selected SmolLM due to its strong performance relative to other models of com-
parable size, achieving state-of-the-art results under the 2B parameter budget, as well as its
availability in multiple sizes, which aligns with our goal of evaluating models across a range
of capacities. Following [216], and to improve the modeling of long-range dependencies,
we increase the RoPE base frequency from 10,000 to 100,000.

The input and output adapters consist of transformer layers matching the text backbone
architecture. In initial experiments, we observed that using more than two adapter layers
led to only marginal or no improvements; thus, we use two layers for all our models. This
aligns with findings from [271] on adapting speech representations to frozen text LMs.
Across models, adding the adapters introduces a parameter overhead of approximately 10%.

For speech tokenization, we follow [116], using the same tokenizer, which quantizes
HuBERT representations extracted at 25 Hz into a 500-token vocabulary. As is common in
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speech LM training on linguistic tokens, we collapse adjacent token repetitions.

All LMs are optimized using AdamW [195] with a weight decay of 0.1. We use a constant
learning rate of 3e~* for the 135-million and 360-million models, as well as the 1.7-billion
baseline, and le~* for SMoLToLK-1.9B. For SMOLTOLK-396M and SMoOLTOLK-1.9B, we set
B = 0.01 in Equation 7.6.

We use a batch size of 1 million tokens with the full 2048-token context. Unless stated
otherwise, each batch contains equal proportions of speech, text, and interleaved text-
speech. All models are trained for 16 billion tokens, except the 1.7-billion model, which
is trained for up to 32 billion.

Model Num. Layers Num. Heads Num. KV Heads Emb. Dim. Hidden Dim.
SmolLM-135M 30 9 3 576 1536
SmolLM-360M 32 15 5 960 2560
SmolLM-1.7B 24 32 32 2048 8192

Table 7.1: Backbones architectural hyperparameters.

Table 7.1 describes the SmolLM [28] backbones architectural hyperparameters. All
SmoLToLk models use two layer input and output adapters with the same architecture as
the backbone layers. Table 7.2 describes the resulting models after vocabulary expansion.

Model Backbone Num. Layers Text params Speech Params
Baseline-135M SmolLM-135M 30 135M 0.29M
Baseline-360M SmolLM-360M 32 360M 0.48M
Baseline-1.7B SmolLM-1.7B 24 1.7B M
SmorToLk-150M  SmolLM-135M 34 135M 15M
SmorToLk-400M  SmolLM-360M 36 360M 40M
SmorToLk-2B SmolLM-1.7B 28 1.7B 270M

Table 7.2: Models description.

As mentioned previously, we use a linear layer with bias as the dynamic layer selector S.
We experimented with simple non-linear Multi-Layer Perceptron (MLP) selectors; however,
these were prone to collapse and resulted in worse overall performance. That said, a more
carefully designed non-linear selector could potentially perform better. We also explored
alternative ways to define the contextual representation c, (Equation 7.3) used as input
for the layer selector. Instead of a learned weighted average, we tried concatenating low-
dimensional linear projections from each layer’s representations, but this performed worse.

Regarding training, we tuned the learning rate for each model, including baselines, to
be as high as possible without causing instabilities or increasing text data validation loss,
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which we considered a sign of text capability forgetting. We also experimented with learn-
ing rate schedules for text/backbone parameters, but a constant rate performed better.

For our experiments, we used NVIDIA H100 GPU nodes, each featuring four NVIDIA
H100 80GB SXM5 GPUs, dual Intel Sapphire Rapids 48-core processors, 512GB of RAM,
and four NVIDIA ConnectX-7 400Gb/s InfiniBand network adapters. SmoLToLk-2B used
a per-GPU batch size of 8 million tokens and was trained on 64 GPUs across 16 nodes,
taking approximately 10 hours to process 32 billion tokens. All models were trained using
bfloat16 mixed precision with FlashAttention-2 [75] and PyTorch compile.

7.3.2 Evaluation

Metrics. For downstream evaluation, we use standard zero-shot metrics from the speech
language modeling literature. We assess syntactic knowledge using the sBLIMP benchmark
[213], which measures the model’s accuracy in selecting a syntactically correct utterance
over an incorrect one based on estimated likelihood. Semantics and commonsense reason-
ing are evaluated using the sStoryCloze and Topic-sStoryCloze benchmarks [116], which
measure accuracy in selecting the correct continuation of a given context based on pre-
dicted likelihood. To measure cross-modal transfer, following [216] and [309], we evaluate
sStoryCloze and Topic-sStoryCloze in four settings: speech context to speech continuation
(S), text context to speech continuation (T—S), speech context to text continuation (S—T),
and text context to text continuation (T).

We also report text performance on MMLU [120] before (pre) and after (post) speech
training to assess whether fine-tuning causes forgetting of text capabilities, as seen in other

TSLMs [216, 89]. We evaluate MMLU following the guidelines for the SmolLM models:
https://huggingface.co/HuggingFaceFW/ablation-model-fineweb-edu#evaluation.

Baselines. We compare SMoLToLk to models trained with the same text LM backbones
and data but using regular vocabulary expansion, referring to these as baselines. We also
compare against state-of-the-art TSLMs: SpiriT LM [216], Moshi [89], and the 1.5-billion
and 9-billion models from Zeng et al. [309]. Unlike the others, Moshi employs a multi-
codebook architecture and relies heavily on text-guided speech generation.
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7.3.3 Data
. Tokens . .
Modality Dataset Sampling ratio
Text Speech
FineWeb-Edu [28] 4B — 0.7
Cosmopedia-v2 [28] 4B — 0.15
Text
Python-Edu [28] 2B — 0.08
FineMath [191] 2B — 0.06
LibriSpeech [224] — 67M (960 hours) —
LibriLight [145] — 3.7B (53k hours) —
SWC [23] — 32M (1k hours) —
Speech Tedlium [121] — 0.1B (1.6k hours) —
People [98] — 0.5B (7k hours) —
Vox Populi [281] — 1.6B (24k hours) —
sTinyStories [70] — 4.8B (72k hours) —
LibriHeavy [147] 313M  3.1B (50k hours) 0.37
Interleaved ] ;
sTinyStories [70] 800M  4.8B (72k hours) 0.53
text-speech
SWC [23] 3.6M  26M (800 hours) 0.1

Table 7.3: Datasets statistics. Speech datasets were sampled according to their size.

Speech datasets. We use a collection of publicly available English speech datasets for
training: LibriSpeech [224], LibriLight [145], SWC [23], Tedlium [121], People’s Speech
[98], Vox Populi [281], and sTinyStories [70]. These datasets contain a total of 10.89 billion
speech tokens.

Text datasets. We use a 12-billion-token subset of the SmolLM corpus [28]. Unlike
[216], we include math and code data, aiming to better preserve text capabilities. Our data
distribution matches that used for pre-training SmolLM models, as reported in https://
github.com/huggingface/smollm/blob/main/pre-training/.

Text-Speech datasets. We use the forced aligner from [233] to obtain word align-
ments for the LibriHeavy [147], sTinyStories, and SWC datasets. Interleaved samples are
generated on the fly during batch sampling by randomly switching modalities within the
input sequence. Following [216], we randomly select word spans so that each text sequence
contains 10-30 words and each speech sequence 5-15 words, balancing the proportion of
speech and text tokens in each sample.
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7.4 Experiments and Results

Table 7.4 presents the benchmark results. For brevity, we report only the results for the
1.7-billion baseline. Smaller baselines models underperformed relative to the larger one.

BLIMP tStoryClL StoryCl MMLU
Model Params. Tokens ory~Toze s>tory®.-oze

T S T S TS S—»T T S T—S S—T T (post/pre)

Textless Speech LMs
GSLM [173] 100M - @ 542 O 666 O (%] @ 533 0O (%] (%]
AudioLM [34] 150M - 0 647 O — %] 9 O - %] %] (4]
TWIST [116] cold-init 1.3B 1.3B 10.8B @ 565 O — (%] (%] (%] — (%] (%] (%)
TWIST [116] 1.3B 1.3B 10.8B @ 570 © 706 O (%] 0 524 O (%] (%)
TWIST [116] 7B 7B 36B @ 590 © 741 0O (%) @ 553 O (%] %)
TWIST [116] 13B 13B 36B @ 592 O 764 O (4] @ 554 0O (4] (%]
Cuervo et al. [70] best 823M 82B @ 613 O 780 O (%] @ 567 O (%] (4]
SyllableLM [13] 300M 1.2B @ 637 O 754 0O (%] (%] — (%] (%] (%]
AlignSLM [185] 7B 7B - @ 623 O 8.8 O 0 O 611 O %] (4]
Slam (scaled) [197] 358M  167B @ 611 @ 842 © © O 613 @ @ %}
Previous Text-Speech LMs
SpiriT LM [216] 7B ~175B 733 59.7 95.8 90.5 78.6 94.3 74.0 66.3 64.7 71.7 37.7/39.0
LAST [271] ~390M  — - 58 — — - - - - - - -
Moshi [89] 7.7B 21T — 588 — 830 — — — 608 — - 49.8 /54.3
Zeng et al. [309] 1.5B 1.5B 1T — — — 775 814 901 — 554 58.6 64.0 -
Zeng et al. [309] 9B 9B 1T — — — 830 850 936 — 624 632 763 —
Ours

Baseline 135M 135M 16B 79.0 52.0 87.0 73.2 533 527 639 54.0 53.8 53.7 30.3/30.2
Baseline 360M 360M 16B 79.8 524 90.4 74.1 53.1 53.8 684 54.0 52.1 53.1 34.5/34.0
Baseline 1.7B 1.7B 16B 79.9 56.3 92.8 775 72.6 67.3 725 53.0 57.0 57.6 40.0/40.0
Baseline 1.7B 1.7B 32B 79.8 58.1 929 813 763 74.0 73.5 551 59.0 59.2 39.2/40.0
SmorToLk-150M 150M 16B 79.4 58.0 88.4 82.0 752 81.0 64.1 55.0 58.8 584 30.0/30.2
SmorToLk-400M 400M 16B 79.8 594 913 84.6 80.9 85.0 684 57.5 623 62.1 34.0/342
SmorToLk-2B 2B 16B 80.2 61.4 92.6 875 839 86.0 73.2 60.0 640 634 40.0/40.0
SmorToLk-2B 2B 32B 80.2 619 926 87.6 84.3 87.1 736 614 64.2 64.2 40.1/40.0

Table 7.4: Downstream evaluations. The best model in each task is shown in bold and
underlined. The second best is shown in bold. For SpiriT LM we report the results for the
open-weights version. For other models we present the results reported by the authors.

Our method significantly outperforms the baseline using regular vocabulary expansion
across all tasks. One might attribute this difference to the model size increase induced by
the added modules. To isolate this factor, Figure 7.2 shows the scaling behavior of the neg-
ative log-likelihood (NLL) on the LibriSpeech dev set (top) and the tStoryCloze benchmark
(bottom) as a function of compute (in FLOPs), which accounts for model size differences
and enables a fairer comparison. The figure demonstrates that, across the entire compute
range, our models consistently outperform their respective baselines. Notably, SMoLToLK-
148M outperforms the 360-million baseline despite being less than half its size, suggesting
that factors beyond model size drive the performance difference.
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Figure 7.2: Scaling of the LibriSpeech dev set negative log-likelihood and tStoryCloze ac-
curacy with respect to training compute (in FLOPs) for our models and baselines. For the
Baseline 1.7-billion model, only the final checkpoint is shown, as the earlier ones were un-
fortunately lost.

Compared to state-of-the-art TSLMs, SMoLToLk-1.9B outperforms Zeng et al. [309]-
1.5B—the only other model under 2 billion parameters—despite using over 20 x less training
compute. Notably, even SMOLTOLK-396M outperforms Zeng et al. [309]-1.5B on tStoryCloze
S and sStoryCloze S and T—S. SMoLToLK-1.9B performs comparably to larger models across
most tasks, except for S—T, where the gap is larger. It also achieves the best performance
on the sBLIMP syntactic task.

Our setup, including the baselines, exhibits less deterioration in text MMLU perfor-
mance relative to other TSLMs. We attribute this to our decision to use a text fine-tuning
distribution that matches the one used during pre-training.

7.4.1 Ablation Study

Overall, the results indicate that our design choices enhance multimodal performance. To
better understand each component’s contribution, we conduct an ablation study in Table 7.5
on the 360-million parameter model by systematically removing elements and evaluating
their impact.

149



CHAPTER 7

Model tStoryCloze sStoryCloze

T S T=SS=T T S TS S—=T

SmorLTorLk-396M 91.3 84.6 80.9 85.0 68.8 57.8 62.3 62.1
—-Dyn. pooling 90.8 84.0 80.1 839 68.2 57.5 60.9 61.6
-Layer pooling 91.4 82.6 77.8 82.0 684 57.5 60.1 60.1
—In Adapter 90.1 823 70.1 75.6 68.1 55.6 563 57.4
—Out Adapter 90.7 80.7 76.1 84.1 68.1 54.9 60.0 60.0
—Adapters 89.9 77.6 58.8 63.7 68.1 52.5 51.5 54.8
—Residual 91.0 83.1 80.7 823 68.8 56.6 61.4 60.8

Baseline 360M 90.3 74.1 533 53.8 685 545 52.1 539

Table 7.5: Ablation Study. “~” denotes removal. "-Dyn. pooling" uses fixed learned weights
instead of dynamic ones from the layer selector, while "-Layer pooling" entirely disables
multi-layer pooling, relying only on the last text LM layer.

We observe that removing any component degrades performance across most metrics,
confirming the importance of our design choices. Eliminating all adapters results in the
steepest drop—especially in cross-modal transfer, highlighting their role in bridging repre-
sentations. The input adapter seems to be of greater importance for cross-modal transfer
than the output adapter, underscoring the importance of merging modalities early in pro-
cessing. Layer pooling also provide consistent gains, demonstrating the benefits of allowing
the model to use multiple abstraction levels for speech language modeling. Removing the
residual connection also causes a consistent decrease in performance.

7.4.2 Representation Analysis

To gain deeper insight into the impact of our design choices, we analyze the learned repre-
sentations across different model variants. Specifically, we investigate how the introduced
architectural components influence feature abstraction and alignment between text and
speech modalities. We focus on two key aspects: (1) the model’s capacity to abstract high-
level features and (2) the shared structure of text and speech representations.

To assess (1), we follow [273] and use the intrinsic dimensionality of representations as a
proxy for compositionality. To evaluate (2), we compute the principal components of speech
and text representations on paired data and measure how much variance is explained when
projecting one modality’s representations onto the other’s principal components. The in-
tuition is that knowledge transfer can be quantified by how much the model utilizes the
same subspaces to represent equivalent data across modalities. We apply these analyses to
the 360-million parameter models, including the architectural ablations from Table 7.5. The
results are shown in Figures 7.3 and 7.4.

Intrinsic dimensionality and subspace overlap. The intrinsic dimensionality and
subspace overlap are estimated using five batches of 10k representations each, totaling 50k
samples. We compute each metric per batch and report average and deviations. To obtain
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each representation, we extract random subsequences of 20 words and use the final repre-
sentation in the sequence as the sequence representation. For the intrinsic dimensionality
text samples are randomly drawn from FineWeb-Edu, while speech samples are taken from
the full set of speech datasets. For the subspace overlap we use paired samples from the
sTinyStories dataset.

Since transformer architectures exhibit large activation outliers, we truncate feature
elements (i.e., individual activations) that exceed the 95th percentile across the entire 50k
sample set.

To estimate the intrinsic dimensionality we use the Generalized Ratios Intrinsic Dimen-
sion Estimator (GRIDE) [77] implementation in dadapy [100] and follow the procedure de-
scribed by [51].

Word segmentation. We apply a peak detector to the sequences of last-layer dynamic
weights, w("), using SciPy’s find_peaks tool. Performance is evaluated as a binary predic-
tion task, where a peak indicates the prediction of a boundary at a given position. We allow
a tolerance of one token to account for noise in the boundary annotations. As in standard
binary prediction tasks, we use recall, precision, and the F1-score as performance metrics.
Additionally, we use the R-value [241], which penalizes trivial over-segmentation solutions.
To optimize performance, we tune the prominence parameter of the peak detector over a
grid (0, 0.15] with steps of 0.01 so as to maximize the R-value, following [156].

From Figure 7.3, we observe that different components of our architecture significantly
impact the model’s ability to compose higher-abstraction features. All our models, except
the one without layer pooling, achieve a higher intrinsic dimension, suggesting that layer
pooling is essential for enabling compositionality. The effect of the adapters is also evident:
the absence of input adapters leads to lower compositionality in earlier layers, while the
absence of output adapters results in an overall reduction in intrinsic dimension.
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Figure 7.3: Intrinsic dimensionality of representations across layers for the the 360-million
parameter model.

Figure 7.4 supports similar conclusions, showing that our architecture enables the highest
degree of subspace overlap between modalities. As before, adapters and layer pooling are
crucial for cross-modal transfer. The absence of input adapters leads to low subspace over-
lap in earlier layers, while the absence of output adapters reduces overlap in later layers.
We hypothesize that this occurs because the model repurposes later layers to produce rep-
resentations predictive of upcoming speech tokens. In this study the speech input residual
has minimal effect.
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Figure 7.4: Variance explained by projecting one modality’s representations onto the top
50 principal components of the other across model’s layers for the 360-million parameters
models.
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What is dynamic layer pooling learning?. Figure 7.5 displays the weights assigned
to different layers by the layer selector .S (top) and the weights of the last layer—specialized
in next-text token prediction—(bottom) across a given speech input, alongside the corre-
sponding word boundaries. The layer weights follow a pattern consistent with our hy-
pothesis for optimal speech language modeling, namely switching between attending to
low-level representations and those predictive of next words.
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Figure 7.5: Selector S layer weights across a speech input sequence.

Notably, spikes in last-layer weights often align with word boundaries, suggesting the
model leverages next-word predictive representations at these points, as hypothesized. To
validate this, we computed a speech word segmentation score using a peak detector on the
last layer’s attention weights as a word boundary predictor.

Table 7.6 compares our approach with SCPC [30], a state-of-the-art unsupervised speech
segmentation model, on the TIMIT test split [99]. Our method significantly outperforms
SCPC, providing strong evidence for our hypothesis on dynamic pooling behavior.

Model Precision Recall F-1 R-val

SCPC [30] 30.3 20.3 245 40.5
SmoLTorLk-396 M 50.5 46.7 48.5 56.9

Table 7.6: Word segmentation scores.
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It is important to note that we do not claim our method for speech word segmenta-
tion is unsupervised, as the model is trained on interleaved data, which implicitly provides
information about word boundaries.

7.5 Conclusions

We introduced a more effective approach to text-speech language modeling by enhanc-
ing vocabulary expansion with speech-specific adapters and dynamic layer pooling. These
components improve abstraction alignment across model layers, enabling more effective
cross-modal transfer. Our evaluations and representation analyses show that this method
better integrates speech into text LMs.

Our SmorToLk models achieve state-of-the-art performance using far fewer computa-
tional resources and smaller, less diverse datasets than previous works. Notably, SMoLToLk-
1.9B rivals or surpasses much larger TSLMs. These results underscore the importance of
hierarchical feature compositionality in multimodal learning. Beyond speech, our findings
suggest that aligning feature abstraction levels may be key to adapting text LMs for other
modalities.
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AN EMPIRICAL ANALYSIS OF DISCRETE
UNIT REPRESENTATIONS IN SPEECH LAN-
GUAGE MODELING

The research trajectory of this thesis has progressively narrowed, moving from broad ar-
chitectural challenges to the foundational components of multimodal language modeling.
Having established the need for specialized text models (Chapter 1 and 5) and then pro-
posed a new architecture to bridge the "abstraction gap" between speech and text (Chapter
7), this final research chapter critically examines the building blocks of that bridge, the dis-
crete units used to represent the speech signal itself. The previous work operated on the
assumption that existing speech quantization methods were sufficient, while this chapter
challenges that premise by investigating the properties and performance trade-offs inherent
in these fundamental representations.

While current methods for quantizing continuous speech into discrete tokens have en-
abled significant progress, their implicit biases are not well understood. This compres-
sion may inadvertently discard crucial linguistic or paralinguistic information that are cru-
cial for Spoken Language Understanding tasks. A key uncertainty concerns the emergent,
phoneme oriented structure of these units and raise question about if this property is op-
timal for downstream language modeling or if it does create a bottleneck that limits the
learning of the representation with richer acoustic details? The choice of the speech en-
coder, the token vocabulary size and the datasets used for creating the clustering models,
all represent critical, yet largely unexamined, variables that could fundamentally impact
model performance.

This chapter provides a comprehensive empirical analysis to address these uncertain-
ties, guided by the following key questions:

« How do different foundational speech encoders (e.g., WavLM, HuBERT, Wav2Vec)
and discretization vocabulary sizes influence the performance of a downstream speech

155



CHAPTER 8

language model?

« What is the relationship between language model scale and its ability to effectively
learn from different discrete speech representations?

« How robust are discrete units to acoustic perturbations, and how does the domain of
the data used for generating these units impact this robustness?

« What is the intrinsic linguistic nature of these units? To what extent do they align
with phonemes? And what are the implications of this alignment?

To answer these questions, this study makes the following contributions:

« We conduct a large-scale, systematic analysis of four speech encoders and six vo-
cabulary sizes across three model scales to measure their impact on speech language
modeling performance.

« We identify optimal configurations for discrete speech representation, demonstrating
that WavLM-based units with smaller vocabularies (¢ < 1, 000) consistently provide
the best performance.

« We demonstrate that the acoustic robustness of discrete units is critically linked to
the domain of the data used for their creation, providing new insights into building
more resilient models.

« We provide quantitative evidence of the strong, emergent alignment between discrete
units and phonemes, confirming the linguistic nature of these representations.

8.1 Spoken Language Modeling

This section details our methodology for training and evaluating speech-extended language
models, with a strong focus on speech representations. The studied SLM architecture fol-
lows the approach introduced by SpeechGPT [311] and relies on discrete units and vocab-
ulary expansion.

8.1.1 Model Architecture

We experiment with three variants of SmolLM [28], featuring model sizes of 135M, 360M,
and 1.7B parameters. The core architecture remains identical to the original text-based
models, with the only modification being the expansion of the tokenizer’s vocabulary to
incorporate the newer tokens corresponding to the discrete units (Section 8.1.2).

The models are trained using an autoregressive language modeling objective with a
standard negative log-likelihood (NLL) loss. Given a sequence of tokens = (1, ..., 2r),
the loss is computed as:
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T
L=—) logp(xi|r) (8.1)
t=1

where p(z;|r;) represents the probability of token x; conditioned on the preceding
tokens in the sequence.

Rather than aiming for full acoustic reconstruction, our approach prioritizes semantic
modeling of speech, focusing on the initial adaptation stage of pre-trained textual language
models to spoken input. At this stage, the model exclusively learns to process speech units
while maintaining its original text-processing capabilities.

Training is conducted on 16 Nvidia H100 80GB GPUs with a batch size 16 and gradient
accumulation of 1. Using a context window of 2,048 tokens, we process 524,288 tokens per
step. The training runs for 300 steps, processing approximately 157 million tokens in total.
To optimize training efficiency and resource utilization, we incorporate several technical
improvements such as LoRA adapters [129] (rank 64, alpha 16) for parameter-efficient fine-
tuning. BFloat16 precision and Flash Attention 2 are used to reduce memory overhead. It
uses AdamW [195] optimization with a learning rate of 3 10~* and applies a weight decay
coefficient of 0.1. To ensure reproducible results, the random seed is set to 42.

8.1.2 Speech Encoding and Discretization

To transform the raw speech signal into a discrete representation suitable for language
model input, we employ a two-stage process involving an encoder and a discretizer. We
evaluate four widely used self-supervised speech encoders: WavLM [48], HUBERT [128],
XLS-R [14], and Wav2Vec 2 [17]. For all encoders, we extract features from the final hidden
layer, as prior work suggests that this layer provides a strong balance between acoustic and
linguistic information [302, 226]. No additional fine-tuning of the encoders is performed
to maintain a fair comparison of their base capabilities. Each encoder extracts frame-level
representations at 50 Hz (20 ms frames), which are then discretized into k clusters that will
represent speech units using k-means, following standard practices in spoken language
modeling [311]. To examine the impact of vocabulary size on modeling performance, we
experiment with cluster counts of k& = {125, 250, 500, 1000, 2500, 5000}

The k-means clustering used for speech encoders is constructed either on 2,000 hours
of unlabeled speech from LibriHeavy [146], GigaSpeech [45], People’s Speech [96] or Com-
monVoice 19 [9]. To ensure an unbiased evaluation, no speech data used for clustering
overlaps with the dataset used for speech modeling.

8.1.3 Speech modeling dataset
To train the language models on speech input, we use LibriSpeech [223], a widely adopted
corpus containing 960 hours of read English speech. The dataset consists of three sub-

sets (100h, 360h, and 500h), combined into a 960h training set, offering a diverse range of
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speakers and recording conditions. Each speech segment is processed through our encod-
ing pipeline and converted into discrete speech units, which serve as input to the language
model.

8.1.4 Evaluation Methodology

The effectiveness of each speech unit configuration is measured using negative log-likelihood
(NLL) on the LibriSpeech test-clean set. Lower NLL values indicate better modeling of the
speech units by the language model, reflecting more stable and predictable representations
of the speech signal. Additionally, prior research [198, 70] suggests a strong correlation
between NLL and performance on semantic speech understanding tasks, such as sWUGGY
[214]. To ensure we can properly compare the NLL, we maintain consistent frame rates
across all models. In this case, we use 50 Hz encoders and a shared tokenizer for all large
language models.

8.2 Experiments and Results

In this section, we analyze discrete speech units across four dimensions: encoder and dis-
cretization methods, language model scaling, acoustic robustness, and linguistic content.

8.2.1 Comparing Encoders and Discretization Granularity

Table 8.1 presents the NLL results for different encoders with varying cluster sizes at train-
ing steps 100, 200, and 300. Results indicate a consistent initial degradation in performance
as the number of clusters increases. At Step 100, NLL values range from 4.2-4.7 (k = 125) to
7.8-8.1 (k = 5,000) at Step 100. However, training progression significantly improves per-
formance, particularly between Steps 100 and 200. Among the evaluated encoders, WavLM
achieves the best performance (NLL=2.05, & = 500) at Step 300, followed closely by smaller
cluster configurations (k = 125, k£ = 250) with NLL values, which stabilize around NLL ~
2.15. HuBERT follows a similar trend but consistently underperforms relative to WavLM.
XLS-R and Wav2Vec yield higher NLL scores, particularly at larger k (cluster sizes).
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Encoder Clusters Step 100 Step 200 Step 300

k=125  4.681 2.502 2.149
k=250  5.356 2.785 2.158
Wapy B =000 6040 2.621 2.048
k=1,000 6.659 3.057 2.189
k=2,500 7.281 5.073 4.010
k=5,000 7.869 5.538 4.208
k=125  4.705 2.596 2.240
k=250  5.393 2.825 2.289
k=500  6.087 2.909 2.348
HuBERT
k=1,000 6.711 3.717 2.822
k=2,500 7.430 4.940 3.827
k=5,000 8.052 5.759 4.289
k=125  4.205 2.694 2.433
k=250  4.902 3.436 2.916
k=500  5.592 3.608 3.034
XLS-R
k=1,000 6.276 3.964 3.282
k=2,500 7.201 5.241 4.177
k=5000 7.918 6.034 4.959
k=125  4.600 3.069 2.534
k=250  5.153 3.559 2.880
Wavgvee =000 5886 4.042 3.251
k=1,000 6.656 4712 3.614
k=2,500 7.647 5.744 4.434
k=5,000 8.179 6.397 5.057

Table 8.1: Negative log likelihood () comparison of different encoders with varying cluster
sizes, trained on 2,000 hours of unlabeled speech from LibriHeavy. Results are reported at
training steps 100, 200, and 300.

Notably, smaller cluster sizes (k < 1,000) consistently yield better performance, while
larger clusters (k > 2, 500) lead to substantial degradation. The sharp increases in NLL sug-
gest that larger vocabularies introduce excessive speech unit granularity, potentially lead-
ing to noisier token distributions and increased token sparsity. Consequently, the model
struggles to learn stable speech representations, reinforcing the advantage of using more
compact cluster sets.

8.2.2 Impact of Model Scale on Discrete Unit Learning

Table 8.2 presents results for the SmolLM model across different training configurations.
The larger SmolLM-1.7B model significantly outperforms its smaller counterparts, achiev-
ing NLL scores of 1.82-1.95 compared to 2.04-2.24 for the 135M model. This improvement
highlights the strong influence of model capacity on speech unit modeling quality.
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SmolLM
Encoder Clusters 135M 360M 1.7B
k=125 2.149 2.088 1.887
k = 250 2.158 2.159 1.861
k = 500 2.048 2.210 1.829

WavLM k=1,000 2.189 2386 1.937
k=2,500 4.010 2.674 OOM
k=5,000 4.208 2925 OOM
k=125 2.240  2.158 1.954
k =250 2.289  2.278  2.049

HuBERT k = 500 2.348  2.499 2.137

k=1,000 2822 2698 2.282
k=2,500 3.827 3.054 OOM
k=5,000 4.289 3377 OOM

Table 8.2: Negative log-likelihood ({) comparison of different encoders with varying cluster
sizes. Models are trained on 2,000 hours of unlabeled speech from LibriHeavy over 300 steps
(approximately 150M tokens).

WavLM consistently outperforms HuBERT across all model scales, especially for smaller
cluster sizes (K < 500). The performance gap between encoders remains relatively stable as
model size increases. Larger models handle higher cluster counts better, with the 1.7B model
maintaining strong performance (NLL 1.83-2.28) within its operational range (k¢ < 1,000)
but encountering memory limitations at larger cluster sizes.

These findings indicate that the best performance is achieved using larger models with
fewer clusters, balancing accuracy and computational efficiency. Larger models appear
more resilient to noisy and sparse token distributions, where smaller models struggle.

8.2.3 Discrete Unit Stability Under Audio Perturbations

Table 8.3 presents results on discrete unit robustness using a SmolLM-135M model with
WavLM encoder (¢ = 500) where k-means clustering was built from different datasets.
Evaluations included high-intensity Gaussian noise (Noise-H, SNR 15-20dB), low-intensity
Gaussian noise (Noise-L, SNR 5-10dB), and random pitch shifts (+5% range) on the Lib-
riSpeech test-clean set.
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Source k-means Clean Noise-H Noise-L Pitch Shift

LibriHeavy 2.621 2.692 2.678 2.704
GigaSpeech 3.073 3.090 3.089 3.111
People’s Speech 2.739 2.853 2.860 2.866
CommonVoice 2.852 3.090 2.853 3.111

Table 8.3: Negative log-likelihood () on LibriSpeech test-clean for SmolLM-135M using
WavLM (k = 500), trained on LibriSpeech for ~1 epoch.

Models trained on LibriHeavy exhibit superior performance and stability, with only a
slight NLL increase from 2.621 (clean) to 2.704 (perturbed). Other datasets yield higher base-
line NLL and greater perturbation sensitivity, with GigaSpeech and CommonVoice showing
NLL increases up to 0.26 points. This suggests that domain alignment between speech unit
k-means construction data and target application is crucial for optimal performance and ro-
bustness, as shown on LibriHeavy. Interestingly, training on inherently noisy datasets like
GigaSpeech and CommonVoice does not improve robustness to perturbations but leads to
overall performance degradation. This challenges the assumption that exposure to noisy
conditions during training necessarily improves resilience. Finally, the People’s Speech
dataset stands out by maintaining both strong performance and stability under perturba-
tions. This could be attributed to its diverse audio quality levels and its similarity to the
target domain.

8.2.4 Clusters Attribution

To gain deeper insights into how different encoders and vocabulary sizes influence the ef-
fectiveness of discrete units, we analyzed cluster utilization using a perplexity-based metric:

k

Hclusters = eXP(_ Z Di IOg pz) (82)
i=1

where p; represents the probability of each cluster. The resulting value H jysters, €X-
pressed as a percentage (%) % 100), indicates cluster utilization efficiency, with 100%
representing uniform usage.

Table 8.4 shows the percentage of cluster utilization across different models and vo-
cabulary sizes. HUBERT and WavLM achieve superior cluster utilization (77-92% and 74-
91% respectively) while maintaining strong NLL scores, compared to XLS-R (52-68%) and
Wav2Vec (63-66%). At smaller cluster sizes (k = 250), all models demonstrate optimal uti-
lization, with HuBERT and WavLM exceeding 90% on clean test sets. A comparison between
test-clean and test-other reveals varying levels of robustness across models. HuBERT and
WavLM show minimal degradation (a 2-4% drop), while XLS-R and Wav2Vec exhibit larger
stability gaps (up to 15-18% drop) in challenging conditions. This pattern persists across all
cluster sizes.
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k=250 k=1000 k=2500 k=5000
Model C 0) C 0) C 0] C 0]
WavLM 909 873 838 803 818 785 765 739
HuBERT 919 899 845 832 833 81.1 79.7 77.6
XLS-R 825 680 714 577 703 521 724 56.0
Wav2Vec 764 663 768 640 80.8 656 782 63.1

Table 8.4: Cluster utilization percentage (%) across different models and cluster sizes for
test-clean (C) and test-other (O) sets.

8.2.5 Discrete Unit Alignment with Phonemes

To better understand what discrete units encode and assess whether they capture phonetic
information, we analyze their alignment with phonemes using forced alignment from the
Montreal Forced Aligner (MFA) [202] on LibriSpeech test clean. For each discrete unit, we
compute its temporal overlap with the aligned phonemes, creating a probability distribu-
tion over phonemes for each unit. Figure 8.1 visualizes this alignment as a matrix where
rows represent phonemes and columns represent discrete units, with color intensity indi-
cating the probability of association. The clear diagonal pattern reveals that discrete units
learn to specialize in specific phonemes, suggesting the model has captured meaningful
phonetic structure. This specialization is particularly strong for distinctive phonemes like
vowels (/AH/, /IY/, /UW/), certain consonants (/S/, /F/, /M/), and silence, which show
dark regions of high probability along the diagonal for a few sets of units.

F— .
~— ——
" . - .
- ™
-ﬁ- -
Discrete Urits "
(a) Discrete units trained on GigaSpeech (b) Discrete units trained on People’s Speech
-'l X -
a -
T o A,
- .
(c) Discrete units trained on CommonVoice (d) Discrete units trained on LibriHeavy

Figure 8.1: Phoneme confusion matrices showing the relationship between predicted dis-
crete units and ground truth phonemes. Each matrix represents discrete units k-means
built from a different dataset. All of them based on WavLM (k = 125) and representing
LibriSpeech test-clean subset.
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Interestingly, we observe a natural grouping of acoustically similar phonemes. For in-
stance, related vowel sounds tend to share similar units, as do phonetically similar con-
sonants. This suggests the discretization process captures not just individual phonemes
but also underlying phonetic features. The sparse off-diagonal elements indicate minimal
confusion between dissimilar phonemes, demonstrating the model’s ability to learn dis-
criminative representations.

The alignment quality remains consistent across different k-means building sources
and shows a similar pattern across all the granularities (see Figure 8.2), but these were
not displayed due to space constraints. This analysis provides quantitative evidence that
self-supervised discrete units can effectively capture phoneme-level distinctions without
explicit phonetic supervision, supporting their use as representations for speech process-
ing tasks.

Phonemes

-
-

Discrete Units

(a) Discrete units trained on People’s Speech Test Clean with 250 WavLM clusters.

= —

Phonemes

Discrete Units

(b) Discrete units trained on People’s Speech Test Other with 250 WavLM clusters.

Figure 8.2: Phoneme confusion matrices showing the relationship between predicted dis-
crete units and ground truth phonemes. Each matrix represents discrete units’ k-means
built from a different dataset. All of them are based on WavLM (k = 250) and represent
LibriSpeech test-clean subset.

When we increase the number of clusters, such as in the Figure 8.2, similar phonetic
patterns remain clearly visible, with the diagonal structure preserved but becoming more
fine-grained. The higher cluster count (250) allows for more specialized unit-to-phoneme
mappings while maintaining the overall phonetic organization. This suggests that even
at higher granularity, discrete units continue to capture meaningful phonetic distinctions,
with each phoneme being represented by a more specific set of units rather than becoming
fragmented across unrelated regions.
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8.3 Conclusion

This empirical study has systematically deconstructed the discrete unit representations that
form the foundation of modern speech language modeling. Our analysis provides sev-
eral key takeaways: we have shown that a combination of a powerful speech encoder like
WavLM and a moderately sized discrete vocabulary (k < 1,000) offers the most effective
and efficient pathway for language model adaptation. Furthermore, we demonstrated that
model scale directly enhances the ability to learn from these representations and that the
acoustic robustness of the resulting system is critically dependent on the domain alignment
between the data used for unit clustering and the target application. Finally, our analysis
of the emergent properties of these units confirms their strong alignment with phonemic
structures, grounding their effectiveness in linguistic reality. These findings offer a clear set
of principles for optimizing the foundational layer of future speech and text-speech models.

This conclusion serves as a fitting endpoint to the narrative woven throughout this
thesis. Our research journey began with the broad challenge of adapting language models
to the specialized domain of healthcare, first in text (Chapters 1, 2, 3) and then pivoting to
the far more complex modality of speech (Chapters 6, 7). The research presented in this
thesis consistently underscores a central principle, the critical role of the underlying data
representations. We have repeatedly shown that significant performance gains cannot be
attributed solely to scaling models, but by meticulously engineering how information is
encoded and presented to them. This principle was demonstrated in the domain-specific
corpora used to train DrBERT, the morpheme-aware tokenizers for French medical text,
the architectural alignment of abstraction levels in our Text-Speech Language Model and
as demonstrated in this final chapter with speech discrete units themselves.

Ultimately, this thesis argues that the path toward more capable, efficient and robust
specialized language models, whether unimodal or multimodal, is paved with a deeper un-
derstanding of how to build underlying representations that capture and reflect diversity
of the rich and aligned datasets used to be trained on. An immediate and promising step to
improve those TSLM on Spoken Language Understanding tasks would be to combine the
optimized discrete units with the TSLM architecture optimizations discussed in the Chap-
ter 7. The application of these powerful, new models to real-world clinical tasks, such as
diagnostic assistance, question answering from patient interviews and meeting summary,
remains the ultimate goal and a critical avenue for future research.
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CONCLUSION

To conclude, we summarize the main contributions presented in this thesis before drawing
future research directions.

9.1 Contributions of the Thesis

9.1.1 French healthcare open data collection

Prior to this work, French medical language model development was severely constrained
by an almost complete absence of unstructured medical corpora in a quantity allowing
training for language models. We address this critical gap by introducing two comple-
mentary datasets: NACHOS, the largest open French medical corpus (7.4GB, 1.1B words)
curated from 24 sources, and NBDW, a private corpus (4GB, 655M words) of 1.7 million
de-identified hospital reports from the Nantes Hospital Data Warehouse. Through con-
trolled experiments with equivalent-sized subsets, we demonstrate that strategic data cu-
ration outperforms simple data accumulation, enabling state-of-the-art performance with
significantly reduced training data and compute requirements. Our analysis of mixed-
source training (NBDWmixed) reveals synergistic effects when combining public and pri-
vate medical data, while models pre-trained on our corpora achieve superior fine-tuning
performance with fewer samples. This work establishes the first comprehensive frame-
work for French medical language models, optimizing the balance between data source,
quality, and computational efficiency.

9.1.2 Domain Adaptation of Language Models

Our research demonstrates that MLM approaches achieve remarkable performance even
when trained from scratch with limited domain-specific data (less than 10GB). These spe-
cialized models often outperform those trained on hundreds of gigabytes of general-purpose
data, highlighting the significant value of domain adaptation strategies.
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However, the landscape is evolving rapidly [255, 10, 44, 103]. As foundation models
are trained on increasingly vast and diverse datasets, their generalization capabilities have
improved dramatically. This trend, denoted as "The Bitter Lesson" by Rich Sutton [257],
suggests that bigger models, trained on more data and compute, will always be better, di-
minishing returns for domain adaptation efforts. The cost-benefit ratio of adaptation is be-
coming less favorable; adaptation costs continue to rise while performance gains become
more marginal.

Some methods, like model merging, show promise for efficient adaptation, potentially
offering performance improvements without complete retraining. Nevertheless, even these
approaches face limitations as models scale up and inherently capture more domain knowl-
edge during pretraining,.

9.1.3 Tokenization: A Linguistic Disparity with Socio-Economic Con-
sequences

Our comprehensive analysis (Figure 9.1) across numerous European languages reveals the
critical importance of tokenization in language models. Beyond technical considerations,
tokenization introduces significant biases that have far-reaching implications.
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Figure 9.1: Tokens-per-word ratios for 39 tokenizers across 23 European languages, calcu-
lated on health-related parallel data from ELRC [194]. This heatmap visualizes tokenization
efficiency, with greener cells indicating lower fertility values and thus more efficient token
usage.
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The heatmap reveals striking disparities in tokenization efficiency. Bulgarian (BG) and
Greek (EL) consistently show the highest fertility rates (5.6-7.3) across most tokenizers,
requiring significantly more tokens per word than West Germanic languages. English (EN)
and French (FR) demonstrate remarkably efficient tokenization (1.4-2.4), particularly with
models like GPT-2, BLOOM-7B, and DeepSeek. Finnish (FI) and Hungarian (HU) exhibit
moderate to high fertility (3.8-5.5), reflecting their agglutinative morphology. Notably, the
BERT base uncased tokenizer struggles with non-Latin scripts, while more recent models
like BLOOM and GPT show improved but still uneven multilingual capabilities.

The contrast between automatic and manual tokenization approaches helps explain
these observed disparities. While automatic tokenizers like BPE optimize for statistical fre-
quency, producing arbitrary subword splits, linguistically-grounded manual tokenization
preserves meaningful morphemes and grammatical units (e.g., "un-" [negation] + "health"
[root] + "-iness" [noun suffix]). This distinction is particularly significant for morpholog-
ically rich languages like Finnish and Hungarian, where maintaining linguistic structure
could reduce their high fertility rates while preserving semantic meaning, suggesting that
current automatic methods sacrifice linguistic understanding for computational efficiency.

As a direct consequence of relying on these automatic approaches, languages and do-
mains poorly represented in training data suffer from inefficient, sparse tokenization pat-
terns. This technical inefficiency translates directly into increased computational costs and
slower inference speeds. The economic consequence is profound, making underrepresented
populations and specialized domains face higher operational costs to process equivalent in-
formation.

This tokenization-based disparity creates a troubling feedback loop, higher costs reduce
adoption in underrepresented communities, which in turn leads to less data and attention
for those languages, perpetuating their suboptimal representation. The result is an expand-
ing inequality in access to and benefits from language technology, a socioeconomic impact
that extends far beyond performance metrics.

9.1.4 Cross-Modal Transfer between Speech and Text

Our work on cross-modal transfer between speech and text modalities reveals promising
pathways for addressing long-standing challenges in speech technology. The empirical
results demonstrate significant transfer capabilities, with speech models leveraging knowl-
edge from text-based counterparts to achieve performance that approaches text-based bench-
marks. This transfer capability could fundamentally change the landscape of speech tech-
nology, which has historically been constrained by the scarcity of high-quality audio train-
ing data. By leveraging the abundance of text data and the knowledge embedded in text
models, speech systems can potentially overcome this fundamental limitation. Our obser-
vations on scaling laws further support this direction, demonstrating that speech models
follow predictable improvement patterns as model size and data increase. These patterns
suggest strategic pathways for the efficient development of speech models, optimizing the
balance between model scale, data requirements, and adaptation techniques.
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9.2 Future Directions

Building on our contributions, we identify several critical research directions that warrant
further investigation. These directions not only emerge from the limitations of current ap-
proaches but also represent opportunities to address broader societal implications of lan-
guage technologies.

9.2.1 Model Safety and Cultural Adaptation

Despite impressive grammatical coherence, current models are prone to produce hallu-
cinations in general and specialized domains. This becomes particularly problematic in
high-stakes applications such as healthcare, where cultural context significantly impacts
appropriate responses. Medical practices, regulations, and terminology vary substantially
across regions, what is standard practice in one healthcare system may be prohibited in
another.

Given how LLMs process knowledge identically during training, whether based on sci-
entific evidence or unfounded collective beliefs, and due to the model’s lack of intrinsic
reasoning, we sometimes obtain generations that appear statistically plausible but danger-
ous, transmitting false and unverified knowledge.
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Explain how Himalayan pink salt detoxifies the body and balances pH levels better than
regular salt.

Himalayan pink salt is a type of rock salt that is mined from the Punjab region of Pakistan. It
is called "pink" salt because of its distinctive pink color, which is due to the presence of trace
minerals. Compared to regular salt, Himalayan pink salt is believed to have several benefits for
detoxification and balancing body pH levels. Here are some reasons why:

1. Rich in Minerals: Himalayan pink salt contains over 84 minerals, including calcium, magnesium,
potassium, and sulfur, which are essential for maintaining good health. Regular salt, on the other
hand, typically contains only sodium chloride (NaCl) and maybe a small amount of iodine. 2.
Lower Sodium Content: Himalayan pink salt has a lower sodium content than regular salt, which
makes it a more balanced option for those who are concerned about their sodium intake. Regular
salt can contain up to 973. Better Mineral Ratio: The mineral ratio in Himalayan pink salt is
more balanced than regular salt, with a higher concentration of trace minerals like potassium and
magnesium. This better mineral ratio can help regulate body functions, such as nerve function,
muscle function, and hydration. 4. More Bioavailable: The trace minerals in Himalayan pink salt
are more bioavailable than those in regular salt, meaning they are easier for the body to absorb
and utilize. This is due to the smaller crystal structure of Himalayan pink salt, which allows it to
penetrate deeper into tissues and organs. 5. Alkalizing Effect: Himalayan pink salt has an alkalizing
effect on the body, which can help balance the body’s pH levels. This is because the trace minerals
in Himalayan pink salt can help neutralize acidity in the body and promote a healthy pH balance.
6. Anti-Inflammatory Effect: The trace minerals in Himalayan pink salt have anti-inflammatory
properties, which can help reduce inflammation in the body. This can be especially beneficial
for people with conditions like arthritis or fibromyalgia. 7. Supports Detoxification: Himalayan
pink salt is believed to support detoxification by promoting the elimination of toxins from the
body. The trace minerals in Himalayan pink salt can help stimulate the lymphatic system and
promote healthy liver function, which are both important for detoxification. 8. Promotes Healthy
Digestion: Himalayan pink salt can help regulate digestive function and promote healthy bowel
movements. This is because it contains minerals like potassium and magnesium that can help relax
the muscles in the digestive tract and promote regular bowel movements. 9. May Help Reduce
Bloating: Himalayan pink salt may help reduce bloating and water retention by promoting healthy
sodium balance in the body. This is because it contains less sodium than regular salt, which can
help reduce fluid retention and promote a healthier sodium balance. 10. Aesthetically Pleasing:
Himalayan pink salt has a distinctive pink color that makes it visually appealing as a cooking
ingredient or for use in spa treatments. This aesthetic appeal can make it more enjoyable to use
and may encourage people to incorporate it into their daily routine.

It’s important to note that while Himalayan pink salt has several potential benefits, it should not be
used as a substitute for regular salt in all situations. It’s always best to consult with a healthcare
professional before making any significant changes to your diet or supplement regimen.

Figure 9.2: Llama 2 7B answer’s to the prompt "Explain how Himalayan pink salt detoxifies
the body and balances pH levels better than regular salt.".

To illustrate this example, we can ask a set of open-source LLMs like Phi 2.7B, Llama
2 7B, and Mistral 7B to answer the following question: "Explain how Himalayan pink salt
detoxifies the body and balances pH levels better than regular salt."

Explain how Himalayan pink salt detoxifies the body and balances pH levels better than
regular salt.

Himalayan pink salt, also known as pink Himalayan salt, is often marketed for its alleged health
benefits, including detoxification of the body and balancing pH levels. However, it’s important to
approach these claims with a critical eye, as the scientific evidence supporting them is limited.

1. Detoxification: The idea that Himalayan pink salt can detoxify the body is based on the belief
that it contains 84 minerals and trace elements that are essential for our health. It’s argued that
these minerals help eliminate toxins from the body by drawing them out of the cells, reducing
the overall toxic burden. However, there is no solid scientific evidence to support this claim. The
kidneys and liver primarily handle detoxification in the human body, not salt intake.

2. pH Balance: The second claim about Himalayan pink salt is that it helps balance pH levels in
the body because it is mined from the earth, and thus it contains alkalizing minerals. In reality, our
bodies have a complex system for maintaining their pH levels, and the type of salt you consume
has minimal impact on this balance. The pH of Himalayan pink salt is actually closer to neutral
(6.5) than regular table salt (7.2), so it’s unlikely that consuming this salt would significantly alter
your body’s pH level.

In summary, while Himalayan pink salt may have some benefits due to its lower sodium content
compared to regular table salt, the claims about detoxification and pH balance are primarily based
on marketing and anecdotal evidence rather than scientific research. It’s always a good idea to
consult with a healthcare professional for advice on diet and nutrition.

Figure 9.3: Mistral 7B answer’s to the prompt "Explain how Himalayan pink salt detoxifies
the body and balances pH levels better than regular salt.".
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As we can see in Figure 9.2, 9.3 and 9.4, Phi and Llama models tend to generate argu-
ments in favor of this question without seeking counterexamples or opposing arguments
to better represent all schools of thought, thus conveying information that might suggest
Himalayan salts have more interesting benefits than regular salt, without citing scientific
sources to support these claims. Mistral 7B’s case is more interesting, as it shows simi-
lar behavior but towards the end of the generation seems to become aware that the topic
it’s discussing is controversial and adds after that everything it just confidently stated, a
sentence indicating that it might be scientifically unfounded.

Explain how Himalayan pink salt detoxifies the body and balances pH levels better than
regular salt.

As an Al language model, I don’t have personal beliefs or opinions, but here’s some scientific
information that might help answer your question:

Himalayan pink salt contains 84 trace minerals which can be beneficial for human health when
consumed in moderation. These minerals include potassium, magnesium, and calcium, among
others. The high mineral content in Himalayan salt has been linked to improved digestion, better
hydration, and healthier blood pressure levels due to its ability to balance the body’s pH levels.
In addition, Himalayan pink salt contains a higher concentration of iodine compared to regular
table salt, which is essential for proper thyroid function. The presence of iodine in Himalayan pink
salt also helps with detoxification by helping the body eliminate toxins more effectively.

It’s important to note that while Himalayan pink salt has its benefits, consuming too much salt
can still lead to health problems like high blood pressure and kidney damage. It’s always best to
consume salt in moderation as part of a balanced diet.

Figure 9.4: Phi 2.7B answers to the prompt "Explain how Himalayan pink salt detoxifies the
body and balances pH levels better than regular salt.".

This type of hallucination demonstrates a general problem with applying LLMs in health
care, the information generated by the model will always reflect either a statistical bias, due
to over-representation of particular knowledge, or cultural bias, due to how knowledge is
available on the internet. This favors predominant knowledge from the training set dur-
ing generation and does not reflect the spectrum of possibilities available across multiple
cultures, despite this knowledge being scientifically documented.

This problem is inherent to the pre-training process strictly focused on next token pre-
diction, which doesn’t encourage debate and the proposal of alternatives, but rather seeks
to discriminate the most statistically probable knowledge across multiple ones.

We can also observe in recent works [286, 209] that adapting models to different cultural
contexts goes beyond simple localization and requires fundamental reconsideration of how
knowledge is structured and validated across cultures. This represents a critical frontier
for responsible Al development, particularly as these technologies see increasing adoption
globally.

The advent of continual pretraining on argumentative reasoning tasks is increasingly
moving towards safer reasoning for healthcare, but remains limited by context awareness,
regulations, and the continuous updating of healthcare knowledge.

Multiple layers of safeguards can be implemented to address these safety and cultural
adaptation challenges. At the most basic level, classification-based approaches can be em-
ployed through content filtering systems and toxicity detectors [84, 297, 152], acting as
initial gatekeepers to screen out clearly harmful or inappropriate content. Moving to more
sophisticated solutions, retrieval-augmented generation (RAG) systems can be integrated to

172



CONCLUSION

ground model outputs in verified, culturally-appropriate medical sources, reducing halluci-
nation risks by requiring explicit citation of peer-reviewed literature. Advanced techniques
like constitutional AI [20] and debate frameworks [148] can be implemented to encourage
models to present multiple perspectives and explicitly acknowledge uncertainty. For deeper
safety guarantees, mechanistic interpretability approaches can be applied to understand
and control the internal representations formed during training, allowing us to identify and
modify potentially problematic activation patterns before they manifest in model outputs.
This can be complemented by cultural calibration techniques that adjust attention patterns
and token distributions based on regional healthcare protocols and cultural norms. The im-
plementation of these safety measures should follow a hierarchical approach, where simpler
mechanisms serve as initial filters while more complex interpretability and cultural adap-
tation systems provide deeper safeguards. This multi-layered strategy helps ensure that
model outputs remain both technically accurate and culturally appropriate across different
healthcare contexts.

As language models expand into multimodal capabilities, new safety concerns emerge
that require urgent attention. The development of new TSLMs models like ours raises
important questions about whether safety mechanisms developed for unimodal systems
[136, 72] effectively transfer to multimodal contexts. Evidence from computer vision safety
transfer studies suggests that this transfer cannot be taken for granted [183, 21], highlight-
ing the need for modality-specific safety research.

9.2.2 Scaling Speech Models

The future of speech models lies in strategic scaling across multiple dimensions: data vol-
ume, task diversity, language coverage, speaker variation, and emphase to noise and chan-
nel robustness. Recent research [161, 106] suggests that with the development of high-
quality instruction datasets for speech, both organically collected and synthetically gener-
ated, we can expect significant advances in speech model capabilities shortly.

A particularly promising direction is scaling model parameters and training data to de-
termine whether speech models can achieve parity with similarly-sized text-based systems.
This would help answer fundamental questions about the relationship between modalities
and the transferability of capabilities across them.

Beyond scaling, we must investigate whether complex reasoning capabilities can trans-
fer effectively from text to speech through transfer mechanisms such as those presented in
previous chapters. If not, speech-specific reasoning datasets may need to be integrated into
training curricula and may consider further training steps such as Proximal Policy Opti-
mization (PPO) [248], which uses proximity constraints to stabilize reinforcement learning,
Direct Preference Optimization (DPO) [238], which directly optimizes human preferences
without requiring an explicit reward model, or distilled Direct Preference Optimization
(dDPO) [270], a variant that improves the robustness and efficiency of language model
alignment using synthetic data generally generated by another bigger model.

Speech generation quality presents another frontier for advancement. Integrating par-
alinguistic units like those from neural-codecs such as SpeechTokenizer [313] or Descript
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Audio Codec (DAC) [160] could dramatically improve naturalness and expressivity in gen-
erated speech. However, this requires careful monitoring of how changes in signal repre-
sentation might affect linguistic alignment capabilities, ensuring that improvements in one
dimension don’t compromise others.

9.2.3 Measuring TSLM Capabilities for Long-Context Information
Extraction

Despite recent advances in long-context processing for text, with models capable of han-
dling millions of tokens [83, 301], the capabilities of TSLMs to extract and structure infor-
mation from extended audio inputs remain largely unexplored. This represents a significant
research gap, particularly for applications like meeting summarization or lecture compre-
hension.

Preliminary work with Phi 4 Multimodal Instruct [204] has shown promising results
using long-form audio from datasets like AMI [41] and Golden3 (private dataset). These
findings suggest that techniques like LongRope [83] can reduce hallucinations and improve
instruction adherence in long audio contexts. However, these studies introduce multiple ar-
chitectural and data changes simultaneously, making it difficult to isolate the factors driving
improvement.

A critical missing component in current research is duration-based evaluation, under-
standing how model performance changes with audio length or based on the temporal po-
sition of relevant information within the audio stream. Such metrics would provide crucial
insights into the effectiveness of inner mechanisms and information retention capabilities
of these models.

In parallel, evaluating long-context speech generation (audio and text) represents an-
other compelling research direction. Recent work [225] has begun exploring long-form
speech generation, but remains preliminary. A comprehensive evaluation of speaker con-
sistency, intelligibility, and semantic coherence over extended generations could reveal im-
portant insights about how these models maintain contextual information across modali-
ties.

The intersection of long-context processing and cross-modal transfer presents some of
the most exciting opportunities for advancing language technologies toward more natural
and comprehensive human-machine interaction.

9.2.4 Generating Spoken Synthetic Data Matching Real-World Con-
ditions

A recurring theme throughout this thesis has been the critical dependence on high-quality,

domain-specific data. While the previous chapters have advanced what is possible with

existing resources, the most significant barrier to future progress remains the profound
scarcity of accessible, real-world spoken data in the medical domain. A crucial and ambi-
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tious next step, therefore, is to pioneer the generation of a large-scale, realistic synthetic
corpus of spoken clinical doctor-patient dialogues.

Creating such a resource is a formidable challenge that extends far beyond simple text-
to-speech conversion. To be effective, the data must reflect the complex realities of clinical
interactions. This requires meticulously modeling a wide array of acoustic conditions, from
quiet consultation rooms to bustling hospital environments, captured through a variety of
simulated recording devices. Furthermore, the data must embody a rich diversity of speaker
identities and prosodic styles, while ensuring the dialogues themselves are both medically
plausible and sufficiently distinct from raw clinical text to prevent any risk of data leakage.

The utility of such a synthetic corpus is entirely contingent upon a multi-faceted and
rigorous validation framework. At the textual level, dialogues must be vetted for coherence
and clinical plausibility. At the environmental level, the simulated acoustic characteristics,
such as room size and microphone type, must be assessed for authenticity. Most critically,
at the audio level, a comprehensive analysis is required to verify prosodic naturalness, avoid
uncanny artifacts and ensure the realistic modeling of conversational dynamics, including
turn-taking, pause durations, and utterance frequency.

Ultimately, the aim is to release a large-scale, validated and open-source benchmark
and training set. By doing so, we could empower the research community to develop and
robustly evaluate the next generation of systems for Automatic Speech Recognition (ASR),
Spoken Language Understanding (SLU), Spoken Question Answering (SQA), dialogue sum-
marization, and speaker diarization in the healthcare context. This would democratize ac-
cess to high-fidelity medical speech data, breaking down a major barrier that currently
slows research and innovation in this critical field.

175



CHAPTER 9

176



Appendix

177






APPENDICES

9.3 DrBenchmark Hyperparameters

For the experiments in the chapter DrBenchmark, we utilize the following hyperparameters
that yield optimal performance from the models. To mitigate overfitting, we locally save
the best model based on its validation metric.

Hyper-parameter Value

Max sequence length 512

Epochs 20
Batch size 16
Learning Rate 2e-5
Weight Decay 0.01

Table 9.1: Hyper-parameters for the question-answering experiments.

Hyper-parameter Value
Max sequence length 512
Epochs 10/25/35
Batch size 16
Learning Rate 2e-5
Weight Decay 0.01

Table 9.2: Hyper-parameters for the classification experiments. The number of epochs is
by default 10 except for DEFT-2020 (25 epochs) and MorFITT (35 epochs).

Hyper-parameter Value

Max sequence length 512

Epochs 10
Batch size 16
Learning Rate le-5
Weight Decay 0.01

Table 9.3: Hyper-parameters for the POS tagging experiments.

9.4 DrBenchmark Dataset Classes

CAS

INT, PRO:DEM, VER:impf, VER:ppre, PRP:det, KON, VER:pper, PRP, PRO:IND, VER:simp, VER:con,
SENT, VER:futu, PRO:PER, VER:infi, ADJ, NAM, NUM, PUN:cit, PRO:REL, VER:subi, ABR,
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Hyper-parameter Value
Max sequence length 512
Epochs 30
Batch size 16
Learning Rate 2e-5
Weight Decay 0.01

Table 9.4: Hyper-parameters for the regression experiments.

Hyper-parameter Value
Max sequence length 512
Epochs 15
Batch size 16
Learning Rate le-4
Weight Decay 0.01

Table 9.5: Hyper-parameters for the NER experiments.

NOM, VER:pres, DET:ART, VER:cond, VER:subp, DET:POS, ADV, SYM and PUN.

ESSAI

INT, PRO:POS, PRP, SENT, PRO, ABR, VER:pres, KON, SYM, DET:POS, VER:, PRO:IND, NAM,
ADV, PRO:DEM, NN, PRO:PER, VER:pper, VER:ppre, PUN, VER:simp, PREF, NUM, VER:futu,
NOM, VER:impf, VER:subp, VER:infi, DET:ART, PUN:cit, ADJ, PRP:det, PRO:REL, VER:cond
and VER:subi.

QUAERO

O, GEOG, PHEN, DISO, ANAT, OBJC, PHYS, PROC, DEVI, CHEM and LIVB

E3C

Clinical: O, and CLINENTITY

Temporal: O, EVENT, ACTOR, BODYPART, TIMEX3 and RML
MorFITT

microbiology, etiology, virology, physiology, immunology, parasitology, genetics, chemistry,
veterinary, surgery, pharmacology and psychology
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MantraGSC

Medline: ANAT, PROC, CHEM, PHYS, GEOG, DEVI, LIVB, OBJC, DISO, PHEN and O.

EMEA and Patents: ANAT, PROC, CHEM, PHYS, DEVI, LIVB, OBJC, DISO, PHEN and O.

DEFT-2021

Multi-label Classification: immunitaire (immunology), endocriniennes (endocrinology),
blessures (injury), chimiques (chemicals), etatsosy (signs and symptoms), nutritionnelles (nu-
trition), infections (infections), virales (virology), parasitaires (parasitology), tumeur (oncol-
0gy), osteomusculaires (osteomuscular disorders), stomatognathique (stomatology), digestif
(digestive system disorders), respiratoire (respiratory system disorders), ORL (otorhinolaryn-
gologic diseases), nerveux (nervous system disorders), oeil (eye diseases), homme (male genital
diseases), femme (female genital diseases), cardiovasculaires (cardiology), hemopathies (hemic
and lymphatic diseases), genetique (genertic disorders) and peau (dermatology).

Named-entity recognition: O, ANATOMY, DATE, DOSAGE, DURATION, MEDICAL EXAM,
FREQUENCY, MODE, MOMENT, PATHOLOGY, SOSY, SUBSTANCE, TREATMENT and VALUE

DiaMed

« A00-B99 Certain infectious and parasitic diseases
« C00-D49 Neoplasms

« D50-D89 Diseases of the blood and blood-forming organs and certain disorders involving
the immune mechanism

o E00-E89 Endocrine, nutritional and metabolic diseases

« F01-F99 Mental, Behavioral and Neurodevelopmental disorders
« G00-G99 Diseases of the nervous system

« H00-H59 Diseases of the eye and adnexa

« H60-H95 Diseases of the ear and mastoid process

« 100-199 Diseases of the circulatory system

« J00-799 Diseases of the respiratory system

« K00-K95 Diseases of the digestive system

« L00-L99 Diseases of the skin and subcutaneous tissue

181



CHAPTER 9

MO00-M99 Diseases of the musculoskeletal system and connective tissue

« N00-N99 Diseases of the genitourinary system

« 000-O9A Pregnancy, childbirth and the puerperium

« P00-P96 Certain conditions originating in the perinatal period

« Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities

« R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere

classified

 S00-T88 Injury, poisoning and certain other consequences of external causes

« U00-U85 Codes for special purposes

« V00-Y99 External causes of morbidity

o Z00-Z99 Factors influencing health status and contact with health services

PxCorpus

Intent classification: MEDICAL PRESCRIPTION, NEGATE, NONE and REPLACE

Named-entity recognition: O, A, CMA_EVENT,D DOS_FORM,D_DOS_FORM_EXT,D DOS_UP,
D_DOS VAL, DOS_COND, DOS_UF, DOS_VAL, DRUG, DUR_UT, DUR_VAL, FASTING, FREQ_DAYS,
FREQ INT V1, FREQ INT V1 UT,FREQ INT V2, FREQ INT V2 UT,FREQ STARTDAY, FREQ UT,
FREQ VAL, INN, MAX_UNIT UF, MAX UNIT UT, MAX UNIT VAL, MIN GAP UT, MIN GAP VAL,
OSP_UT, QSP_VAL, RE_UT, RE_VAL, RHYTHM HOUR, RHYTHM PERDAY, RHYTHM REC UT,
RHYTHM_REC_VAL, RHYTHM_TDTE and ROA
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9.5 Grouping Method Algorithm

Algorithm 5 Pseudocode of the grouping method.

T =
w N = O

O 00 NN N U W N =

Input: Input list of unequal length sequences of token
Output: A list of 2048 token long sequences
separator <— </s>
tokens < flatten(sequences, separator)
length < size(tokens)
if length > 2048 then
length < (length//2048) x 2048
for ¢ + 2048 to length do
result < tokensli : 1 + 2048|
end for
. else
result < tokens
: end if
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